502
|
1 ;;; mule-ccl.el --- CCL (Code Conversion Language) compiler -*- coding: iso-2022-7bit; -*-
|
428
|
2
|
|
3 ;; Copyright (C) 1995 Electrotechnical Laboratory, JAPAN.
|
|
4 ;; Licensed to the Free Software Foundation.
|
|
5
|
|
6 ;; Keywords: CCL, mule, multilingual, character set, coding-system
|
|
7
|
|
8 ;; This file is part of X Emacs.
|
|
9
|
|
10 ;; GNU Emacs is free software; you can redistribute it and/or modify
|
|
11 ;; it under the terms of the GNU General Public License as published by
|
|
12 ;; the Free Software Foundation; either version 2, or (at your option)
|
|
13 ;; any later version.
|
|
14
|
|
15 ;; GNU Emacs is distributed in the hope that it will be useful,
|
|
16 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
17 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
18 ;; GNU General Public License for more details.
|
|
19
|
|
20 ;; You should have received a copy of the GNU General Public License
|
|
21 ;; along with GNU Emacs; see the file COPYING. If not, write to the
|
|
22 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
23 ;; Boston, MA 02111-1307, USA.
|
|
24
|
444
|
25 ;; Synched up with: FSF 21.0.90
|
428
|
26
|
|
27 ;;; Commentary:
|
|
28
|
|
29 ;; CCL (Code Conversion Language) is a simple programming language to
|
|
30 ;; be used for various kind of code conversion. CCL program is
|
|
31 ;; compiled to CCL code (vector of integers) and executed by CCL
|
|
32 ;; interpreter of Emacs.
|
|
33 ;;
|
|
34 ;; CCL is used for code conversion at process I/O and file I/O for
|
|
35 ;; non-standard coding-system. In addition, it is used for
|
|
36 ;; calculating a code point of X's font from a character code.
|
|
37 ;; However, since CCL is designed as a powerful programming language,
|
|
38 ;; it can be used for more generic calculation. For instance,
|
|
39 ;; combination of three or more arithmetic operations can be
|
|
40 ;; calculated faster than Emacs Lisp.
|
|
41 ;;
|
444
|
42 ;; Syntax and semantics of CCL program is described in the
|
|
43 ;; documentation of `define-ccl-program'.
|
428
|
44
|
|
45 ;;; Code:
|
|
46
|
|
47 (defconst ccl-command-table
|
|
48 [if branch loop break repeat write-repeat write-read-repeat
|
|
49 read read-if read-branch write call end
|
444
|
50 read-multibyte-character write-multibyte-character
|
|
51 translate-character
|
|
52 iterate-multiple-map map-multiple map-single]
|
428
|
53 "Vector of CCL commands (symbols).")
|
|
54
|
|
55 ;; Put a property to each symbol of CCL commands for the compiler.
|
|
56 (let (op (i 0) (len (length ccl-command-table)))
|
|
57 (while (< i len)
|
|
58 (setq op (aref ccl-command-table i))
|
|
59 (put op 'ccl-compile-function (intern (format "ccl-compile-%s" op)))
|
|
60 (setq i (1+ i))))
|
|
61
|
|
62 (defconst ccl-code-table
|
|
63 [set-register
|
|
64 set-short-const
|
|
65 set-const
|
|
66 set-array
|
|
67 jump
|
|
68 jump-cond
|
|
69 write-register-jump
|
|
70 write-register-read-jump
|
|
71 write-const-jump
|
|
72 write-const-read-jump
|
|
73 write-string-jump
|
|
74 write-array-read-jump
|
|
75 read-jump
|
|
76 branch
|
|
77 read-register
|
|
78 write-expr-const
|
|
79 read-branch
|
|
80 write-register
|
|
81 write-expr-register
|
|
82 call
|
|
83 write-const-string
|
|
84 write-array
|
|
85 end
|
|
86 set-assign-expr-const
|
|
87 set-assign-expr-register
|
|
88 set-expr-const
|
|
89 set-expr-register
|
|
90 jump-cond-expr-const
|
|
91 jump-cond-expr-register
|
|
92 read-jump-cond-expr-const
|
|
93 read-jump-cond-expr-register
|
|
94 ex-cmd
|
|
95 ]
|
|
96 "Vector of CCL compiled codes (symbols).")
|
|
97
|
|
98 (defconst ccl-extended-code-table
|
|
99 [read-multibyte-character
|
|
100 write-multibyte-character
|
|
101 translate-character
|
|
102 translate-character-const-tbl
|
|
103 nil nil nil nil nil nil nil nil nil nil nil nil ; 0x04-0x0f
|
|
104 iterate-multiple-map
|
|
105 map-multiple
|
|
106 map-single
|
|
107 ]
|
|
108 "Vector of CCL extended compiled codes (symbols).")
|
|
109
|
|
110 ;; Put a property to each symbol of CCL codes for the disassembler.
|
|
111 (let (code (i 0) (len (length ccl-code-table)))
|
|
112 (while (< i len)
|
|
113 (setq code (aref ccl-code-table i))
|
|
114 (put code 'ccl-code i)
|
|
115 (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))
|
|
116 (setq i (1+ i))))
|
|
117
|
|
118 (let (code (i 0) (len (length ccl-extended-code-table)))
|
|
119 (while (< i len)
|
|
120 (setq code (aref ccl-extended-code-table i))
|
|
121 (if code
|
|
122 (progn
|
|
123 (put code 'ccl-ex-code i)
|
|
124 (put code 'ccl-dump-function (intern (format "ccl-dump-%s" code)))))
|
|
125 (setq i (1+ i))))
|
|
126
|
|
127 (defconst ccl-jump-code-list
|
|
128 '(jump jump-cond write-register-jump write-register-read-jump
|
|
129 write-const-jump write-const-read-jump write-string-jump
|
|
130 write-array-read-jump read-jump))
|
|
131
|
|
132 ;; Put a property `jump-flag' to each CCL code which execute jump in
|
|
133 ;; some way.
|
|
134 (let ((l ccl-jump-code-list))
|
|
135 (while l
|
|
136 (put (car l) 'jump-flag t)
|
|
137 (setq l (cdr l))))
|
|
138
|
|
139 (defconst ccl-register-table
|
|
140 [r0 r1 r2 r3 r4 r5 r6 r7]
|
|
141 "Vector of CCL registers (symbols).")
|
|
142
|
|
143 ;; Put a property to indicate register number to each symbol of CCL.
|
|
144 ;; registers.
|
|
145 (let (reg (i 0) (len (length ccl-register-table)))
|
|
146 (while (< i len)
|
|
147 (setq reg (aref ccl-register-table i))
|
|
148 (put reg 'ccl-register-number i)
|
|
149 (setq i (1+ i))))
|
|
150
|
|
151 (defconst ccl-arith-table
|
|
152 [+ - * / % & | ^ << >> <8 >8 // nil nil nil
|
|
153 < > == <= >= != de-sjis en-sjis]
|
|
154 "Vector of CCL arithmetic/logical operators (symbols).")
|
|
155
|
|
156 ;; Put a property to each symbol of CCL operators for the compiler.
|
|
157 (let (arith (i 0) (len (length ccl-arith-table)))
|
|
158 (while (< i len)
|
|
159 (setq arith (aref ccl-arith-table i))
|
|
160 (if arith (put arith 'ccl-arith-code i))
|
|
161 (setq i (1+ i))))
|
|
162
|
|
163 (defconst ccl-assign-arith-table
|
|
164 [+= -= *= /= %= &= |= ^= <<= >>= <8= >8= //=]
|
|
165 "Vector of CCL assignment operators (symbols).")
|
|
166
|
|
167 ;; Put a property to each symbol of CCL assignment operators for the compiler.
|
|
168 (let (arith (i 0) (len (length ccl-assign-arith-table)))
|
|
169 (while (< i len)
|
|
170 (setq arith (aref ccl-assign-arith-table i))
|
|
171 (put arith 'ccl-self-arith-code i)
|
|
172 (setq i (1+ i))))
|
|
173
|
|
174 (defvar ccl-program-vector nil
|
|
175 "Working vector of CCL codes produced by CCL compiler.")
|
|
176 (defvar ccl-current-ic 0
|
|
177 "The current index for `ccl-program-vector'.")
|
|
178
|
|
179 ;; Embed integer DATA in `ccl-program-vector' at `ccl-current-ic' and
|
|
180 ;; increment it. If IC is specified, embed DATA at IC.
|
|
181 (defun ccl-embed-data (data &optional ic)
|
444
|
182 (if (characterp data)
|
|
183 (setq data (char-int data)))
|
|
184 (if ic
|
|
185 (aset ccl-program-vector ic data)
|
|
186 (let ((len (length ccl-program-vector)))
|
|
187 (if (>= ccl-current-ic len)
|
|
188 (let ((new (make-vector (* len 2) nil)))
|
|
189 (while (> len 0)
|
|
190 (setq len (1- len))
|
|
191 (aset new len (aref ccl-program-vector len)))
|
|
192 (setq ccl-program-vector new))))
|
|
193 (aset ccl-program-vector ccl-current-ic data)
|
|
194 (setq ccl-current-ic (1+ ccl-current-ic))))
|
|
195
|
|
196 ;; Embed pair of SYMBOL and PROP where (get SYMBOL PROP) should give
|
|
197 ;; proper index number for SYMBOL. PROP should be
|
|
198 ;; `translation-table-id', `code-conversion-map-id', or
|
|
199 ;; `ccl-program-idx'.
|
|
200 (defun ccl-embed-symbol (symbol prop)
|
|
201 (ccl-embed-data (cons symbol prop)))
|
428
|
202
|
|
203 ;; Embed string STR of length LEN in `ccl-program-vector' at
|
|
204 ;; `ccl-current-ic'.
|
|
205 (defun ccl-embed-string (len str)
|
|
206 (let ((i 0))
|
|
207 (while (< i len)
|
|
208 (ccl-embed-data (logior (ash (aref str i) 16)
|
|
209 (if (< (1+ i) len)
|
|
210 (ash (aref str (1+ i)) 8)
|
|
211 0)
|
|
212 (if (< (+ i 2) len)
|
|
213 (aref str (+ i 2))
|
|
214 0)))
|
|
215 (setq i (+ i 3)))))
|
|
216
|
|
217 ;; Embed a relative jump address to `ccl-current-ic' in
|
|
218 ;; `ccl-program-vector' at IC without altering the other bit field.
|
|
219 (defun ccl-embed-current-address (ic)
|
|
220 (let ((relative (- ccl-current-ic (1+ ic))))
|
|
221 (aset ccl-program-vector ic
|
|
222 (logior (aref ccl-program-vector ic) (ash relative 8)))))
|
|
223
|
|
224 ;; Embed CCL code for the operation OP and arguments REG and DATA in
|
|
225 ;; `ccl-program-vector' at `ccl-current-ic' in the following format.
|
|
226 ;; |----------------- integer (28-bit) ------------------|
|
|
227 ;; |------------ 20-bit ------------|- 3-bit --|- 5-bit -|
|
|
228 ;; |------------- DATA -------------|-- REG ---|-- OP ---|
|
|
229 ;; If REG2 is specified, embed a code in the following format.
|
|
230 ;; |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
|
|
231 ;; |-------- DATA -------|-- REG2 --|-- REG ---|-- OP ---|
|
|
232
|
|
233 ;; If REG is a CCL register symbol (e.g. r0, r1...), the register
|
|
234 ;; number is embedded. If OP is one of unconditional jumps, DATA is
|
|
235 ;; changed to an relative jump address.
|
|
236
|
|
237 (defun ccl-embed-code (op reg data &optional reg2)
|
|
238 (if (and (> data 0) (get op 'jump-flag))
|
|
239 ;; DATA is an absolute jump address. Make it relative to the
|
|
240 ;; next of jump code.
|
|
241 (setq data (- data (1+ ccl-current-ic))))
|
|
242 (let ((code (logior (get op 'ccl-code)
|
|
243 (ash
|
|
244 (if (symbolp reg) (get reg 'ccl-register-number) reg) 5)
|
|
245 (if reg2
|
|
246 (logior (ash (get reg2 'ccl-register-number) 8)
|
|
247 (ash data 11))
|
|
248 (ash data 8)))))
|
444
|
249 (ccl-embed-data code)))
|
428
|
250
|
|
251 ;; extended ccl command format
|
|
252 ;; |- 14-bit -|- 3-bit --|- 3-bit --|- 3-bit --|- 5-bit -|
|
|
253 ;; |- EX-OP --|-- REG3 --|-- REG2 --|-- REG ---|-- OP ---|
|
|
254 (defun ccl-embed-extended-command (ex-op reg reg2 reg3)
|
|
255 (let ((data (logior (ash (get ex-op 'ccl-ex-code) 3)
|
|
256 (if (symbolp reg3)
|
|
257 (get reg3 'ccl-register-number)
|
|
258 0))))
|
|
259 (ccl-embed-code 'ex-cmd reg data reg2)))
|
|
260
|
|
261 ;; Just advance `ccl-current-ic' by INC.
|
|
262 (defun ccl-increment-ic (inc)
|
|
263 (setq ccl-current-ic (+ ccl-current-ic inc)))
|
|
264
|
|
265 ;; If non-nil, index of the start of the current loop.
|
|
266 (defvar ccl-loop-head nil)
|
|
267 ;; If non-nil, list of absolute addresses of the breaking points of
|
|
268 ;; the current loop.
|
|
269 (defvar ccl-breaks nil)
|
|
270
|
|
271 ;;;###autoload
|
|
272 (defun ccl-compile (ccl-program)
|
|
273 "Return a compiled code of CCL-PROGRAM as a vector of integer."
|
|
274 (if (or (null (consp ccl-program))
|
444
|
275 (null (integerp (car ccl-program)))
|
428
|
276 (null (listp (car (cdr ccl-program)))))
|
|
277 (error "CCL: Invalid CCL program: %s" ccl-program))
|
|
278 (if (null (vectorp ccl-program-vector))
|
|
279 (setq ccl-program-vector (make-vector 8192 0)))
|
|
280 (setq ccl-loop-head nil ccl-breaks nil)
|
|
281 (setq ccl-current-ic 0)
|
|
282
|
|
283 ;; The first element is the buffer magnification.
|
|
284 (ccl-embed-data (car ccl-program))
|
|
285
|
|
286 ;; The second element is the address of the start CCL code for
|
|
287 ;; processing end of input buffer (we call it eof-processor). We
|
|
288 ;; set it later.
|
|
289 (ccl-increment-ic 1)
|
|
290
|
|
291 ;; Compile the main body of the CCL program.
|
|
292 (ccl-compile-1 (car (cdr ccl-program)))
|
|
293
|
|
294 ;; Embed the address of eof-processor.
|
|
295 (ccl-embed-data ccl-current-ic 1)
|
|
296
|
|
297 ;; Then compile eof-processor.
|
|
298 (if (nth 2 ccl-program)
|
|
299 (ccl-compile-1 (nth 2 ccl-program)))
|
|
300
|
|
301 ;; At last, embed termination code.
|
|
302 (ccl-embed-code 'end 0 0)
|
|
303
|
|
304 (let ((vec (make-vector ccl-current-ic 0))
|
|
305 (i 0))
|
|
306 (while (< i ccl-current-ic)
|
|
307 (aset vec i (aref ccl-program-vector i))
|
|
308 (setq i (1+ i)))
|
|
309 vec))
|
|
310
|
|
311 ;; Signal syntax error.
|
|
312 (defun ccl-syntax-error (cmd)
|
|
313 (error "CCL: Syntax error: %s" cmd))
|
|
314
|
|
315 ;; Check if ARG is a valid CCL register.
|
|
316 (defun ccl-check-register (arg cmd)
|
|
317 (if (get arg 'ccl-register-number)
|
|
318 arg
|
|
319 (error "CCL: Invalid register %s in %s." arg cmd)))
|
|
320
|
|
321 ;; Check if ARG is a valid CCL command.
|
|
322 (defun ccl-check-compile-function (arg cmd)
|
|
323 (or (get arg 'ccl-compile-function)
|
|
324 (error "CCL: Invalid command: %s" cmd)))
|
|
325
|
|
326 ;; In the following code, most ccl-compile-XXXX functions return t if
|
|
327 ;; they end with unconditional jump, else return nil.
|
|
328
|
|
329 ;; Compile CCL-BLOCK (see the syntax above).
|
|
330 (defun ccl-compile-1 (ccl-block)
|
|
331 (let (unconditional-jump
|
|
332 cmd)
|
|
333 (if (or (integer-or-char-p ccl-block)
|
|
334 (stringp ccl-block)
|
|
335 (and ccl-block (symbolp (car ccl-block))))
|
|
336 ;; This block consists of single statement.
|
|
337 (setq ccl-block (list ccl-block)))
|
|
338
|
|
339 ;; Now CCL-BLOCK is a list of statements. Compile them one by
|
|
340 ;; one.
|
|
341 (while ccl-block
|
|
342 (setq cmd (car ccl-block))
|
|
343 (setq unconditional-jump
|
|
344 (cond ((integer-or-char-p cmd)
|
|
345 ;; SET statement for the register 0.
|
|
346 (ccl-compile-set (list 'r0 '= cmd)))
|
|
347
|
|
348 ((stringp cmd)
|
|
349 ;; WRITE statement of string argument.
|
|
350 (ccl-compile-write-string cmd))
|
|
351
|
|
352 ((listp cmd)
|
|
353 ;; The other statements.
|
|
354 (cond ((eq (nth 1 cmd) '=)
|
|
355 ;; SET statement of the form `(REG = EXPRESSION)'.
|
|
356 (ccl-compile-set cmd))
|
|
357
|
|
358 ((and (symbolp (nth 1 cmd))
|
|
359 (get (nth 1 cmd) 'ccl-self-arith-code))
|
|
360 ;; SET statement with an assignment operation.
|
|
361 (ccl-compile-self-set cmd))
|
|
362
|
|
363 (t
|
|
364 (funcall (ccl-check-compile-function (car cmd) cmd)
|
|
365 cmd))))
|
|
366
|
|
367 (t
|
|
368 (ccl-syntax-error cmd))))
|
|
369 (setq ccl-block (cdr ccl-block)))
|
|
370 unconditional-jump))
|
|
371
|
|
372 (defconst ccl-max-short-const (ash 1 19))
|
|
373 (defconst ccl-min-short-const (ash -1 19))
|
|
374
|
|
375 ;; Compile SET statement.
|
|
376 (defun ccl-compile-set (cmd)
|
|
377 (let ((rrr (ccl-check-register (car cmd) cmd))
|
|
378 (right (nth 2 cmd)))
|
|
379 (cond ((listp right)
|
|
380 ;; CMD has the form `(RRR = (XXX OP YYY))'.
|
|
381 (ccl-compile-expression rrr right))
|
|
382
|
|
383 ((integer-or-char-p right)
|
|
384 ;; CMD has the form `(RRR = integer)'.
|
|
385 (if (and (<= right ccl-max-short-const)
|
|
386 (>= right ccl-min-short-const))
|
|
387 (ccl-embed-code 'set-short-const rrr right)
|
|
388 (ccl-embed-code 'set-const rrr 0)
|
|
389 (ccl-embed-data right)))
|
|
390
|
|
391 (t
|
|
392 ;; CMD has the form `(RRR = rrr [ array ])'.
|
|
393 (ccl-check-register right cmd)
|
|
394 (let ((ary (nth 3 cmd)))
|
|
395 (if (vectorp ary)
|
|
396 (let ((i 0) (len (length ary)))
|
|
397 (ccl-embed-code 'set-array rrr len right)
|
|
398 (while (< i len)
|
|
399 (ccl-embed-data (aref ary i))
|
|
400 (setq i (1+ i))))
|
|
401 (ccl-embed-code 'set-register rrr 0 right))))))
|
|
402 nil)
|
|
403
|
|
404 ;; Compile SET statement with ASSIGNMENT_OPERATOR.
|
|
405 (defun ccl-compile-self-set (cmd)
|
|
406 (let ((rrr (ccl-check-register (car cmd) cmd))
|
|
407 (right (nth 2 cmd)))
|
|
408 (if (listp right)
|
|
409 ;; CMD has the form `(RRR ASSIGN_OP (XXX OP YYY))', compile
|
|
410 ;; the right hand part as `(r7 = (XXX OP YYY))' (note: the
|
|
411 ;; register 7 can be used for storing temporary value).
|
|
412 (progn
|
|
413 (ccl-compile-expression 'r7 right)
|
|
414 (setq right 'r7)))
|
|
415 ;; Now CMD has the form `(RRR ASSIGN_OP ARG)'. Compile it as
|
|
416 ;; `(RRR = (RRR OP ARG))'.
|
|
417 (ccl-compile-expression
|
|
418 rrr
|
|
419 (list rrr (intern (substring (symbol-name (nth 1 cmd)) 0 -1)) right)))
|
|
420 nil)
|
|
421
|
|
422 ;; Compile SET statement of the form `(RRR = EXPR)'.
|
|
423 (defun ccl-compile-expression (rrr expr)
|
|
424 (let ((left (car expr))
|
|
425 (op (get (nth 1 expr) 'ccl-arith-code))
|
|
426 (right (nth 2 expr)))
|
|
427 (if (listp left)
|
|
428 (progn
|
|
429 ;; EXPR has the form `((EXPR2 OP2 ARG) OP RIGHT)'. Compile
|
|
430 ;; the first term as `(r7 = (EXPR2 OP2 ARG)).'
|
|
431 (ccl-compile-expression 'r7 left)
|
|
432 (setq left 'r7)))
|
|
433
|
|
434 ;; Now EXPR has the form (LEFT OP RIGHT).
|
444
|
435 (if (and (eq rrr left)
|
|
436 (< op (length ccl-assign-arith-table)))
|
428
|
437 ;; Compile this SET statement as `(RRR OP= RIGHT)'.
|
|
438 (if (integer-or-char-p right)
|
|
439 (progn
|
|
440 (ccl-embed-code 'set-assign-expr-const rrr (ash op 3) 'r0)
|
|
441 (ccl-embed-data right))
|
|
442 (ccl-check-register right expr)
|
|
443 (ccl-embed-code 'set-assign-expr-register rrr (ash op 3) right))
|
|
444
|
|
445 ;; Compile this SET statement as `(RRR = (LEFT OP RIGHT))'.
|
|
446 (if (integer-or-char-p right)
|
|
447 (progn
|
|
448 (ccl-embed-code 'set-expr-const rrr (ash op 3) left)
|
|
449 (ccl-embed-data right))
|
|
450 (ccl-check-register right expr)
|
|
451 (ccl-embed-code 'set-expr-register
|
|
452 rrr
|
|
453 (logior (ash op 3) (get right 'ccl-register-number))
|
|
454 left)))))
|
|
455
|
|
456 ;; Compile WRITE statement with string argument.
|
|
457 (defun ccl-compile-write-string (str)
|
444
|
458 (setq str (encode-coding-string str 'binary))
|
428
|
459 (let ((len (length str)))
|
|
460 (ccl-embed-code 'write-const-string 1 len)
|
|
461 (ccl-embed-string len str))
|
|
462 nil)
|
|
463
|
|
464 ;; Compile IF statement of the form `(if CONDITION TRUE-PART FALSE-PART)'.
|
|
465 ;; If READ-FLAG is non-nil, this statement has the form
|
|
466 ;; `(read-if (REG OPERATOR ARG) TRUE-PART FALSE-PART)'.
|
|
467 (defun ccl-compile-if (cmd &optional read-flag)
|
|
468 (if (and (/= (length cmd) 3) (/= (length cmd) 4))
|
|
469 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
470 (let ((condition (nth 1 cmd))
|
|
471 (true-cmds (nth 2 cmd))
|
|
472 (false-cmds (nth 3 cmd))
|
771
|
473 jump-cond-address)
|
428
|
474 (if (and (listp condition)
|
|
475 (listp (car condition)))
|
|
476 ;; If CONDITION is a nested expression, the inner expression
|
|
477 ;; should be compiled at first as SET statement, i.e.:
|
|
478 ;; `(if ((X OP2 Y) OP Z) ...)' is compiled into two statements:
|
|
479 ;; `(r7 = (X OP2 Y)) (if (r7 OP Z) ...)'.
|
|
480 (progn
|
|
481 (ccl-compile-expression 'r7 (car condition))
|
|
482 (setq condition (cons 'r7 (cdr condition)))
|
|
483 (setq cmd (cons (car cmd)
|
|
484 (cons condition (cdr (cdr cmd)))))))
|
|
485
|
|
486 (setq jump-cond-address ccl-current-ic)
|
|
487 ;; Compile CONDITION.
|
|
488 (if (symbolp condition)
|
|
489 ;; CONDITION is a register.
|
|
490 (progn
|
|
491 (ccl-check-register condition cmd)
|
|
492 (ccl-embed-code 'jump-cond condition 0))
|
|
493 ;; CONDITION is a simple expression of the form (RRR OP ARG).
|
|
494 (let ((rrr (car condition))
|
|
495 (op (get (nth 1 condition) 'ccl-arith-code))
|
|
496 (arg (nth 2 condition)))
|
|
497 (ccl-check-register rrr cmd)
|
|
498 (if (integer-or-char-p arg)
|
|
499 (progn
|
|
500 (ccl-embed-code (if read-flag 'read-jump-cond-expr-const
|
|
501 'jump-cond-expr-const)
|
|
502 rrr 0)
|
|
503 (ccl-embed-data op)
|
|
504 (ccl-embed-data arg))
|
|
505 (ccl-check-register arg cmd)
|
|
506 (ccl-embed-code (if read-flag 'read-jump-cond-expr-register
|
|
507 'jump-cond-expr-register)
|
|
508 rrr 0)
|
|
509 (ccl-embed-data op)
|
|
510 (ccl-embed-data (get arg 'ccl-register-number)))))
|
|
511
|
|
512 ;; Compile TRUE-PART.
|
|
513 (let ((unconditional-jump (ccl-compile-1 true-cmds)))
|
|
514 (if (null false-cmds)
|
|
515 ;; This is the place to jump to if condition is false.
|
|
516 (progn
|
|
517 (ccl-embed-current-address jump-cond-address)
|
|
518 (setq unconditional-jump nil))
|
|
519 (let (end-true-part-address)
|
|
520 (if (not unconditional-jump)
|
|
521 (progn
|
|
522 ;; If TRUE-PART does not end with unconditional jump, we
|
|
523 ;; have to jump to the end of FALSE-PART from here.
|
|
524 (setq end-true-part-address ccl-current-ic)
|
|
525 (ccl-embed-code 'jump 0 0)))
|
|
526 ;; This is the place to jump to if CONDITION is false.
|
|
527 (ccl-embed-current-address jump-cond-address)
|
|
528 ;; Compile FALSE-PART.
|
|
529 (setq unconditional-jump
|
|
530 (and (ccl-compile-1 false-cmds) unconditional-jump))
|
|
531 (if end-true-part-address
|
|
532 ;; This is the place to jump to after the end of TRUE-PART.
|
|
533 (ccl-embed-current-address end-true-part-address))))
|
|
534 unconditional-jump)))
|
|
535
|
|
536 ;; Compile BRANCH statement.
|
|
537 (defun ccl-compile-branch (cmd)
|
|
538 (if (< (length cmd) 3)
|
|
539 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
540 (ccl-compile-branch-blocks 'branch
|
|
541 (ccl-compile-branch-expression (nth 1 cmd) cmd)
|
|
542 (cdr (cdr cmd))))
|
|
543
|
|
544 ;; Compile READ statement of the form `(read-branch EXPR BLOCK0 BLOCK1 ...)'.
|
|
545 (defun ccl-compile-read-branch (cmd)
|
|
546 (if (< (length cmd) 3)
|
|
547 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
548 (ccl-compile-branch-blocks 'read-branch
|
|
549 (ccl-compile-branch-expression (nth 1 cmd) cmd)
|
|
550 (cdr (cdr cmd))))
|
|
551
|
|
552 ;; Compile EXPRESSION part of BRANCH statement and return register
|
|
553 ;; which holds a value of the expression.
|
|
554 (defun ccl-compile-branch-expression (expr cmd)
|
|
555 (if (listp expr)
|
|
556 ;; EXPR has the form `(EXPR2 OP ARG)'. Compile it as SET
|
|
557 ;; statement of the form `(r7 = (EXPR2 OP ARG))'.
|
|
558 (progn
|
|
559 (ccl-compile-expression 'r7 expr)
|
|
560 'r7)
|
|
561 (ccl-check-register expr cmd)))
|
|
562
|
|
563 ;; Compile BLOCKs of BRANCH statement. CODE is 'branch or 'read-branch.
|
|
564 ;; REG is a register which holds a value of EXPRESSION part. BLOCKs
|
|
565 ;; is a list of CCL-BLOCKs.
|
|
566 (defun ccl-compile-branch-blocks (code rrr blocks)
|
|
567 (let ((branches (length blocks))
|
|
568 branch-idx
|
|
569 jump-table-head-address
|
|
570 empty-block-indexes
|
|
571 block-tail-addresses
|
|
572 block-unconditional-jump)
|
|
573 (ccl-embed-code code rrr branches)
|
|
574 (setq jump-table-head-address ccl-current-ic)
|
|
575 ;; The size of jump table is the number of blocks plus 1 (for the
|
|
576 ;; case RRR is out of range).
|
|
577 (ccl-increment-ic (1+ branches))
|
|
578 (setq empty-block-indexes (list branches))
|
|
579 ;; Compile each block.
|
|
580 (setq branch-idx 0)
|
|
581 (while blocks
|
|
582 (if (null (car blocks))
|
|
583 ;; This block is empty.
|
|
584 (setq empty-block-indexes (cons branch-idx empty-block-indexes)
|
|
585 block-unconditional-jump t)
|
|
586 ;; This block is not empty.
|
|
587 (ccl-embed-data (- ccl-current-ic jump-table-head-address)
|
|
588 (+ jump-table-head-address branch-idx))
|
|
589 (setq block-unconditional-jump (ccl-compile-1 (car blocks)))
|
|
590 (if (not block-unconditional-jump)
|
|
591 (progn
|
|
592 ;; Jump address of the end of branches are embedded later.
|
|
593 ;; For the moment, just remember where to embed them.
|
|
594 (setq block-tail-addresses
|
|
595 (cons ccl-current-ic block-tail-addresses))
|
|
596 (ccl-embed-code 'jump 0 0))))
|
|
597 (setq branch-idx (1+ branch-idx))
|
|
598 (setq blocks (cdr blocks)))
|
|
599 (if (not block-unconditional-jump)
|
|
600 ;; We don't need jump code at the end of the last block.
|
|
601 (setq block-tail-addresses (cdr block-tail-addresses)
|
|
602 ccl-current-ic (1- ccl-current-ic)))
|
|
603 ;; Embed jump address at the tailing jump commands of blocks.
|
|
604 (while block-tail-addresses
|
|
605 (ccl-embed-current-address (car block-tail-addresses))
|
|
606 (setq block-tail-addresses (cdr block-tail-addresses)))
|
|
607 ;; For empty blocks, make entries in the jump table point directly here.
|
|
608 (while empty-block-indexes
|
|
609 (ccl-embed-data (- ccl-current-ic jump-table-head-address)
|
|
610 (+ jump-table-head-address (car empty-block-indexes)))
|
|
611 (setq empty-block-indexes (cdr empty-block-indexes))))
|
|
612 ;; Branch command ends by unconditional jump if RRR is out of range.
|
|
613 nil)
|
|
614
|
|
615 ;; Compile LOOP statement.
|
|
616 (defun ccl-compile-loop (cmd)
|
|
617 (if (< (length cmd) 2)
|
|
618 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
619 (let* ((ccl-loop-head ccl-current-ic)
|
|
620 (ccl-breaks nil)
|
|
621 unconditional-jump)
|
|
622 (setq cmd (cdr cmd))
|
|
623 (if cmd
|
|
624 (progn
|
|
625 (setq unconditional-jump t)
|
|
626 (while cmd
|
|
627 (setq unconditional-jump
|
|
628 (and (ccl-compile-1 (car cmd)) unconditional-jump))
|
|
629 (setq cmd (cdr cmd)))
|
|
630 (if (not ccl-breaks)
|
|
631 unconditional-jump
|
|
632 ;; Embed jump address for break statements encountered in
|
|
633 ;; this loop.
|
|
634 (while ccl-breaks
|
|
635 (ccl-embed-current-address (car ccl-breaks))
|
|
636 (setq ccl-breaks (cdr ccl-breaks))))
|
|
637 nil))))
|
|
638
|
|
639 ;; Compile BREAK statement.
|
|
640 (defun ccl-compile-break (cmd)
|
|
641 (if (/= (length cmd) 1)
|
|
642 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
643 (if (null ccl-loop-head)
|
|
644 (error "CCL: No outer loop: %s" cmd))
|
|
645 (setq ccl-breaks (cons ccl-current-ic ccl-breaks))
|
|
646 (ccl-embed-code 'jump 0 0)
|
|
647 t)
|
|
648
|
|
649 ;; Compile REPEAT statement.
|
|
650 (defun ccl-compile-repeat (cmd)
|
|
651 (if (/= (length cmd) 1)
|
|
652 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
653 (if (null ccl-loop-head)
|
|
654 (error "CCL: No outer loop: %s" cmd))
|
|
655 (ccl-embed-code 'jump 0 ccl-loop-head)
|
|
656 t)
|
|
657
|
|
658 ;; Compile WRITE-REPEAT statement.
|
|
659 (defun ccl-compile-write-repeat (cmd)
|
|
660 (if (/= (length cmd) 2)
|
|
661 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
662 (if (null ccl-loop-head)
|
|
663 (error "CCL: No outer loop: %s" cmd))
|
|
664 (let ((arg (nth 1 cmd)))
|
|
665 (cond ((integer-or-char-p arg)
|
|
666 (ccl-embed-code 'write-const-jump 0 ccl-loop-head)
|
|
667 (ccl-embed-data arg))
|
|
668 ((stringp arg)
|
444
|
669 (setq arg (encode-coding-string arg 'binary))
|
771
|
670 (let ((len (length arg)))
|
428
|
671 (ccl-embed-code 'write-string-jump 0 ccl-loop-head)
|
|
672 (ccl-embed-data len)
|
|
673 (ccl-embed-string len arg)))
|
|
674 (t
|
|
675 (ccl-check-register arg cmd)
|
|
676 (ccl-embed-code 'write-register-jump arg ccl-loop-head))))
|
|
677 t)
|
|
678
|
|
679 ;; Compile WRITE-READ-REPEAT statement.
|
|
680 (defun ccl-compile-write-read-repeat (cmd)
|
|
681 (if (or (< (length cmd) 2) (> (length cmd) 3))
|
|
682 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
683 (if (null ccl-loop-head)
|
|
684 (error "CCL: No outer loop: %s" cmd))
|
|
685 (let ((rrr (ccl-check-register (nth 1 cmd) cmd))
|
|
686 (arg (nth 2 cmd)))
|
|
687 (cond ((null arg)
|
|
688 (ccl-embed-code 'write-register-read-jump rrr ccl-loop-head))
|
|
689 ((integer-or-char-p arg)
|
|
690 (ccl-embed-code 'write-const-read-jump rrr arg ccl-loop-head))
|
|
691 ((vectorp arg)
|
|
692 (let ((len (length arg))
|
|
693 (i 0))
|
|
694 (ccl-embed-code 'write-array-read-jump rrr ccl-loop-head)
|
|
695 (ccl-embed-data len)
|
|
696 (while (< i len)
|
|
697 (ccl-embed-data (aref arg i))
|
|
698 (setq i (1+ i)))))
|
|
699 (t
|
|
700 (error "CCL: Invalid argument %s: %s" arg cmd)))
|
|
701 (ccl-embed-code 'read-jump rrr ccl-loop-head))
|
|
702 t)
|
|
703
|
|
704 ;; Compile READ statement.
|
|
705 (defun ccl-compile-read (cmd)
|
|
706 (if (< (length cmd) 2)
|
|
707 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
708 (let* ((args (cdr cmd))
|
|
709 (i (1- (length args))))
|
|
710 (while args
|
|
711 (let ((rrr (ccl-check-register (car args) cmd)))
|
|
712 (ccl-embed-code 'read-register rrr i)
|
|
713 (setq args (cdr args) i (1- i)))))
|
|
714 nil)
|
|
715
|
|
716 ;; Compile READ-IF statement.
|
|
717 (defun ccl-compile-read-if (cmd)
|
|
718 (ccl-compile-if cmd 'read))
|
|
719
|
|
720 ;; Compile WRITE statement.
|
|
721 (defun ccl-compile-write (cmd)
|
|
722 (if (< (length cmd) 2)
|
|
723 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
724 (let ((rrr (nth 1 cmd)))
|
|
725 (cond ((integer-or-char-p rrr)
|
|
726 (ccl-embed-code 'write-const-string 0 rrr))
|
|
727 ((stringp rrr)
|
|
728 (ccl-compile-write-string rrr))
|
|
729 ((and (symbolp rrr) (vectorp (nth 2 cmd)))
|
|
730 (ccl-check-register rrr cmd)
|
|
731 ;; CMD has the form `(write REG ARRAY)'.
|
|
732 (let* ((arg (nth 2 cmd))
|
|
733 (len (length arg))
|
|
734 (i 0))
|
|
735 (ccl-embed-code 'write-array rrr len)
|
|
736 (while (< i len)
|
|
737 (if (not (integer-or-char-p (aref arg i)))
|
|
738 (error "CCL: Invalid argument %s: %s" arg cmd))
|
|
739 (ccl-embed-data (aref arg i))
|
|
740 (setq i (1+ i)))))
|
|
741
|
|
742 ((symbolp rrr)
|
|
743 ;; CMD has the form `(write REG ...)'.
|
|
744 (let* ((args (cdr cmd))
|
|
745 (i (1- (length args))))
|
|
746 (while args
|
|
747 (setq rrr (ccl-check-register (car args) cmd))
|
|
748 (ccl-embed-code 'write-register rrr i)
|
|
749 (setq args (cdr args) i (1- i)))))
|
|
750
|
|
751 ((listp rrr)
|
|
752 ;; CMD has the form `(write (LEFT OP RIGHT))'.
|
|
753 (let ((left (car rrr))
|
|
754 (op (get (nth 1 rrr) 'ccl-arith-code))
|
|
755 (right (nth 2 rrr)))
|
|
756 (if (listp left)
|
|
757 (progn
|
|
758 ;; RRR has the form `((EXPR OP2 ARG) OP RIGHT)'.
|
|
759 ;; Compile the first term as `(r7 = (EXPR OP2 ARG))'.
|
|
760 (ccl-compile-expression 'r7 left)
|
|
761 (setq left 'r7)))
|
|
762 ;; Now RRR has the form `(ARG OP RIGHT)'.
|
|
763 (if (integer-or-char-p right)
|
|
764 (progn
|
|
765 (ccl-embed-code 'write-expr-const 0 (ash op 3) left)
|
|
766 (ccl-embed-data right))
|
|
767 (ccl-check-register right rrr)
|
|
768 (ccl-embed-code 'write-expr-register 0
|
|
769 (logior (ash op 3)
|
|
770 (get right 'ccl-register-number))))))
|
|
771
|
|
772 (t
|
|
773 (error "CCL: Invalid argument: %s" cmd))))
|
|
774 nil)
|
|
775
|
|
776 ;; Compile CALL statement.
|
|
777 (defun ccl-compile-call (cmd)
|
|
778 (if (/= (length cmd) 2)
|
|
779 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
780 (if (not (symbolp (nth 1 cmd)))
|
|
781 (error "CCL: Subroutine should be a symbol: %s" cmd))
|
444
|
782 (ccl-embed-code 'call 1 0)
|
|
783 (ccl-embed-symbol (nth 1 cmd) 'ccl-program-idx)
|
428
|
784 nil)
|
|
785
|
|
786 ;; Compile END statement.
|
|
787 (defun ccl-compile-end (cmd)
|
|
788 (if (/= (length cmd) 1)
|
|
789 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
790 (ccl-embed-code 'end 0 0)
|
|
791 t)
|
|
792
|
|
793 ;; Compile read-multibyte-character
|
|
794 (defun ccl-compile-read-multibyte-character (cmd)
|
|
795 (if (/= (length cmd) 3)
|
|
796 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
797 (let ((RRR (nth 1 cmd))
|
|
798 (rrr (nth 2 cmd)))
|
|
799 (ccl-check-register rrr cmd)
|
|
800 (ccl-check-register RRR cmd)
|
|
801 (ccl-embed-extended-command 'read-multibyte-character rrr RRR 0))
|
|
802 nil)
|
|
803
|
|
804 ;; Compile write-multibyte-character
|
|
805 (defun ccl-compile-write-multibyte-character (cmd)
|
|
806 (if (/= (length cmd) 3)
|
|
807 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
808 (let ((RRR (nth 1 cmd))
|
|
809 (rrr (nth 2 cmd)))
|
|
810 (ccl-check-register rrr cmd)
|
|
811 (ccl-check-register RRR cmd)
|
|
812 (ccl-embed-extended-command 'write-multibyte-character rrr RRR 0))
|
|
813 nil)
|
|
814
|
|
815 ;; Compile translate-character
|
444
|
816 (defun ccl-compile-translate-character (cmd)
|
|
817 (if (/= (length cmd) 4)
|
|
818 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
819 (let ((Rrr (nth 1 cmd))
|
|
820 (RRR (nth 2 cmd))
|
|
821 (rrr (nth 3 cmd)))
|
|
822 (ccl-check-register rrr cmd)
|
|
823 (ccl-check-register RRR cmd)
|
|
824 (cond ((and (symbolp Rrr) (not (get Rrr 'ccl-register-number)))
|
|
825 (ccl-embed-extended-command 'translate-character-const-tbl
|
|
826 rrr RRR 0)
|
|
827 (ccl-embed-symbol Rrr 'translation-table-id))
|
|
828 (t
|
|
829 (ccl-check-register Rrr cmd)
|
|
830 (ccl-embed-extended-command 'translate-character rrr RRR Rrr))))
|
|
831 nil)
|
428
|
832
|
444
|
833 (defun ccl-compile-iterate-multiple-map (cmd)
|
|
834 (ccl-compile-multiple-map-function 'iterate-multiple-map cmd)
|
|
835 nil)
|
428
|
836
|
444
|
837 (defun ccl-compile-map-multiple (cmd)
|
|
838 (if (/= (length cmd) 4)
|
|
839 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
840 (let (func arg)
|
|
841 (setq func
|
|
842 (lambda (arg mp)
|
|
843 (let ((len 0) result add)
|
|
844 (while arg
|
|
845 (if (consp (car arg))
|
|
846 (setq add (funcall func (car arg) t)
|
|
847 result (append result add)
|
|
848 add (+ (- (car add)) 1))
|
|
849 (setq result
|
|
850 (append result
|
|
851 (list (car arg)))
|
|
852 add 1))
|
|
853 (setq arg (cdr arg)
|
|
854 len (+ len add)))
|
|
855 (if mp
|
|
856 (cons (- len) result)
|
|
857 result))))
|
|
858 (setq arg (append (list (nth 0 cmd) (nth 1 cmd) (nth 2 cmd))
|
|
859 (funcall func (nth 3 cmd) nil)))
|
|
860 (ccl-compile-multiple-map-function 'map-multiple arg))
|
|
861 nil)
|
428
|
862
|
444
|
863 (defun ccl-compile-map-single (cmd)
|
|
864 (if (/= (length cmd) 4)
|
|
865 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
866 (let ((RRR (nth 1 cmd))
|
|
867 (rrr (nth 2 cmd))
|
771
|
868 (map (nth 3 cmd)))
|
444
|
869 (ccl-check-register rrr cmd)
|
|
870 (ccl-check-register RRR cmd)
|
|
871 (ccl-embed-extended-command 'map-single rrr RRR 0)
|
|
872 (cond ((symbolp map)
|
|
873 (if (get map 'code-conversion-map)
|
|
874 (ccl-embed-symbol map 'code-conversion-map-id)
|
|
875 (error "CCL: Invalid map: %s" map)))
|
|
876 (t
|
|
877 (error "CCL: Invalid type of arguments: %s" cmd))))
|
|
878 nil)
|
428
|
879
|
444
|
880 (defun ccl-compile-multiple-map-function (command cmd)
|
|
881 (if (< (length cmd) 4)
|
|
882 (error "CCL: Invalid number of arguments: %s" cmd))
|
|
883 (let ((RRR (nth 1 cmd))
|
|
884 (rrr (nth 2 cmd))
|
|
885 (args (nthcdr 3 cmd))
|
|
886 map)
|
|
887 (ccl-check-register rrr cmd)
|
|
888 (ccl-check-register RRR cmd)
|
|
889 (ccl-embed-extended-command command rrr RRR 0)
|
|
890 (ccl-embed-data (length args))
|
|
891 (while args
|
|
892 (setq map (car args))
|
|
893 (cond ((symbolp map)
|
|
894 (if (get map 'code-conversion-map)
|
|
895 (ccl-embed-symbol map 'code-conversion-map-id)
|
|
896 (error "CCL: Invalid map: %s" map)))
|
|
897 ((numberp map)
|
|
898 (ccl-embed-data map))
|
|
899 (t
|
|
900 (error "CCL: Invalid type of arguments: %s" cmd)))
|
|
901 (setq args (cdr args)))))
|
428
|
902
|
|
903
|
444
|
904 ;;; CCL dump staffs
|
|
905
|
|
906 ;; To avoid byte-compiler warning.
|
|
907 (defvar ccl-code)
|
428
|
908
|
|
909 ;;;###autoload
|
|
910 (defun ccl-dump (ccl-code)
|
|
911 "Disassemble compiled CCL-CODE."
|
|
912 (let ((len (length ccl-code))
|
|
913 (buffer-mag (aref ccl-code 0)))
|
|
914 (cond ((= buffer-mag 0)
|
|
915 (insert "Don't output anything.\n"))
|
|
916 ((= buffer-mag 1)
|
|
917 (insert "Out-buffer must be as large as in-buffer.\n"))
|
|
918 (t
|
|
919 (insert
|
|
920 (format "Out-buffer must be %d times bigger than in-buffer.\n"
|
|
921 buffer-mag))))
|
|
922 (insert "Main-body:\n")
|
|
923 (setq ccl-current-ic 2)
|
|
924 (if (> (aref ccl-code 1) 0)
|
|
925 (progn
|
|
926 (while (< ccl-current-ic (aref ccl-code 1))
|
|
927 (ccl-dump-1))
|
|
928 (insert "At EOF:\n")))
|
|
929 (while (< ccl-current-ic len)
|
|
930 (ccl-dump-1))
|
|
931 ))
|
|
932
|
|
933 ;; Return a CCL code in `ccl-code' at `ccl-current-ic'.
|
|
934 (defun ccl-get-next-code ()
|
|
935 (prog1
|
|
936 (aref ccl-code ccl-current-ic)
|
|
937 (setq ccl-current-ic (1+ ccl-current-ic))))
|
|
938
|
|
939 (defun ccl-dump-1 ()
|
|
940 (let* ((code (ccl-get-next-code))
|
|
941 (cmd (aref ccl-code-table (logand code 31)))
|
|
942 (rrr (ash (logand code 255) -5))
|
|
943 (cc (ash code -8)))
|
|
944 (insert (format "%5d:[%s] " (1- ccl-current-ic) cmd))
|
|
945 (funcall (get cmd 'ccl-dump-function) rrr cc)))
|
|
946
|
|
947 (defun ccl-dump-set-register (rrr cc)
|
|
948 (insert (format "r%d = r%d\n" rrr cc)))
|
|
949
|
|
950 (defun ccl-dump-set-short-const (rrr cc)
|
|
951 (insert (format "r%d = %d\n" rrr cc)))
|
|
952
|
|
953 (defun ccl-dump-set-const (rrr ignore)
|
|
954 (insert (format "r%d = %d\n" rrr (ccl-get-next-code))))
|
|
955
|
|
956 (defun ccl-dump-set-array (rrr cc)
|
|
957 (let ((rrr2 (logand cc 7))
|
|
958 (len (ash cc -3))
|
|
959 (i 0))
|
|
960 (insert (format "r%d = array[r%d] of length %d\n\t"
|
|
961 rrr rrr2 len))
|
|
962 (while (< i len)
|
|
963 (insert (format "%d " (ccl-get-next-code)))
|
|
964 (setq i (1+ i)))
|
|
965 (insert "\n")))
|
|
966
|
|
967 (defun ccl-dump-jump (ignore cc &optional address)
|
|
968 (insert (format "jump to %d(" (+ (or address ccl-current-ic) cc)))
|
|
969 (if (>= cc 0)
|
|
970 (insert "+"))
|
|
971 (insert (format "%d)\n" (1+ cc))))
|
|
972
|
|
973 (defun ccl-dump-jump-cond (rrr cc)
|
|
974 (insert (format "if (r%d == 0), " rrr))
|
|
975 (ccl-dump-jump nil cc))
|
|
976
|
|
977 (defun ccl-dump-write-register-jump (rrr cc)
|
|
978 (insert (format "write r%d, " rrr))
|
|
979 (ccl-dump-jump nil cc))
|
|
980
|
|
981 (defun ccl-dump-write-register-read-jump (rrr cc)
|
|
982 (insert (format "write r%d, read r%d, " rrr rrr))
|
|
983 (ccl-dump-jump nil cc)
|
|
984 (ccl-get-next-code) ; Skip dummy READ-JUMP
|
|
985 )
|
|
986
|
|
987 (defun ccl-extract-arith-op (cc)
|
|
988 (aref ccl-arith-table (ash cc -6)))
|
|
989
|
|
990 (defun ccl-dump-write-expr-const (ignore cc)
|
|
991 (insert (format "write (r%d %s %d)\n"
|
|
992 (logand cc 7)
|
|
993 (ccl-extract-arith-op cc)
|
|
994 (ccl-get-next-code))))
|
|
995
|
|
996 (defun ccl-dump-write-expr-register (ignore cc)
|
|
997 (insert (format "write (r%d %s r%d)\n"
|
|
998 (logand cc 7)
|
|
999 (ccl-extract-arith-op cc)
|
|
1000 (logand (ash cc -3) 7))))
|
|
1001
|
|
1002 (defun ccl-dump-insert-char (cc)
|
|
1003 (cond ((= cc ?\t) (insert " \"^I\""))
|
|
1004 ((= cc ?\n) (insert " \"^J\""))
|
|
1005 (t (insert (format " \"%c\"" cc)))))
|
|
1006
|
|
1007 (defun ccl-dump-write-const-jump (ignore cc)
|
|
1008 (let ((address ccl-current-ic))
|
|
1009 (insert "write char")
|
|
1010 (ccl-dump-insert-char (ccl-get-next-code))
|
|
1011 (insert ", ")
|
|
1012 (ccl-dump-jump nil cc address)))
|
|
1013
|
|
1014 (defun ccl-dump-write-const-read-jump (rrr cc)
|
|
1015 (let ((address ccl-current-ic))
|
|
1016 (insert "write char")
|
|
1017 (ccl-dump-insert-char (ccl-get-next-code))
|
|
1018 (insert (format ", read r%d, " rrr))
|
|
1019 (ccl-dump-jump cc address)
|
|
1020 (ccl-get-next-code) ; Skip dummy READ-JUMP
|
|
1021 ))
|
|
1022
|
|
1023 (defun ccl-dump-write-string-jump (ignore cc)
|
|
1024 (let ((address ccl-current-ic)
|
|
1025 (len (ccl-get-next-code))
|
|
1026 (i 0))
|
|
1027 (insert "write \"")
|
|
1028 (while (< i len)
|
|
1029 (let ((code (ccl-get-next-code)))
|
|
1030 (insert (ash code -16))
|
|
1031 (if (< (1+ i) len) (insert (logand (ash code -8) 255)))
|
|
1032 (if (< (+ i 2) len) (insert (logand code 255))))
|
|
1033 (setq i (+ i 3)))
|
|
1034 (insert "\", ")
|
|
1035 (ccl-dump-jump nil cc address)))
|
|
1036
|
|
1037 (defun ccl-dump-write-array-read-jump (rrr cc)
|
|
1038 (let ((address ccl-current-ic)
|
|
1039 (len (ccl-get-next-code))
|
|
1040 (i 0))
|
|
1041 (insert (format "write array[r%d] of length %d,\n\t" rrr len))
|
|
1042 (while (< i len)
|
|
1043 (ccl-dump-insert-char (ccl-get-next-code))
|
|
1044 (setq i (1+ i)))
|
|
1045 (insert (format "\n\tthen read r%d, " rrr))
|
|
1046 (ccl-dump-jump nil cc address)
|
|
1047 (ccl-get-next-code) ; Skip dummy READ-JUMP.
|
|
1048 ))
|
|
1049
|
|
1050 (defun ccl-dump-read-jump (rrr cc)
|
|
1051 (insert (format "read r%d, " rrr))
|
|
1052 (ccl-dump-jump nil cc))
|
|
1053
|
|
1054 (defun ccl-dump-branch (rrr len)
|
|
1055 (let ((jump-table-head ccl-current-ic)
|
|
1056 (i 0))
|
|
1057 (insert (format "jump to array[r%d] of length %d\n\t" rrr len))
|
|
1058 (while (<= i len)
|
|
1059 (insert (format "%d " (+ jump-table-head (ccl-get-next-code))))
|
|
1060 (setq i (1+ i)))
|
|
1061 (insert "\n")))
|
|
1062
|
|
1063 (defun ccl-dump-read-register (rrr cc)
|
|
1064 (insert (format "read r%d (%d remaining)\n" rrr cc)))
|
|
1065
|
|
1066 (defun ccl-dump-read-branch (rrr len)
|
|
1067 (insert (format "read r%d, " rrr))
|
|
1068 (ccl-dump-branch rrr len))
|
|
1069
|
|
1070 (defun ccl-dump-write-register (rrr cc)
|
|
1071 (insert (format "write r%d (%d remaining)\n" rrr cc)))
|
|
1072
|
|
1073 (defun ccl-dump-call (ignore cc)
|
|
1074 (insert (format "call subroutine #%d\n" cc)))
|
|
1075
|
|
1076 (defun ccl-dump-write-const-string (rrr cc)
|
|
1077 (if (= rrr 0)
|
|
1078 (progn
|
|
1079 (insert "write char")
|
|
1080 (ccl-dump-insert-char cc)
|
|
1081 (newline))
|
|
1082 (let ((len cc)
|
|
1083 (i 0))
|
|
1084 (insert "write \"")
|
|
1085 (while (< i len)
|
|
1086 (let ((code (ccl-get-next-code)))
|
|
1087 (insert (format "%c" (lsh code -16)))
|
|
1088 (if (< (1+ i) len)
|
|
1089 (insert (format "%c" (logand (lsh code -8) 255))))
|
|
1090 (if (< (+ i 2) len)
|
|
1091 (insert (format "%c" (logand code 255))))
|
|
1092 (setq i (+ i 3))))
|
|
1093 (insert "\"\n"))))
|
|
1094
|
|
1095 (defun ccl-dump-write-array (rrr cc)
|
|
1096 (let ((i 0))
|
|
1097 (insert (format "write array[r%d] of length %d\n\t" rrr cc))
|
|
1098 (while (< i cc)
|
|
1099 (ccl-dump-insert-char (ccl-get-next-code))
|
|
1100 (setq i (1+ i)))
|
|
1101 (insert "\n")))
|
|
1102
|
|
1103 (defun ccl-dump-end (&rest ignore)
|
|
1104 (insert "end\n"))
|
|
1105
|
|
1106 (defun ccl-dump-set-assign-expr-const (rrr cc)
|
|
1107 (insert (format "r%d %s= %d\n"
|
|
1108 rrr
|
|
1109 (ccl-extract-arith-op cc)
|
|
1110 (ccl-get-next-code))))
|
|
1111
|
|
1112 (defun ccl-dump-set-assign-expr-register (rrr cc)
|
|
1113 (insert (format "r%d %s= r%d\n"
|
|
1114 rrr
|
|
1115 (ccl-extract-arith-op cc)
|
|
1116 (logand cc 7))))
|
|
1117
|
|
1118 (defun ccl-dump-set-expr-const (rrr cc)
|
|
1119 (insert (format "r%d = r%d %s %d\n"
|
|
1120 rrr
|
|
1121 (logand cc 7)
|
|
1122 (ccl-extract-arith-op cc)
|
|
1123 (ccl-get-next-code))))
|
|
1124
|
|
1125 (defun ccl-dump-set-expr-register (rrr cc)
|
|
1126 (insert (format "r%d = r%d %s r%d\n"
|
|
1127 rrr
|
|
1128 (logand cc 7)
|
|
1129 (ccl-extract-arith-op cc)
|
|
1130 (logand (ash cc -3) 7))))
|
|
1131
|
|
1132 (defun ccl-dump-jump-cond-expr-const (rrr cc)
|
|
1133 (let ((address ccl-current-ic))
|
|
1134 (insert (format "if !(r%d %s %d), "
|
|
1135 rrr
|
|
1136 (aref ccl-arith-table (ccl-get-next-code))
|
|
1137 (ccl-get-next-code)))
|
|
1138 (ccl-dump-jump nil cc address)))
|
|
1139
|
|
1140 (defun ccl-dump-jump-cond-expr-register (rrr cc)
|
|
1141 (let ((address ccl-current-ic))
|
|
1142 (insert (format "if !(r%d %s r%d), "
|
|
1143 rrr
|
|
1144 (aref ccl-arith-table (ccl-get-next-code))
|
|
1145 (ccl-get-next-code)))
|
|
1146 (ccl-dump-jump nil cc address)))
|
|
1147
|
|
1148 (defun ccl-dump-read-jump-cond-expr-const (rrr cc)
|
|
1149 (insert (format "read r%d, " rrr))
|
|
1150 (ccl-dump-jump-cond-expr-const rrr cc))
|
|
1151
|
|
1152 (defun ccl-dump-read-jump-cond-expr-register (rrr cc)
|
|
1153 (insert (format "read r%d, " rrr))
|
|
1154 (ccl-dump-jump-cond-expr-register rrr cc))
|
|
1155
|
|
1156 (defun ccl-dump-binary (ccl-code)
|
|
1157 (let ((len (length ccl-code))
|
|
1158 (i 2))
|
|
1159 (while (< i len)
|
|
1160 (let ((code (aref ccl-code i))
|
|
1161 (j 27))
|
|
1162 (while (>= j 0)
|
|
1163 (insert (if (= (logand code (ash 1 j)) 0) ?0 ?1))
|
|
1164 (setq j (1- j)))
|
|
1165 (setq code (logand code 31))
|
|
1166 (if (< code (length ccl-code-table))
|
|
1167 (insert (format ":%s" (aref ccl-code-table code))))
|
|
1168 (insert "\n"))
|
|
1169 (setq i (1+ i)))))
|
|
1170
|
|
1171 (defun ccl-dump-ex-cmd (rrr cc)
|
|
1172 (let* ((RRR (logand cc ?\x7))
|
|
1173 (Rrr (logand (ash cc -3) ?\x7))
|
771
|
1174 (ex-op (aref ccl-extended-code-table (logand (ash cc -6) #x3fff))))
|
428
|
1175 (insert (format "<%s> " ex-op))
|
|
1176 (funcall (get ex-op 'ccl-dump-function) rrr RRR Rrr)))
|
|
1177
|
|
1178 (defun ccl-dump-read-multibyte-character (rrr RRR Rrr)
|
|
1179 (insert (format "read-multibyte-character r%d r%d\n" RRR rrr)))
|
|
1180
|
|
1181 (defun ccl-dump-write-multibyte-character (rrr RRR Rrr)
|
|
1182 (insert (format "write-multibyte-character r%d r%d\n" RRR rrr)))
|
|
1183
|
444
|
1184 (defun ccl-dump-translate-character (rrr RRR Rrr)
|
|
1185 (insert (format "translation table(r%d) r%d r%d\n" Rrr RRR rrr)))
|
428
|
1186
|
444
|
1187 (defun ccl-dump-translate-character-const-tbl (rrr RRR Rrr)
|
|
1188 (let ((tbl (ccl-get-next-code)))
|
|
1189 (insert (format "translation table(%S) r%d r%d\n" tbl RRR rrr))))
|
428
|
1190
|
444
|
1191 (defun ccl-dump-iterate-multiple-map (rrr RRR Rrr)
|
|
1192 (let ((notbl (ccl-get-next-code))
|
|
1193 (i 0) id)
|
|
1194 (insert (format "iterate-multiple-map r%d r%d\n" RRR rrr))
|
|
1195 (insert (format "\tnumber of maps is %d .\n\t [" notbl))
|
|
1196 (while (< i notbl)
|
|
1197 (setq id (ccl-get-next-code))
|
|
1198 (insert (format "%S" id))
|
|
1199 (setq i (1+ i)))
|
|
1200 (insert "]\n")))
|
428
|
1201
|
444
|
1202 (defun ccl-dump-map-multiple (rrr RRR Rrr)
|
|
1203 (let ((notbl (ccl-get-next-code))
|
|
1204 (i 0) id)
|
|
1205 (insert (format "map-multiple r%d r%d\n" RRR rrr))
|
|
1206 (insert (format "\tnumber of maps and separators is %d\n\t [" notbl))
|
|
1207 (while (< i notbl)
|
|
1208 (setq id (ccl-get-next-code))
|
|
1209 (if (= id -1)
|
|
1210 (insert "]\n\t [")
|
|
1211 (insert (format "%S " id)))
|
|
1212 (setq i (1+ i)))
|
|
1213 (insert "]\n")))
|
428
|
1214
|
444
|
1215 (defun ccl-dump-map-single (rrr RRR Rrr)
|
|
1216 (let ((id (ccl-get-next-code)))
|
|
1217 (insert (format "map-single r%d r%d map(%S)\n" RRR rrr id))))
|
428
|
1218
|
|
1219
|
|
1220 ;; CCL emulation staffs
|
|
1221
|
|
1222 ;; Not yet implemented.
|
|
1223
|
|
1224 ;; Auto-loaded functions.
|
|
1225
|
|
1226 ;;;###autoload
|
|
1227 (defmacro declare-ccl-program (name &optional vector)
|
|
1228 "Declare NAME as a name of CCL program.
|
|
1229
|
444
|
1230 This macro exists for backward compatibility. In the old version of
|
|
1231 Emacs, to compile a CCL program which calls another CCL program not
|
|
1232 yet defined, it must be declared as a CCL program in advance. But,
|
|
1233 now CCL program names are resolved not at compile time but before
|
|
1234 execution.
|
|
1235
|
428
|
1236 Optional arg VECTOR is a compiled CCL code of the CCL program."
|
|
1237 `(put ',name 'ccl-program-idx (register-ccl-program ',name ,vector)))
|
|
1238
|
|
1239 ;;;###autoload
|
|
1240 (defmacro define-ccl-program (name ccl-program &optional doc)
|
2757
|
1241 "Set NAME to be the compiled CCL code of CCL-PROGRAM.
|
444
|
1242
|
|
1243 CCL-PROGRAM has this form:
|
|
1244 (BUFFER_MAGNIFICATION
|
|
1245 CCL_MAIN_CODE
|
|
1246 [ CCL_EOF_CODE ])
|
|
1247
|
|
1248 BUFFER_MAGNIFICATION is an integer value specifying the approximate
|
|
1249 output buffer magnification size compared with the bytes of input data
|
|
1250 text. If the value is zero, the CCL program can't execute `read' and
|
|
1251 `write' commands.
|
|
1252
|
2757
|
1253 CCL_MAIN_CODE and CCL_EOF_CODE are CCL program codes. CCL_MAIN_CODE is
|
|
1254 executed first. If there are no more input data when a `read' command is
|
|
1255 executed in CCL_MAIN_CODE, CCL_EOF_CODE is executed. If CCL_MAIN_CODE is
|
|
1256 terminated, CCL_EOF_CODE is not executed.
|
444
|
1257
|
2757
|
1258 Here's the syntax of CCL program code in BNF notation. The lines starting
|
|
1259 with two semicolons (and optional leading spaces) describe the semantics.
|
444
|
1260
|
|
1261 CCL_MAIN_CODE := CCL_BLOCK
|
|
1262
|
|
1263 CCL_EOF_CODE := CCL_BLOCK
|
|
1264
|
|
1265 CCL_BLOCK := STATEMENT | (STATEMENT [STATEMENT ...])
|
|
1266
|
|
1267 STATEMENT :=
|
|
1268 SET | IF | BRANCH | LOOP | REPEAT | BREAK | READ | WRITE | CALL
|
2367
|
1269 | TRANSLATE | MAP | END
|
444
|
1270
|
|
1271 SET := (REG = EXPRESSION)
|
|
1272 | (REG ASSIGNMENT_OPERATOR EXPRESSION)
|
2367
|
1273 ;; The following form is the same as (r0 = INT-OR-CHAR).
|
|
1274 | INT-OR-CHAR
|
444
|
1275
|
|
1276 EXPRESSION := ARG | (EXPRESSION OPERATOR ARG)
|
|
1277
|
2757
|
1278 ;; Evaluate EXPRESSION. If the result is nonzero, execute
|
444
|
1279 ;; CCL_BLOCK_0. Otherwise, execute CCL_BLOCK_1.
|
2367
|
1280 IF := (if EXPRESSION CCL_BLOCK_0 [CCL_BLOCK_1])
|
444
|
1281
|
|
1282 ;; Evaluate EXPRESSION. Provided that the result is N, execute
|
|
1283 ;; CCL_BLOCK_N.
|
|
1284 BRANCH := (branch EXPRESSION CCL_BLOCK_0 [CCL_BLOCK_1 ...])
|
|
1285
|
|
1286 ;; Execute STATEMENTs until (break) or (end) is executed.
|
|
1287 LOOP := (loop STATEMENT [STATEMENT ...])
|
|
1288
|
2757
|
1289 ;; Terminate the innermost loop.
|
444
|
1290 BREAK := (break)
|
|
1291
|
|
1292 REPEAT :=
|
2757
|
1293 ;; Jump to the head of the innermost loop.
|
444
|
1294 (repeat)
|
2367
|
1295 ;; Same as: ((write [REG | INT-OR-CHAR | string])
|
444
|
1296 ;; (repeat))
|
2367
|
1297 | (write-repeat [REG | INT-OR-CHAR | string])
|
444
|
1298 ;; Same as: ((write REG [ARRAY])
|
|
1299 ;; (read REG)
|
|
1300 ;; (repeat))
|
|
1301 | (write-read-repeat REG [ARRAY])
|
2367
|
1302 ;; Same as: ((write INT-OR-CHAR)
|
444
|
1303 ;; (read REG)
|
|
1304 ;; (repeat))
|
2367
|
1305 | (write-read-repeat REG INT-OR-CHAR)
|
444
|
1306
|
|
1307 READ := ;; Set REG_0 to a byte read from the input text, set REG_1
|
2757
|
1308 ;; to the next byte read, and so on. Note that \"byte\" here means
|
|
1309 ;; \"some octet from XEmacs' internal representation\", which may
|
|
1310 ;; not be that useful to you when non-ASCII characters are involved.
|
|
1311 ;;
|
|
1312 ;; Yes, this is exactly the opposite of what (write ...) does.
|
444
|
1313 (read REG_0 [REG_1 ...])
|
|
1314 ;; Same as: ((read REG)
|
|
1315 ;; (if (REG OPERATOR ARG) CCL_BLOCK_0 CCL_BLOCK_1))
|
2367
|
1316 | (read-if (REG OPERATOR ARG) CCL_BLOCK_0 [CCL_BLOCK_1])
|
444
|
1317 ;; Same as: ((read REG)
|
|
1318 ;; (branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...]))
|
|
1319 | (read-branch REG CCL_BLOCK_0 [CCL_BLOCK_1 ...])
|
2757
|
1320 ;; Read a character from the input text, splitting it into its
|
|
1321 ;; multibyte representation. Set REG_0 to the charset ID of the
|
|
1322 ;; character, and set REG_1 to the code point of the character. If
|
|
1323 ;; the dimension of charset is two, set REG_1 to ((CODE0 << 8) |
|
|
1324 ;; CODE1), where CODE0 is the first code point and CODE1 is the
|
|
1325 ;; second code point.
|
444
|
1326 | (read-multibyte-character REG_0 REG_1)
|
|
1327
|
|
1328 WRITE :=
|
|
1329 ;; Write REG_0, REG_1, ... to the output buffer. If REG_N is
|
|
1330 ;; a multibyte character, write the corresponding multibyte
|
|
1331 ;; representation.
|
|
1332 (write REG_0 [REG_1 ...])
|
|
1333 ;; Same as: ((r7 = EXPRESSION)
|
|
1334 ;; (write r7))
|
|
1335 | (write EXPRESSION)
|
2367
|
1336 ;; Write the value of `INT-OR-CHAR' to the output buffer. If it
|
444
|
1337 ;; is a multibyte character, write the corresponding multibyte
|
|
1338 ;; representation.
|
2367
|
1339 | (write INT-OR-CHAR)
|
444
|
1340 ;; Write the byte sequence of `string' as is to the output
|
|
1341 ;; buffer. It is encoded by binary coding system, thus,
|
|
1342 ;; by this operation, you cannot write multibyte string
|
|
1343 ;; as it is.
|
|
1344 | (write string)
|
|
1345 ;; Same as: (write string)
|
|
1346 | string
|
|
1347 ;; Provided that the value of REG is N, write Nth element of
|
|
1348 ;; ARRAY to the output buffer. If it is a multibyte
|
|
1349 ;; character, write the corresponding multibyte
|
|
1350 ;; representation.
|
|
1351 | (write REG ARRAY)
|
|
1352 ;; Write a multibyte representation of a character whose
|
|
1353 ;; charset ID is REG_0 and code point is REG_1. If the
|
|
1354 ;; dimension of the charset is two, REG_1 should be ((CODE0 <<
|
|
1355 ;; 8) | CODE1), where CODE0 is the first code point and CODE1
|
|
1356 ;; is the second code point of the character.
|
|
1357 | (write-multibyte-character REG_0 REG_1)
|
|
1358
|
|
1359 ;; Call CCL program whose name is ccl-program-name.
|
|
1360 CALL := (call ccl-program-name)
|
|
1361
|
2757
|
1362 TRANSLATE := ;; Not implemented under XEmacs.
|
2367
|
1363 (translate-character REG(table) REG(charset) REG(codepoint))
|
|
1364 | (translate-character SYMBOL REG(charset) REG(codepoint))
|
|
1365 MAP :=
|
|
1366 (iterate-multiple-map REG REG MAP-IDs)
|
|
1367 | (map-multiple REG REG (MAP-SET))
|
|
1368 | (map-single REG REG MAP-ID)
|
|
1369 MAP-IDs := MAP-ID ...
|
|
1370 MAP-SET := MAP-IDs | (MAP-IDs) MAP-SET
|
|
1371 MAP-ID := INT-OR-CHAR
|
|
1372
|
444
|
1373 ;; Terminate the CCL program.
|
|
1374 END := (end)
|
|
1375
|
2757
|
1376 ;; CCL registers. These can contain any integer value. As r7 is used by CCL
|
|
1377 ;; interpreter itself, its value change unexpectedly.
|
444
|
1378 REG := r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7
|
|
1379
|
2367
|
1380 ARG := REG | INT-OR-CHAR
|
444
|
1381
|
|
1382 OPERATOR :=
|
2757
|
1383 ;; Normal arithmetical operators (same meaning as C code).
|
444
|
1384 + | - | * | / | %
|
|
1385
|
2757
|
1386 ;; Bitwise operators (same meaning as C code)
|
444
|
1387 | & | `|' | ^
|
|
1388
|
|
1389 ;; Shifting operators (same meaning as C code)
|
|
1390 | << | >>
|
|
1391
|
|
1392 ;; (REG = ARG_0 <8 ARG_1) means:
|
|
1393 ;; (REG = ((ARG_0 << 8) | ARG_1))
|
|
1394 | <8
|
|
1395
|
|
1396 ;; (REG = ARG_0 >8 ARG_1) means:
|
|
1397 ;; ((REG = (ARG_0 >> 8))
|
|
1398 ;; (r7 = (ARG_0 & 255)))
|
|
1399 | >8
|
|
1400
|
|
1401 ;; (REG = ARG_0 // ARG_1) means:
|
|
1402 ;; ((REG = (ARG_0 / ARG_1))
|
|
1403 ;; (r7 = (ARG_0 % ARG_1)))
|
|
1404 | //
|
|
1405
|
|
1406 ;; Normal comparing operators (same meaning as C code)
|
|
1407 | < | > | == | <= | >= | !=
|
|
1408
|
|
1409 ;; If ARG_0 and ARG_1 are higher and lower byte of Shift-JIS
|
|
1410 ;; code, and CHAR is the corresponding JISX0208 character,
|
|
1411 ;; (REG = ARG_0 de-sjis ARG_1) means:
|
|
1412 ;; ((REG = CODE0)
|
|
1413 ;; (r7 = CODE1))
|
|
1414 ;; where CODE0 is the first code point of CHAR, CODE1 is the
|
|
1415 ;; second code point of CHAR.
|
|
1416 | de-sjis
|
|
1417
|
|
1418 ;; If ARG_0 and ARG_1 are the first and second code point of
|
|
1419 ;; JISX0208 character CHAR, and SJIS is the correponding
|
|
1420 ;; Shift-JIS code,
|
|
1421 ;; (REG = ARG_0 en-sjis ARG_1) means:
|
|
1422 ;; ((REG = HIGH)
|
|
1423 ;; (r7 = LOW))
|
|
1424 ;; where HIGH is the higher byte of SJIS, LOW is the lower
|
|
1425 ;; byte of SJIS.
|
|
1426 | en-sjis
|
|
1427
|
|
1428 ASSIGNMENT_OPERATOR :=
|
|
1429 ;; Same meaning as C code
|
|
1430 += | -= | *= | /= | %= | &= | `|=' | ^= | <<= | >>=
|
|
1431
|
|
1432 ;; (REG <8= ARG) is the same as:
|
|
1433 ;; ((REG <<= 8)
|
|
1434 ;; (REG |= ARG))
|
|
1435 | <8=
|
|
1436
|
|
1437 ;; (REG >8= ARG) is the same as:
|
|
1438 ;; ((r7 = (REG & 255))
|
|
1439 ;; (REG >>= 8))
|
|
1440
|
|
1441 ;; (REG //= ARG) is the same as:
|
|
1442 ;; ((r7 = (REG % ARG))
|
|
1443 ;; (REG /= ARG))
|
|
1444 | //=
|
|
1445
|
2367
|
1446 ARRAY := `[' INT-OR-CHAR ... `]'
|
444
|
1447
|
2367
|
1448 INT-OR-CHAR := integer | character
|
444
|
1449 "
|
428
|
1450 `(let ((prog ,(ccl-compile (eval ccl-program))))
|
|
1451 (defconst ,name prog ,doc)
|
|
1452 (put ',name 'ccl-program-idx (register-ccl-program ',name prog))
|
|
1453 nil))
|
|
1454
|
|
1455 ;;;###autoload
|
|
1456 (defmacro check-ccl-program (ccl-program &optional name)
|
|
1457 "Check validity of CCL-PROGRAM.
|
444
|
1458 If CCL-PROGRAM is a symbol denoting a CCL program, return
|
428
|
1459 CCL-PROGRAM, else return nil.
|
|
1460 If CCL-PROGRAM is a vector and optional arg NAME (symbol) is supplied,
|
|
1461 register CCL-PROGRAM by name NAME, and return NAME."
|
444
|
1462 `(if (ccl-program-p ,ccl-program)
|
|
1463 (if (vectorp ,ccl-program)
|
|
1464 (progn
|
|
1465 (register-ccl-program ,name ,ccl-program)
|
|
1466 ,name)
|
|
1467 ,ccl-program)))
|
428
|
1468
|
|
1469 ;;;###autoload
|
|
1470 (defun ccl-execute-with-args (ccl-prog &rest args)
|
|
1471 "Execute CCL-PROGRAM with registers initialized by the remaining args.
|
444
|
1472 The return value is a vector of resulting CCL registers.
|
|
1473
|
|
1474 See the documentation of `define-ccl-program' for the detail of CCL program."
|
428
|
1475 (let ((reg (make-vector 8 0))
|
|
1476 (i 0))
|
|
1477 (while (and args (< i 8))
|
|
1478 (if (not (integerp (car args)))
|
|
1479 (error "Arguments should be integer"))
|
|
1480 (aset reg i (car args))
|
|
1481 (setq args (cdr args) i (1+ i)))
|
|
1482 (ccl-execute ccl-prog reg)
|
|
1483 reg))
|
|
1484
|
|
1485 (provide 'ccl)
|
|
1486
|
|
1487 ;; ccl.el ends here
|