428
+ − 1 @c -*-texinfo-*-
+ − 2 @c This is part of the XEmacs Lisp Reference Manual.
775
+ − 3 @c Copyright (C) 1996 Ben Wing, 2001-2002 Free Software Foundation.
428
+ − 4 @c See the file lispref.texi for copying conditions.
+ − 5 @setfilename ../../info/internationalization.info
+ − 6 @node MULE, Tips, Internationalization, top
+ − 7 @chapter MULE
+ − 8
442
+ − 9 @dfn{MULE} is the name originally given to the version of GNU Emacs
428
+ − 10 extended for multi-lingual (and in particular Asian-language) support.
442
+ − 11 ``MULE'' is short for ``MUlti-Lingual Emacs''. It is an extension and
+ − 12 complete rewrite of Nemacs (``Nihon Emacs'' where ``Nihon'' is the
+ − 13 Japanese word for ``Japan''), which only provided support for Japanese.
+ − 14 XEmacs refers to its multi-lingual support as @dfn{MULE support} since
+ − 15 it is based on @dfn{MULE}.
428
+ − 16
+ − 17 @menu
+ − 18 * Internationalization Terminology::
+ − 19 Definition of various internationalization terms.
+ − 20 * Charsets:: Sets of related characters.
+ − 21 * MULE Characters:: Working with characters in XEmacs/MULE.
+ − 22 * Composite Characters:: Making new characters by overstriking other ones.
+ − 23 * Coding Systems:: Ways of representing a string of chars using integers.
+ − 24 * CCL:: A special language for writing fast converters.
+ − 25 * Category Tables:: Subdividing charsets into groups.
775
+ − 26 * Unicode Support:: The universal coded character set.
1183
+ − 27 * Charset Unification:: Handling overlapping character sets.
+ − 28 * Charsets and Coding Systems:: Tables and reference information.
428
+ − 29 @end menu
+ − 30
442
+ − 31 @node Internationalization Terminology, Charsets, , MULE
428
+ − 32 @section Internationalization Terminology
+ − 33
442
+ − 34 In internationalization terminology, a string of text is divided up
428
+ − 35 into @dfn{characters}, which are the printable units that make up the
+ − 36 text. A single character is (for example) a capital @samp{A}, the
442
+ − 37 number @samp{2}, a Katakana character, a Hangul character, a Kanji
+ − 38 ideograph (an @dfn{ideograph} is a ``picture'' character, such as is
+ − 39 used in Japanese Kanji, Chinese Hanzi, and Korean Hanja; typically there
+ − 40 are thousands of such ideographs in each language), etc. The basic
+ − 41 property of a character is that it is the smallest unit of text with
1261
+ − 42 semantic significance in text processing---i.e., characters are abstract
+ − 43 units defined by their meaning, not by their exact appearance.
442
+ − 44
+ − 45 Human beings normally process text visually, so to a first approximation
+ − 46 a character may be identified with its shape. Note that the same
+ − 47 character may be drawn by two different people (or in two different
+ − 48 fonts) in slightly different ways, although the "basic shape" will be the
+ − 49 same. But consider the works of Scott Kim; human beings can recognize
+ − 50 hugely variant shapes as the "same" character. Sometimes, especially
+ − 51 where characters are extremely complicated to write, completely
+ − 52 different shapes may be defined as the "same" character in national
+ − 53 standards. The Taiwanese variant of Hanzi is generally the most
444
+ − 54 complicated; over the centuries, the Japanese, Koreans, and the People's
442
+ − 55 Republic of China have adopted simplifications of the shape, but the
+ − 56 line of descent from the original shape is recorded, and the meanings
+ − 57 and pronunciation of different forms of the same character are
+ − 58 considered to be identical within each language. (Of course, it may
+ − 59 take a specialist to recognize the related form; the point is that the
+ − 60 relations are standardized, despite the differing shapes.)
428
+ − 61
+ − 62 In some cases, the differences will be significant enough that it is
+ − 63 actually possible to identify two or more distinct shapes that both
+ − 64 represent the same character. For example, the lowercase letters
440
+ − 65 @samp{a} and @samp{g} each have two distinct possible shapes---the
428
+ − 66 @samp{a} can optionally have a curved tail projecting off the top, and
+ − 67 the @samp{g} can be formed either of two loops, or of one loop and a
+ − 68 tail hanging off the bottom. Such distinct possible shapes of a
+ − 69 character are called @dfn{glyphs}. The important characteristic of two
+ − 70 glyphs making up the same character is that the choice between one or
+ − 71 the other is purely stylistic and has no linguistic effect on a word
+ − 72 (this is the reason why a capital @samp{A} and lowercase @samp{a}
440
+ − 73 are different characters rather than different glyphs---e.g.
428
+ − 74 @samp{Aspen} is a city while @samp{aspen} is a kind of tree).
+ − 75
+ − 76 Note that @dfn{character} and @dfn{glyph} are used differently
+ − 77 here than elsewhere in XEmacs.
+ − 78
442
+ − 79 A @dfn{character set} is essentially a set of related characters. ASCII,
428
+ − 80 for example, is a set of 94 characters (or 128, if you count
+ − 81 non-printing characters). Other character sets are ISO8859-1 (ASCII
+ − 82 plus various accented characters and other international symbols),
442
+ − 83 JIS X 0201 (ASCII, more or less, plus half-width Katakana), JIS X 0208
+ − 84 (Japanese Kanji), JIS X 0212 (a second set of less-used Japanese Kanji),
428
+ − 85 GB2312 (Mainland Chinese Hanzi), etc.
+ − 86
442
+ − 87 The definition of a character set will implicitly or explicitly give
+ − 88 it an @dfn{ordering}, a way of assigning a number to each character in
+ − 89 the set. For many character sets, there is a natural ordering, for
+ − 90 example the ``ABC'' ordering of the Roman letters. But it is not clear
+ − 91 whether digits should come before or after the letters, and in fact
+ − 92 different European languages treat the ordering of accented characters
+ − 93 differently. It is useful to use the natural order where available, of
+ − 94 course. The number assigned to any particular character is called the
+ − 95 character's @dfn{code point}. (Within a given character set, each
+ − 96 character has a unique code point. Thus the word "set" is ill-chosen;
+ − 97 different orderings of the same characters are different character sets.
+ − 98 Identifying characters is simple enough for alphabetic character sets,
+ − 99 but the difference in ordering can cause great headaches when the same
+ − 100 thousands of characters are used by different cultures as in the Hanzi.)
428
+ − 101
1261
+ − 102 It's important to understand that a character is defined not by any
+ − 103 number attached to it, but by its meaning. For example, ASCII and
+ − 104 EBCDIC are two charsets containing exactly the same characters
+ − 105 (lowercase and uppercase letters, numbers 0 through 9, particular
+ − 106 punctuation marks) but with different numberings. The @samp{comma}
+ − 107 character in ASCII and EBCDIC, for instance, is the same character
+ − 108 despite having a different numbering. Conversely, when comparing ASCII
+ − 109 and JIS-Roman, which look the same except that the latter has a yen sign
+ − 110 substituted for the backslash, we would say that the backslash and yen
+ − 111 sign are @emph{not} the same characters, despite having the same number
+ − 112 (95) and despite the fact that all other characters are present in both
+ − 113 charsets, with the same numbering. ASCII and JIS-Roman, then, do
+ − 114 @emph{not} have exactly the same characters in them (ASCII has a
+ − 115 backslash character but no yen-sign character, and vice-versa for
+ − 116 JIS-Roman), unlike ASCII and EBCDIC, even though the numberings in ASCII
+ − 117 and JIS-Roman are closer.
+ − 118
+ − 119 Sometimes, a code point is not a single number, but instead a group of
+ − 120 numbers, called @dfn{position codes}. In such cases, the number of
+ − 121 position codes required to index a particular character in a character
+ − 122 set is called the @dfn{dimension} of the character set. Character sets
+ − 123 indexed by more than one position code typically use byte-sized position
+ − 124 codes. Small character sets, e.g. ASCII, invariably use a single
+ − 125 position code, but for larger character sets, the choice of whether to
+ − 126 use multiple position codes or a single large (16-bit or 32-bit) number
+ − 127 is arbitrary. Unicode typically uses a single large number, but
+ − 128 language-specific or "national" character sets often use multiple
+ − 129 (usually two) position codes. For example, JIS X 0208, i.e. Japanese
+ − 130 Kanji, has thousands of characters, and is of dimension two -- every
+ − 131 character is indexed by two position codes, each in the range 1 through
+ − 132 94. (This number ``94'' is not a coincidence; it is the same as the
+ − 133 number of printable characters in ASCII, and was chosen so that JIS
+ − 134 characters could be directly encoded using two printable ASCII
+ − 135 characters.) Note that the choice of the range here is somewhat
+ − 136 arbitrary -- it could just as easily be 0 through 93, 2 through 95, etc.
+ − 137 In fact, the range for JIS position codes (and for other character sets
+ − 138 modeled after it) is often given as range 33 through 126, so as to
+ − 139 directly match ASCII printing characters.
428
+ − 140
+ − 141 An @dfn{encoding} is a way of numerically representing characters from
+ − 142 one or more character sets into a stream of like-sized numerical values
1261
+ − 143 called @dfn{words} -- typically 8-bit bytes, but sometimes 16-bit or
2818
+ − 144 32-bit quantities. In a context where dealing with Japanese motivates
+ − 145 much of XEmacs' design in this area, it's important to clearly
+ − 146 distinguish between charsets and encodings. For a simple charset like
+ − 147 ASCII, there is only one encoding normally used -- each character is
+ − 148 represented by a single byte, with the same value as its code point.
+ − 149 For more complicated charsets, however, or when a single encoding needs
+ − 150 to represent more than charset, things are not so obvious. Unicode
+ − 151 version 2, for example, is a large charset with thousands of characters,
+ − 152 each indexed by a 16-bit number, often represented in hex, e.g. 0x05D0
+ − 153 for the Hebrew letter "aleph". One obvious encoding (actually two
+ − 154 encodings, depending on which of the two possible byte orderings is
+ − 155 chosen) simply uses two bytes per character. This encoding is
+ − 156 convenient for internal processing of Unicode text; however, it's
+ − 157 incompatible with ASCII, and thus external text (files, e-mail, etc.)
+ − 158 that is encoded this way is completely uninterpretable by programs
+ − 159 lacking Unicode support. For this reason, a different, ASCII-compatible
+ − 160 encoding, e.g. UTF-8, is usually used for external text. UTF-8
+ − 161 represents Unicode characters with one to three bytes (often extended to
+ − 162 six bytes to handle characters with up to 31-bit indices). Unicode
+ − 163 characters 00 to 7F (identical with ASCII) are directly represented with
+ − 164 one byte, and other characters with two or more bytes, each in the range
+ − 165 80 to FF. Applications that don't understand Unicode will still be able
+ − 166 to process ASCII characters represented in UTF-8-encoded text, and will
+ − 167 typically ignore (and hopefully preserve) the high-bit characters.
+ − 168
+ − 169 Similarly, Shift-JIS and EUC-JP are different encodings normally used to
+ − 170 encode the same character set(s), these character sets being subsets of
+ − 171 Unicode. However, the obvious approach of unifying XEmacs' internal
+ − 172 encoding across character sets, as was part of the motivation behind
+ − 173 Unicode, wasn't taken. This means that characters in these character
+ − 174 sets that are identical to characters in other character sets---for
+ − 175 example, the Greek alphabet is in the large Japanese character sets and
+ − 176 at least one European character set--are unfortunately disjoint.
1261
+ − 177
+ − 178 Naive use of code points is also not possible if more than one
+ − 179 character set is to be used in the encoding. For example, printed
442
+ − 180 Japanese text typically requires characters from multiple character sets
+ − 181 -- ASCII, JIS X 0208, and JIS X 0212, to be specific. Each of these is
1261
+ − 182 indexed using one or more position codes in the range 1 through 94 (or
+ − 183 33 through 126), so the position codes could not be used directly or
+ − 184 there would be no way to tell which character was meant. Different
+ − 185 Japanese encodings handle this differently -- JIS uses special escape
+ − 186 characters to denote different character sets; EUC sets the high bit of
+ − 187 the position codes for JIS X 0208 and JIS X 0212, and puts a special
+ − 188 extra byte before each JIS X 0212 character; etc.
+ − 189
+ − 190 The encodings described above are all 7-bit or 8-bit encodings. The
+ − 191 fixed-width Unicode encoding previous described, however, is sometimes
+ − 192 considered to be a 16-bit encoding, in which case the issue of byte
+ − 193 ordering does not come up. (Imagine, for example, that the text is
+ − 194 represented as an array of shorts.) Similarly, Unicode version 3 (which
+ − 195 has characters with indices above 0xFFFF), and other very large
+ − 196 character sets, may be represented internally as 32-bit encodings,
+ − 197 i.e. arrays of ints. However, it does not make too much sense to talk
+ − 198 about 16-bit or 32-bit encodings for external data, since nowadays 8-bit
+ − 199 data is a universal standard -- the closest you can get is fixed-width
+ − 200 encodings using two or four bytes to encode 16-bit or 32-bit values. (A
+ − 201 "7-bit" encoding is used when it cannot be guaranteed that the high bit
+ − 202 of 8-bit data will be correctly preserved. Some e-mail gateways, for
+ − 203 example, strip the high bit of text passing through them. These same
+ − 204 gateways often handle non-printable characters incorrectly, and so 7-bit
+ − 205 encodings usually avoid using bytes with such values.)
442
+ − 206
+ − 207 A general method of handling text using multiple character sets
+ − 208 (whether for multilingual text, or simply text in an extremely
+ − 209 complicated single language like Japanese) is defined in the
+ − 210 international standard ISO 2022. ISO 2022 will be discussed in more
+ − 211 detail later (@pxref{ISO 2022}), but for now suffice it to say that text
+ − 212 needs control functions (at least spacing), and if escape sequences are
+ − 213 to be used, an escape sequence introducer. It was decided to make all
+ − 214 text streams compatible with ASCII in the sense that the codes 0--31
+ − 215 (and 128-159) would always be control codes, never graphic characters,
+ − 216 and where defined by the character set the @samp{SPC} character would be
+ − 217 assigned code 32, and @samp{DEL} would be assigned 127. Thus there are
+ − 218 94 code points remaining if 7 bits are used. This is the reason that
+ − 219 most character sets are defined using position codes in the range 1
+ − 220 through 94. Then ISO 2022 compatible encodings are produced by shifting
+ − 221 the position codes 1 to 94 into character codes 33 to 126, or (if 8 bit
+ − 222 codes are available) into character codes 161 to 254.
428
+ − 223
+ − 224 Encodings are classified as either @dfn{modal} or @dfn{non-modal}. In
442
+ − 225 a @dfn{modal encoding}, there are multiple states that the encoding can
+ − 226 be in, and the interpretation of the values in the stream depends on the
428
+ − 227 current global state of the encoding. Special values in the encoding,
+ − 228 called @dfn{escape sequences}, are used to change the global state.
+ − 229 JIS, for example, is a modal encoding. The bytes @samp{ESC $ B}
+ − 230 indicate that, from then on, bytes are to be interpreted as position
442
+ − 231 codes for JIS X 0208, rather than as ASCII. This effect is cancelled
428
+ − 232 using the bytes @samp{ESC ( B}, which mean ``switch from whatever the
442
+ − 233 current state is to ASCII''. To switch to JIS X 0212, the escape
+ − 234 sequence @samp{ESC $ ( D}. (Note that here, as is common, the escape
+ − 235 sequences do in fact begin with @samp{ESC}. This is not necessarily the
+ − 236 case, however. Some encodings use control characters called "locking
+ − 237 shifts" (effect persists until cancelled) to switch character sets.)
428
+ − 238
442
+ − 239 A @dfn{non-modal encoding} has no global state that extends past the
428
+ − 240 character currently being interpreted. EUC, for example, is a
442
+ − 241 non-modal encoding. Characters in JIS X 0208 are encoded by setting
+ − 242 the high bit of the position codes, and characters in JIS X 0212 are
428
+ − 243 encoded by doing the same but also prefixing the character with the
+ − 244 byte 0x8F.
+ − 245
+ − 246 The advantage of a modal encoding is that it is generally more
442
+ − 247 space-efficient, and is easily extendible because there are essentially
428
+ − 248 an arbitrary number of escape sequences that can be created. The
+ − 249 disadvantage, however, is that it is much more difficult to work with
+ − 250 if it is not being processed in a sequential manner. In the non-modal
+ − 251 EUC encoding, for example, the byte 0x41 always refers to the letter
+ − 252 @samp{A}; whereas in JIS, it could either be the letter @samp{A}, or
442
+ − 253 one of the two position codes in a JIS X 0208 character, or one of the
+ − 254 two position codes in a JIS X 0212 character. Determining exactly which
428
+ − 255 one is meant could be difficult and time-consuming if the previous
442
+ − 256 bytes in the string have not already been processed, or impossible if
+ − 257 they are drawn from an external stream that cannot be rewound.
428
+ − 258
+ − 259 Non-modal encodings are further divided into @dfn{fixed-width} and
+ − 260 @dfn{variable-width} formats. A fixed-width encoding always uses
+ − 261 the same number of words per character, whereas a variable-width
+ − 262 encoding does not. EUC is a good example of a variable-width
+ − 263 encoding: one to three bytes are used per character, depending on
+ − 264 the character set. 16-bit and 32-bit encodings are nearly always
+ − 265 fixed-width, and this is in fact one of the main reasons for using
+ − 266 an encoding with a larger word size. The advantages of fixed-width
+ − 267 encodings should be obvious. The advantages of variable-width
+ − 268 encodings are that they are generally more space-efficient and allow
442
+ − 269 for compatibility with existing 8-bit encodings such as ASCII. (For
+ − 270 example, in Unicode ASCII characters are simply promoted to a 16-bit
+ − 271 representation. That means that every ASCII character contains a
+ − 272 @samp{NUL} byte; evidently all of the standard string manipulation
+ − 273 functions will lose badly in a fixed-width Unicode environment.)
428
+ − 274
442
+ − 275 The bytes in an 8-bit encoding are often referred to as @dfn{octets}
+ − 276 rather than simply as bytes. This terminology dates back to the days
+ − 277 before 8-bit bytes were universal, when some computers had 9-bit bytes,
+ − 278 others had 10-bit bytes, etc.
428
+ − 279
442
+ − 280 @node Charsets, MULE Characters, Internationalization Terminology, MULE
428
+ − 281 @section Charsets
+ − 282
+ − 283 A @dfn{charset} in MULE is an object that encapsulates a
+ − 284 particular character set as well as an ordering of those characters.
+ − 285 Charsets are permanent objects and are named using symbols, like
+ − 286 faces.
+ − 287
+ − 288 @defun charsetp object
+ − 289 This function returns non-@code{nil} if @var{object} is a charset.
+ − 290 @end defun
+ − 291
+ − 292 @menu
+ − 293 * Charset Properties:: Properties of a charset.
+ − 294 * Basic Charset Functions:: Functions for working with charsets.
+ − 295 * Charset Property Functions:: Functions for accessing charset properties.
+ − 296 * Predefined Charsets:: Predefined charset objects.
+ − 297 @end menu
+ − 298
442
+ − 299 @node Charset Properties, Basic Charset Functions, , Charsets
428
+ − 300 @subsection Charset Properties
+ − 301
+ − 302 Charsets have the following properties:
+ − 303
+ − 304 @table @code
+ − 305 @item name
+ − 306 A symbol naming the charset. Every charset must have a different name;
+ − 307 this allows a charset to be referred to using its name rather than
+ − 308 the actual charset object.
+ − 309 @item doc-string
+ − 310 A documentation string describing the charset.
+ − 311 @item registry
+ − 312 A regular expression matching the font registry field for this character
+ − 313 set. For example, both the @code{ascii} and @code{latin-iso8859-1}
+ − 314 charsets use the registry @code{"ISO8859-1"}. This field is used to
+ − 315 choose an appropriate font when the user gives a general font
+ − 316 specification such as @samp{-*-courier-medium-r-*-140-*}, i.e. a
+ − 317 14-point upright medium-weight Courier font.
+ − 318 @item dimension
+ − 319 Number of position codes used to index a character in the character set.
+ − 320 XEmacs/MULE can only handle character sets of dimension 1 or 2.
+ − 321 This property defaults to 1.
+ − 322 @item chars
+ − 323 Number of characters in each dimension. In XEmacs/MULE, the only
+ − 324 allowed values are 94 or 96. (There are a couple of pre-defined
+ − 325 character sets, such as ASCII, that do not follow this, but you cannot
+ − 326 define new ones like this.) Defaults to 94. Note that if the dimension
+ − 327 is 2, the character set thus described is 94x94 or 96x96.
+ − 328 @item columns
+ − 329 Number of columns used to display a character in this charset.
+ − 330 Only used in TTY mode. (Under X, the actual width of a character
+ − 331 can be derived from the font used to display the characters.)
+ − 332 If unspecified, defaults to the dimension. (This is almost
+ − 333 always the correct value, because character sets with dimension 2
+ − 334 are usually ideograph character sets, which need two columns to
+ − 335 display the intricate ideographs.)
+ − 336 @item direction
+ − 337 A symbol, either @code{l2r} (left-to-right) or @code{r2l}
+ − 338 (right-to-left). Defaults to @code{l2r}. This specifies the
+ − 339 direction that the text should be displayed in, and will be
+ − 340 left-to-right for most charsets but right-to-left for Hebrew
+ − 341 and Arabic. (Right-to-left display is not currently implemented.)
+ − 342 @item final
+ − 343 Final byte of the standard ISO 2022 escape sequence designating this
+ − 344 charset. Must be supplied. Each combination of (@var{dimension},
+ − 345 @var{chars}) defines a separate namespace for final bytes, and each
+ − 346 charset within a particular namespace must have a different final byte.
+ − 347 Note that ISO 2022 restricts the final byte to the range 0x30 - 0x7E if
+ − 348 dimension == 1, and 0x30 - 0x5F if dimension == 2. Note also that final
+ − 349 bytes in the range 0x30 - 0x3F are reserved for user-defined (not
+ − 350 official) character sets. For more information on ISO 2022, see @ref{Coding
+ − 351 Systems}.
+ − 352 @item graphic
+ − 353 0 (use left half of font on output) or 1 (use right half of font on
+ − 354 output). Defaults to 0. This specifies how to convert the position
+ − 355 codes that index a character in a character set into an index into the
+ − 356 font used to display the character set. With @code{graphic} set to 0,
+ − 357 position codes 33 through 126 map to font indices 33 through 126; with
+ − 358 it set to 1, position codes 33 through 126 map to font indices 161
+ − 359 through 254 (i.e. the same number but with the high bit set). For
+ − 360 example, for a font whose registry is ISO8859-1, the left half of the
+ − 361 font (octets 0x20 - 0x7F) is the @code{ascii} charset, while the right
+ − 362 half (octets 0xA0 - 0xFF) is the @code{latin-iso8859-1} charset.
+ − 363 @item ccl-program
+ − 364 A compiled CCL program used to convert a character in this charset into
+ − 365 an index into the font. This is in addition to the @code{graphic}
+ − 366 property. If a CCL program is defined, the position codes of a
+ − 367 character will first be processed according to @code{graphic} and
+ − 368 then passed through the CCL program, with the resulting values used
+ − 369 to index the font.
+ − 370
442
+ − 371 This is used, for example, in the Big5 character set (used in Taiwan).
428
+ − 372 This character set is not ISO-2022-compliant, and its size (94x157) does
+ − 373 not fit within the maximum 96x96 size of ISO-2022-compliant character
+ − 374 sets. As a result, XEmacs/MULE splits it (in a rather complex fashion,
+ − 375 so as to group the most commonly used characters together) into two
+ − 376 charset objects (@code{big5-1} and @code{big5-2}), each of size 94x94,
+ − 377 and each charset object uses a CCL program to convert the modified
+ − 378 position codes back into standard Big5 indices to retrieve a character
+ − 379 from a Big5 font.
+ − 380 @end table
+ − 381
442
+ − 382 Most of the above properties can only be set when the charset is
+ − 383 initialized, and cannot be changed later.
+ − 384 @xref{Charset Property Functions}.
428
+ − 385
442
+ − 386 @node Basic Charset Functions, Charset Property Functions, Charset Properties, Charsets
428
+ − 387 @subsection Basic Charset Functions
+ − 388
+ − 389 @defun find-charset charset-or-name
+ − 390 This function retrieves the charset of the given name. If
+ − 391 @var{charset-or-name} is a charset object, it is simply returned.
+ − 392 Otherwise, @var{charset-or-name} should be a symbol. If there is no
+ − 393 such charset, @code{nil} is returned. Otherwise the associated charset
+ − 394 object is returned.
+ − 395 @end defun
+ − 396
+ − 397 @defun get-charset name
+ − 398 This function retrieves the charset of the given name. Same as
+ − 399 @code{find-charset} except an error is signalled if there is no such
+ − 400 charset instead of returning @code{nil}.
+ − 401 @end defun
+ − 402
+ − 403 @defun charset-list
+ − 404 This function returns a list of the names of all defined charsets.
+ − 405 @end defun
+ − 406
+ − 407 @defun make-charset name doc-string props
+ − 408 This function defines a new character set. This function is for use
442
+ − 409 with MULE support. @var{name} is a symbol, the name by which the
428
+ − 410 character set is normally referred. @var{doc-string} is a string
+ − 411 describing the character set. @var{props} is a property list,
+ − 412 describing the specific nature of the character set. The recognized
+ − 413 properties are @code{registry}, @code{dimension}, @code{columns},
+ − 414 @code{chars}, @code{final}, @code{graphic}, @code{direction}, and
+ − 415 @code{ccl-program}, as previously described.
+ − 416 @end defun
+ − 417
+ − 418 @defun make-reverse-direction-charset charset new-name
+ − 419 This function makes a charset equivalent to @var{charset} but which goes
+ − 420 in the opposite direction. @var{new-name} is the name of the new
+ − 421 charset. The new charset is returned.
+ − 422 @end defun
+ − 423
+ − 424 @defun charset-from-attributes dimension chars final &optional direction
+ − 425 This function returns a charset with the given @var{dimension},
+ − 426 @var{chars}, @var{final}, and @var{direction}. If @var{direction} is
+ − 427 omitted, both directions will be checked (left-to-right will be returned
+ − 428 if character sets exist for both directions).
+ − 429 @end defun
+ − 430
+ − 431 @defun charset-reverse-direction-charset charset
+ − 432 This function returns the charset (if any) with the same dimension,
+ − 433 number of characters, and final byte as @var{charset}, but which is
+ − 434 displayed in the opposite direction.
+ − 435 @end defun
+ − 436
442
+ − 437 @node Charset Property Functions, Predefined Charsets, Basic Charset Functions, Charsets
428
+ − 438 @subsection Charset Property Functions
+ − 439
442
+ − 440 All of these functions accept either a charset name or charset object.
428
+ − 441
+ − 442 @defun charset-property charset prop
+ − 443 This function returns property @var{prop} of @var{charset}.
+ − 444 @xref{Charset Properties}.
+ − 445 @end defun
+ − 446
442
+ − 447 Convenience functions are also provided for retrieving individual
428
+ − 448 properties of a charset.
+ − 449
+ − 450 @defun charset-name charset
+ − 451 This function returns the name of @var{charset}. This will be a symbol.
+ − 452 @end defun
+ − 453
444
+ − 454 @defun charset-description charset
+ − 455 This function returns the documentation string of @var{charset}.
428
+ − 456 @end defun
+ − 457
+ − 458 @defun charset-registry charset
+ − 459 This function returns the registry of @var{charset}.
+ − 460 @end defun
+ − 461
+ − 462 @defun charset-dimension charset
+ − 463 This function returns the dimension of @var{charset}.
+ − 464 @end defun
+ − 465
+ − 466 @defun charset-chars charset
+ − 467 This function returns the number of characters per dimension of
+ − 468 @var{charset}.
+ − 469 @end defun
+ − 470
444
+ − 471 @defun charset-width charset
428
+ − 472 This function returns the number of display columns per character (in
+ − 473 TTY mode) of @var{charset}.
+ − 474 @end defun
+ − 475
+ − 476 @defun charset-direction charset
440
+ − 477 This function returns the display direction of @var{charset}---either
428
+ − 478 @code{l2r} or @code{r2l}.
+ − 479 @end defun
+ − 480
444
+ − 481 @defun charset-iso-final-char charset
428
+ − 482 This function returns the final byte of the ISO 2022 escape sequence
+ − 483 designating @var{charset}.
+ − 484 @end defun
+ − 485
444
+ − 486 @defun charset-iso-graphic-plane charset
428
+ − 487 This function returns either 0 or 1, depending on whether the position
+ − 488 codes of characters in @var{charset} map to the left or right half
+ − 489 of their font, respectively.
+ − 490 @end defun
+ − 491
+ − 492 @defun charset-ccl-program charset
+ − 493 This function returns the CCL program, if any, for converting
+ − 494 position codes of characters in @var{charset} into font indices.
+ − 495 @end defun
+ − 496
1734
+ − 497 The two properties of a charset that can currently be set after the
+ − 498 charset has been created are the CCL program and the font registry.
428
+ − 499
+ − 500 @defun set-charset-ccl-program charset ccl-program
+ − 501 This function sets the @code{ccl-program} property of @var{charset} to
+ − 502 @var{ccl-program}.
+ − 503 @end defun
+ − 504
1734
+ − 505 @defun set-charset-registry charset registry
+ − 506 This function sets the @code{registry} property of @var{charset} to
+ − 507 @var{registry}.
+ − 508 @end defun
+ − 509
442
+ − 510 @node Predefined Charsets, , Charset Property Functions, Charsets
428
+ − 511 @subsection Predefined Charsets
+ − 512
442
+ − 513 The following charsets are predefined in the C code.
428
+ − 514
+ − 515 @example
+ − 516 Name Type Fi Gr Dir Registry
+ − 517 --------------------------------------------------------------
+ − 518 ascii 94 B 0 l2r ISO8859-1
+ − 519 control-1 94 0 l2r ---
+ − 520 latin-iso8859-1 94 A 1 l2r ISO8859-1
+ − 521 latin-iso8859-2 96 B 1 l2r ISO8859-2
+ − 522 latin-iso8859-3 96 C 1 l2r ISO8859-3
+ − 523 latin-iso8859-4 96 D 1 l2r ISO8859-4
+ − 524 cyrillic-iso8859-5 96 L 1 l2r ISO8859-5
+ − 525 arabic-iso8859-6 96 G 1 r2l ISO8859-6
+ − 526 greek-iso8859-7 96 F 1 l2r ISO8859-7
+ − 527 hebrew-iso8859-8 96 H 1 r2l ISO8859-8
+ − 528 latin-iso8859-9 96 M 1 l2r ISO8859-9
+ − 529 thai-tis620 96 T 1 l2r TIS620
+ − 530 katakana-jisx0201 94 I 1 l2r JISX0201.1976
+ − 531 latin-jisx0201 94 J 0 l2r JISX0201.1976
+ − 532 japanese-jisx0208-1978 94x94 @@ 0 l2r JISX0208.1978
+ − 533 japanese-jisx0208 94x94 B 0 l2r JISX0208.19(83|90)
+ − 534 japanese-jisx0212 94x94 D 0 l2r JISX0212
+ − 535 chinese-gb2312 94x94 A 0 l2r GB2312
+ − 536 chinese-cns11643-1 94x94 G 0 l2r CNS11643.1
+ − 537 chinese-cns11643-2 94x94 H 0 l2r CNS11643.2
+ − 538 chinese-big5-1 94x94 0 0 l2r Big5
+ − 539 chinese-big5-2 94x94 1 0 l2r Big5
+ − 540 korean-ksc5601 94x94 C 0 l2r KSC5601
+ − 541 composite 96x96 0 l2r ---
+ − 542 @end example
+ − 543
442
+ − 544 The following charsets are predefined in the Lisp code.
428
+ − 545
+ − 546 @example
+ − 547 Name Type Fi Gr Dir Registry
+ − 548 --------------------------------------------------------------
+ − 549 arabic-digit 94 2 0 l2r MuleArabic-0
+ − 550 arabic-1-column 94 3 0 r2l MuleArabic-1
+ − 551 arabic-2-column 94 4 0 r2l MuleArabic-2
+ − 552 sisheng 94 0 0 l2r sisheng_cwnn\|OMRON_UDC_ZH
+ − 553 chinese-cns11643-3 94x94 I 0 l2r CNS11643.1
+ − 554 chinese-cns11643-4 94x94 J 0 l2r CNS11643.1
+ − 555 chinese-cns11643-5 94x94 K 0 l2r CNS11643.1
+ − 556 chinese-cns11643-6 94x94 L 0 l2r CNS11643.1
+ − 557 chinese-cns11643-7 94x94 M 0 l2r CNS11643.1
+ − 558 ethiopic 94x94 2 0 l2r Ethio
+ − 559 ascii-r2l 94 B 0 r2l ISO8859-1
+ − 560 ipa 96 0 1 l2r MuleIPA
1734
+ − 561 vietnamese-viscii-lower 96 1 1 l2r VISCII1.1
+ − 562 vietnamese-viscii-upper 96 2 1 l2r VISCII1.1
428
+ − 563 @end example
+ − 564
+ − 565 For all of the above charsets, the dimension and number of columns are
+ − 566 the same.
+ − 567
442
+ − 568 Note that ASCII, Control-1, and Composite are handled specially.
428
+ − 569 This is why some of the fields are blank; and some of the filled-in
+ − 570 fields (e.g. the type) are not really accurate.
+ − 571
442
+ − 572 @node MULE Characters, Composite Characters, Charsets, MULE
428
+ − 573 @section MULE Characters
+ − 574
+ − 575 @defun make-char charset arg1 &optional arg2
+ − 576 This function makes a multi-byte character from @var{charset} and octets
+ − 577 @var{arg1} and @var{arg2}.
+ − 578 @end defun
+ − 579
444
+ − 580 @defun char-charset character
+ − 581 This function returns the character set of char @var{character}.
428
+ − 582 @end defun
+ − 583
444
+ − 584 @defun char-octet character &optional n
428
+ − 585 This function returns the octet (i.e. position code) numbered @var{n}
444
+ − 586 (should be 0 or 1) of char @var{character}. @var{n} defaults to 0 if omitted.
428
+ − 587 @end defun
+ − 588
+ − 589 @defun find-charset-region start end &optional buffer
+ − 590 This function returns a list of the charsets in the region between
+ − 591 @var{start} and @var{end}. @var{buffer} defaults to the current buffer
+ − 592 if omitted.
+ − 593 @end defun
+ − 594
+ − 595 @defun find-charset-string string
+ − 596 This function returns a list of the charsets in @var{string}.
+ − 597 @end defun
+ − 598
442
+ − 599 @node Composite Characters, Coding Systems, MULE Characters, MULE
428
+ − 600 @section Composite Characters
+ − 601
442
+ − 602 Composite characters are not yet completely implemented.
428
+ − 603
+ − 604 @defun make-composite-char string
+ − 605 This function converts a string into a single composite character. The
+ − 606 character is the result of overstriking all the characters in the
+ − 607 string.
+ − 608 @end defun
+ − 609
444
+ − 610 @defun composite-char-string character
428
+ − 611 This function returns a string of the characters comprising a composite
+ − 612 character.
+ − 613 @end defun
+ − 614
+ − 615 @defun compose-region start end &optional buffer
+ − 616 This function composes the characters in the region from @var{start} to
+ − 617 @var{end} in @var{buffer} into one composite character. The composite
+ − 618 character replaces the composed characters. @var{buffer} defaults to
+ − 619 the current buffer if omitted.
+ − 620 @end defun
+ − 621
+ − 622 @defun decompose-region start end &optional buffer
+ − 623 This function decomposes any composite characters in the region from
+ − 624 @var{start} to @var{end} in @var{buffer}. This converts each composite
+ − 625 character into one or more characters, the individual characters out of
+ − 626 which the composite character was formed. Non-composite characters are
+ − 627 left as-is. @var{buffer} defaults to the current buffer if omitted.
+ − 628 @end defun
+ − 629
442
+ − 630 @node Coding Systems, CCL, Composite Characters, MULE
+ − 631 @section Coding Systems
+ − 632
+ − 633 A coding system is an object that defines how text containing multiple
+ − 634 character sets is encoded into a stream of (typically 8-bit) bytes. The
+ − 635 coding system is used to decode the stream into a series of characters
+ − 636 (which may be from multiple charsets) when the text is read from a file
+ − 637 or process, and is used to encode the text back into the same format
+ − 638 when it is written out to a file or process.
+ − 639
+ − 640 For example, many ISO-2022-compliant coding systems (such as Compound
+ − 641 Text, which is used for inter-client data under the X Window System) use
+ − 642 escape sequences to switch between different charsets -- Japanese Kanji,
+ − 643 for example, is invoked with @samp{ESC $ ( B}; ASCII is invoked with
+ − 644 @samp{ESC ( B}; and Cyrillic is invoked with @samp{ESC - L}. See
+ − 645 @code{make-coding-system} for more information.
+ − 646
+ − 647 Coding systems are normally identified using a symbol, and the symbol is
+ − 648 accepted in place of the actual coding system object whenever a coding
+ − 649 system is called for. (This is similar to how faces and charsets work.)
+ − 650
+ − 651 @defun coding-system-p object
+ − 652 This function returns non-@code{nil} if @var{object} is a coding system.
+ − 653 @end defun
428
+ − 654
442
+ − 655 @menu
+ − 656 * Coding System Types:: Classifying coding systems.
+ − 657 * ISO 2022:: An international standard for
+ − 658 charsets and encodings.
+ − 659 * EOL Conversion:: Dealing with different ways of denoting
+ − 660 the end of a line.
+ − 661 * Coding System Properties:: Properties of a coding system.
+ − 662 * Basic Coding System Functions:: Working with coding systems.
+ − 663 * Coding System Property Functions:: Retrieving a coding system's properties.
+ − 664 * Encoding and Decoding Text:: Encoding and decoding text.
+ − 665 * Detection of Textual Encoding:: Determining how text is encoded.
+ − 666 * Big5 and Shift-JIS Functions:: Special functions for these non-standard
+ − 667 encodings.
+ − 668 * Predefined Coding Systems:: Coding systems implemented by MULE.
+ − 669 @end menu
428
+ − 670
442
+ − 671 @node Coding System Types, ISO 2022, , Coding Systems
+ − 672 @subsection Coding System Types
+ − 673
+ − 674 The coding system type determines the basic algorithm XEmacs will use to
+ − 675 decode or encode a data stream. Character encodings will be converted
+ − 676 to the MULE encoding, escape sequences processed, and newline sequences
+ − 677 converted to XEmacs's internal representation. There are three basic
+ − 678 classes of coding system type: no-conversion, ISO-2022, and special.
+ − 679
+ − 680 No conversion allows you to look at the file's internal representation.
+ − 681 Since XEmacs is basically a text editor, "no conversion" does convert
+ − 682 newline conventions by default. (Use the 'binary coding-system if this
+ − 683 is not desired.)
428
+ − 684
442
+ − 685 ISO 2022 (@pxref{ISO 2022}) is the basic international standard regulating
+ − 686 use of "coded character sets for the exchange of data", ie, text
+ − 687 streams. ISO 2022 contains functions that make it possible to encode
+ − 688 text streams to comply with restrictions of the Internet mail system and
+ − 689 de facto restrictions of most file systems (eg, use of the separator
+ − 690 character in file names). Coding systems which are not ISO 2022
+ − 691 conformant can be difficult to handle. Perhaps more important, they are
+ − 692 not adaptable to multilingual information interchange, with the obvious
+ − 693 exception of ISO 10646 (Unicode). (Unicode is partially supported by
+ − 694 XEmacs with the addition of the Lisp package ucs-conv.)
+ − 695
+ − 696 The special class of coding systems includes automatic detection, CCL (a
+ − 697 "little language" embedded as an interpreter, useful for translating
+ − 698 between variants of a single character set), non-ISO-2022-conformant
+ − 699 encodings like Unicode, Shift JIS, and Big5, and MULE internal coding.
+ − 700 (NB: this list is based on XEmacs 21.2. Terminology may vary slightly
+ − 701 for other versions of XEmacs and for GNU Emacs 20.)
+ − 702
+ − 703 @table @code
+ − 704 @item no-conversion
+ − 705 No conversion, for binary files, and a few special cases of non-ISO-2022
+ − 706 coding systems where conversion is done by hook functions (usually
+ − 707 implemented in CCL). On output, graphic characters that are not in
+ − 708 ASCII or Latin-1 will be replaced by a @samp{?}. (For a
+ − 709 no-conversion-encoded buffer, these characters will only be present if
+ − 710 you explicitly insert them.)
+ − 711 @item iso2022
+ − 712 Any ISO-2022-compliant encoding. Among others, this includes JIS (the
+ − 713 Japanese encoding commonly used for e-mail), national variants of EUC
+ − 714 (the standard Unix encoding for Japanese and other languages), and
+ − 715 Compound Text (an encoding used in X11). You can specify more specific
+ − 716 information about the conversion with the @var{flags} argument.
+ − 717 @item ucs-4
+ − 718 ISO 10646 UCS-4 encoding. A 31-bit fixed-width superset of Unicode.
+ − 719 @item utf-8
+ − 720 ISO 10646 UTF-8 encoding. A ``file system safe'' transformation format
+ − 721 that can be used with both UCS-4 and Unicode.
+ − 722 @item undecided
+ − 723 Automatic conversion. XEmacs attempts to detect the coding system used
+ − 724 in the file.
+ − 725 @item shift-jis
+ − 726 Shift-JIS (a Japanese encoding commonly used in PC operating systems).
+ − 727 @item big5
+ − 728 Big5 (the encoding commonly used for Taiwanese).
+ − 729 @item ccl
+ − 730 The conversion is performed using a user-written pseudo-code program.
+ − 731 CCL (Code Conversion Language) is the name of this pseudo-code. For
+ − 732 example, CCL is used to map KOI8-R characters (an encoding for Russian
+ − 733 Cyrillic) to ISO8859-5 (the form used internally by MULE).
+ − 734 @item internal
+ − 735 Write out or read in the raw contents of the memory representing the
+ − 736 buffer's text. This is primarily useful for debugging purposes, and is
+ − 737 only enabled when XEmacs has been compiled with @code{DEBUG_XEMACS} set
+ − 738 (the @samp{--debug} configure option). @strong{Warning}: Reading in a
+ − 739 file using @code{internal} conversion can result in an internal
+ − 740 inconsistency in the memory representing a buffer's text, which will
+ − 741 produce unpredictable results and may cause XEmacs to crash. Under
+ − 742 normal circumstances you should never use @code{internal} conversion.
428
+ − 743 @end table
+ − 744
442
+ − 745 @node ISO 2022, EOL Conversion, Coding System Types, Coding Systems
+ − 746 @section ISO 2022
+ − 747
+ − 748 This section briefly describes the ISO 2022 encoding standard. A more
+ − 749 thorough treatment is available in the original document of ISO
+ − 750 2022 as well as various national standards (such as JIS X 0202).
428
+ − 751
442
+ − 752 Character sets (@dfn{charsets}) are classified into the following four
+ − 753 categories, according to the number of characters in the charset:
+ − 754 94-charset, 96-charset, 94x94-charset, and 96x96-charset. This means
+ − 755 that although an ISO 2022 coding system may have variable width
+ − 756 characters, each charset used is fixed-width (in contrast to the MULE
+ − 757 character set and UTF-8, for example).
+ − 758
+ − 759 ISO 2022 provides for switching between character sets via escape
+ − 760 sequences. This switching is somewhat complicated, because ISO 2022
+ − 761 provides for both legacy applications like Internet mail that accept
444
+ − 762 only 7 significant bits in some contexts (RFC 822 headers, for example),
442
+ − 763 and more modern "8-bit clean" applications. It also provides for
+ − 764 compact and transparent representation of languages like Japanese which
+ − 765 mix ASCII and a national script (even outside of computer programs).
428
+ − 766
442
+ − 767 First, ISO 2022 codified prevailing practice by dividing the code space
+ − 768 into "control" and "graphic" regions. The code points 0x00-0x1F and
+ − 769 0x80-0x9F are reserved for "control characters", while "graphic
+ − 770 characters" must be assigned to code points in the regions 0x20-0x7F and
+ − 771 0xA0-0xFF. The positions 0x20 and 0x7F are special, and under some
+ − 772 circumstances must be assigned the graphic character "ASCII SPACE" and
+ − 773 the control character "ASCII DEL" respectively.
428
+ − 774
442
+ − 775 The various regions are given the name C0 (0x00-0x1F), GL (0x20-0x7F),
+ − 776 C1 (0x80-0x9F), and GR (0xA0-0xFF). GL and GR stand for "graphic left"
+ − 777 and "graphic right", respectively, because of the standard method of
+ − 778 displaying graphic character sets in tables with the high byte indexing
444
+ − 779 columns and the low byte indexing rows. I don't find it very intuitive,
442
+ − 780 but these are called "registers".
+ − 781
+ − 782 An ISO 2022-conformant encoding for a graphic character set must use a
+ − 783 fixed number of bytes per character, and the values must fit into a
+ − 784 single register; that is, each byte must range over either 0x20-0x7F, or
+ − 785 0xA0-0xFF. It is not allowed to extend the range of the repertoire of a
+ − 786 character set by using both ranges at the same. This is why a standard
+ − 787 character set such as ISO 8859-1 is actually considered by ISO 2022 to
+ − 788 be an aggregation of two character sets, ASCII and LATIN-1, and why it
+ − 789 is technically incorrect to refer to ISO 8859-1 as "Latin 1". Also, a
+ − 790 single character's bytes must all be drawn from the same register; this
+ − 791 is why Shift JIS (for Japanese) and Big 5 (for Chinese) are not ISO
+ − 792 2022-compatible encodings.
428
+ − 793
442
+ − 794 The reason for this restriction becomes clear when you attempt to define
+ − 795 an efficient, robust encoding for a language like Japanese. Like ISO
+ − 796 8859, Japanese encodings are aggregations of several character sets. In
+ − 797 practice, the vast majority of characters are drawn from the "JIS Roman"
+ − 798 character set (a derivative of ASCII; it won't hurt to think of it as
+ − 799 ASCII) and the JIS X 0208 standard "basic Japanese" character set
+ − 800 including not only ideographic characters ("kanji") but syllabic
+ − 801 Japanese characters ("kana"), a wide variety of symbols, and many
+ − 802 alphabetic characters (Roman, Greek, and Cyrillic) as well. Although
+ − 803 JIS X 0208 includes the whole Roman alphabet, as a 2-byte code it is not
+ − 804 suited to programming; thus the inclusion of ASCII in the standard
+ − 805 Japanese encodings.
428
+ − 806
442
+ − 807 For normal Japanese text such as in newspapers, a broad repertoire of
+ − 808 approximately 3000 characters is used. Evidently this won't fit into
+ − 809 one byte; two must be used. But much of the text processed by Japanese
+ − 810 computers is computer source code, nearly all of which is ASCII. A not
+ − 811 insignificant portion of ordinary text is English (as such or as
+ − 812 borrowed Japanese vocabulary) or other languages which can represented
+ − 813 at least approximately in ASCII, as well. It seems reasonable then to
+ − 814 represent ASCII in one byte, and JIS X 0208 in two. And this is exactly
+ − 815 what the Extended Unix Code for Japanese (EUC-JP) does. ASCII is
+ − 816 invoked to the GL register, and JIS X 0208 is invoked to the GR
+ − 817 register. Thus, each byte can be tested for its character set by
+ − 818 looking at the high bit; if set, it is Japanese, if clear, it is ASCII.
+ − 819 Furthermore, since control characters like newline can never be part of
+ − 820 a graphic character, even in the case of corruption in transmission the
+ − 821 stream will be resynchronized at every line break, on the order of 60-80
+ − 822 bytes. This coding system requires no escape sequences or special
+ − 823 control codes to represent 99.9% of all Japanese text.
428
+ − 824
442
+ − 825 Note carefully the distinction between the character sets (ASCII and JIS
+ − 826 X 0208), the encoding (EUC-JP), and the coding system (ISO 2022). The
+ − 827 JIS X 0208 character set is used in three different encodings for
+ − 828 Japanese, but in ISO-2022-JP it is invoked into GL (so the high bit is
+ − 829 always clear), in EUC-JP it is invoked into GR (setting the high bit in
+ − 830 the process), and in Shift JIS the high bit may be set or reset, and the
+ − 831 significant bits are shifted within the 16-bit character so that the two
+ − 832 main character sets can coexist with a third (the "halfwidth katakana"
+ − 833 of JIS X 0201). As the name implies, the ISO-2022-JP encoding is also a
+ − 834 version of the ISO-2022 coding system.
428
+ − 835
442
+ − 836 In order to systematically treat subsidiary character sets (like the
+ − 837 "halfwidth katakana" already mentioned, and the "supplementary kanji" of
+ − 838 JIS X 0212), four further registers are defined: G0, G1, G2, and G3.
+ − 839 Unlike GL and GR, they are not logically distinguished by internal
+ − 840 format. Instead, the process of "invocation" mentioned earlier is
+ − 841 broken into two steps: first, a character set is @dfn{designated} to one
+ − 842 of the registers G0-G3 by use of an @dfn{escape sequence} of the form:
428
+ − 843
+ − 844 @example
440
+ − 845 ESC [@var{I}] @var{I} @var{F}
428
+ − 846 @end example
+ − 847
442
+ − 848 where @var{I} is an intermediate character or characters in the range
+ − 849 0x20 - 0x3F, and @var{F}, from the range 0x30-0x7Fm is the final
+ − 850 character identifying this charset. (Final characters in the range
+ − 851 0x30-0x3F are reserved for private use and will never have a publicly
+ − 852 registered meaning.)
+ − 853
+ − 854 Then that register is @dfn{invoked} to either GL or GR, either
+ − 855 automatically (designations to G0 normally involve invocation to GL as
+ − 856 well), or by use of shifting (affecting only the following character in
+ − 857 the data stream) or locking (effective until the next designation or
+ − 858 locking) control sequences. An encoding conformant to ISO 2022 is
+ − 859 typically defined by designating the initial contents of the G0-G3
901
+ − 860 registers, specifying a 7 or 8 bit environment, and specifying whether
442
+ − 861 further designations will be recognized.
+ − 862
+ − 863 Some examples of character sets and the registered final characters
+ − 864 @var{F} used to designate them:
428
+ − 865
442
+ − 866 @need 1000
+ − 867 @table @asis
+ − 868 @item 94-charset
+ − 869 ASCII (B), left (J) and right (I) half of JIS X 0201, ...
+ − 870 @item 96-charset
+ − 871 Latin-1 (A), Latin-2 (B), Latin-3 (C), ...
+ − 872 @item 94x94-charset
+ − 873 GB2312 (A), JIS X 0208 (B), KSC5601 (C), ...
+ − 874 @item 96x96-charset
+ − 875 none for the moment
+ − 876 @end table
+ − 877
+ − 878 The meanings of the various characters in these sequences, where not
+ − 879 specified by the ISO 2022 standard (such as the ESC character), are
+ − 880 assigned by @dfn{ECMA}, the European Computer Manufacturers Association.
+ − 881
+ − 882 The meaning of intermediate characters are:
428
+ − 883
+ − 884 @example
+ − 885 @group
440
+ − 886 $ [0x24]: indicate charset of dimension 2 (94x94 or 96x96).
+ − 887 ( [0x28]: designate to G0 a 94-charset whose final byte is @var{F}.
+ − 888 ) [0x29]: designate to G1 a 94-charset whose final byte is @var{F}.
+ − 889 * [0x2A]: designate to G2 a 94-charset whose final byte is @var{F}.
+ − 890 + [0x2B]: designate to G3 a 94-charset whose final byte is @var{F}.
442
+ − 891 , [0x2C]: designate to G0 a 96-charset whose final byte is @var{F}.
440
+ − 892 - [0x2D]: designate to G1 a 96-charset whose final byte is @var{F}.
+ − 893 . [0x2E]: designate to G2 a 96-charset whose final byte is @var{F}.
+ − 894 / [0x2F]: designate to G3 a 96-charset whose final byte is @var{F}.
428
+ − 895 @end group
+ − 896 @end example
+ − 897
442
+ − 898 The comma may be used in files read and written only by MULE, as a MULE
+ − 899 extension, but this is illegal in ISO 2022. (The reason is that in ISO
+ − 900 2022 G0 must be a 94-member character set, with 0x20 assigned the value
+ − 901 SPACE, and 0x7F assigned the value DEL.)
428
+ − 902
442
+ − 903 Here are examples of designations:
428
+ − 904
+ − 905 @example
+ − 906 @group
440
+ − 907 ESC ( B : designate to G0 ASCII
+ − 908 ESC - A : designate to G1 Latin-1
+ − 909 ESC $ ( A or ESC $ A : designate to G0 GB2312
+ − 910 ESC $ ( B or ESC $ B : designate to G0 JISX0208
+ − 911 ESC $ ) C : designate to G1 KSC5601
428
+ − 912 @end group
+ − 913 @end example
+ − 914
442
+ − 915 (The short forms used to designate GB2312 and JIS X 0208 are for
+ − 916 backwards compatibility; the long forms are preferred.)
+ − 917
+ − 918 To use a charset designated to G2 or G3, and to use a charset designated
428
+ − 919 to G1 in a 7-bit environment, you must explicitly invoke G1, G2, or G3
+ − 920 into GL. There are two types of invocation, Locking Shift (forever) and
+ − 921 Single Shift (one character only).
+ − 922
442
+ − 923 Locking Shift is done as follows:
428
+ − 924
+ − 925 @example
440
+ − 926 LS0 or SI (0x0F): invoke G0 into GL
+ − 927 LS1 or SO (0x0E): invoke G1 into GL
+ − 928 LS2: invoke G2 into GL
+ − 929 LS3: invoke G3 into GL
+ − 930 LS1R: invoke G1 into GR
+ − 931 LS2R: invoke G2 into GR
+ − 932 LS3R: invoke G3 into GR
428
+ − 933 @end example
+ − 934
442
+ − 935 Single Shift is done as follows:
428
+ − 936
+ − 937 @example
+ − 938 @group
440
+ − 939 SS2 or ESC N: invoke G2 into GL
+ − 940 SS3 or ESC O: invoke G3 into GL
428
+ − 941 @end group
+ − 942 @end example
+ − 943
442
+ − 944 The shift functions (such as LS1R and SS3) are represented by control
+ − 945 characters (from C1) in 8 bit environments and by escape sequences in 7
+ − 946 bit environments.
+ − 947
428
+ − 948 (#### Ben says: I think the above is slightly incorrect. It appears that
+ − 949 SS2 invokes G2 into GR and SS3 invokes G3 into GR, whereas ESC N and
444
+ − 950 ESC O behave as indicated. The above definitions will not parse
428
+ − 951 EUC-encoded text correctly, and it looks like the code in mule-coding.c
+ − 952 has similar problems.)
+ − 953
442
+ − 954 Evidently there are a lot of ISO-2022-compliant ways of encoding
+ − 955 multilingual text. Now, in the world, there exist many coding systems
+ − 956 such as X11's Compound Text, Japanese JUNET code, and so-called EUC
+ − 957 (Extended UNIX Code); all of these are variants of ISO 2022.
428
+ − 958
442
+ − 959 In MULE, we characterize a version of ISO 2022 by the following
+ − 960 attributes:
428
+ − 961
+ − 962 @enumerate
+ − 963 @item
442
+ − 964 The character sets initially designated to G0 thru G3.
428
+ − 965 @item
442
+ − 966 Whether short form designations are allowed for Japanese and Chinese.
428
+ − 967 @item
442
+ − 968 Whether ASCII should be designated to G0 before control characters.
428
+ − 969 @item
442
+ − 970 Whether ASCII should be designated to G0 at the end of line.
428
+ − 971 @item
+ − 972 7-bit environment or 8-bit environment.
+ − 973 @item
442
+ − 974 Whether Locking Shifts are used or not.
428
+ − 975 @item
442
+ − 976 Whether to use ASCII or the variant JIS X 0201-1976-Roman.
428
+ − 977 @item
442
+ − 978 Whether to use JIS X 0208-1983 or the older version JIS X 0208-1976.
428
+ − 979 @end enumerate
+ − 980
+ − 981 (The last two are only for Japanese.)
+ − 982
442
+ − 983 By specifying these attributes, you can create any variant
428
+ − 984 of ISO 2022.
+ − 985
442
+ − 986 Here are several examples:
428
+ − 987
+ − 988 @example
+ − 989 @group
442
+ − 990 ISO-2022-JP -- Coding system used in Japanese email (RFC 1463 #### check).
440
+ − 991 1. G0 <- ASCII, G1..3 <- never used
+ − 992 2. Yes.
+ − 993 3. Yes.
+ − 994 4. Yes.
+ − 995 5. 7-bit environment
+ − 996 6. No.
+ − 997 7. Use ASCII
442
+ − 998 8. Use JIS X 0208-1983
428
+ − 999 @end group
+ − 1000
+ − 1001 @group
442
+ − 1002 ctext -- X11 Compound Text
+ − 1003 1. G0 <- ASCII, G1 <- Latin-1, G2,3 <- never used.
440
+ − 1004 2. No.
+ − 1005 3. No.
+ − 1006 4. Yes.
442
+ − 1007 5. 8-bit environment.
440
+ − 1008 6. No.
442
+ − 1009 7. Use ASCII.
+ − 1010 8. Use JIS X 0208-1983.
428
+ − 1011 @end group
+ − 1012
+ − 1013 @group
442
+ − 1014 euc-china -- Chinese EUC. Often called the "GB encoding", but that is
+ − 1015 technically incorrect.
+ − 1016 1. G0 <- ASCII, G1 <- GB 2312, G2,3 <- never used.
440
+ − 1017 2. No.
+ − 1018 3. Yes.
+ − 1019 4. Yes.
442
+ − 1020 5. 8-bit environment.
440
+ − 1021 6. No.
442
+ − 1022 7. Use ASCII.
+ − 1023 8. Use JIS X 0208-1983.
428
+ − 1024 @end group
+ − 1025
+ − 1026 @group
442
+ − 1027 ISO-2022-KR -- Coding system used in Korean email.
+ − 1028 1. G0 <- ASCII, G1 <- KSC 5601, G2,3 <- never used.
440
+ − 1029 2. No.
+ − 1030 3. Yes.
+ − 1031 4. Yes.
442
+ − 1032 5. 7-bit environment.
440
+ − 1033 6. Yes.
442
+ − 1034 7. Use ASCII.
+ − 1035 8. Use JIS X 0208-1983.
428
+ − 1036 @end group
+ − 1037 @end example
+ − 1038
442
+ − 1039 MULE creates all of these coding systems by default.
428
+ − 1040
442
+ − 1041 @node EOL Conversion, Coding System Properties, ISO 2022, Coding Systems
428
+ − 1042 @subsection EOL Conversion
+ − 1043
+ − 1044 @table @code
+ − 1045 @item nil
+ − 1046 Automatically detect the end-of-line type (LF, CRLF, or CR). Also
+ − 1047 generate subsidiary coding systems named @code{@var{name}-unix},
+ − 1048 @code{@var{name}-dos}, and @code{@var{name}-mac}, that are identical to
+ − 1049 this coding system but have an EOL-TYPE value of @code{lf}, @code{crlf},
+ − 1050 and @code{cr}, respectively.
+ − 1051 @item lf
+ − 1052 The end of a line is marked externally using ASCII LF. Since this is
+ − 1053 also the way that XEmacs represents an end-of-line internally,
+ − 1054 specifying this option results in no end-of-line conversion. This is
+ − 1055 the standard format for Unix text files.
+ − 1056 @item crlf
+ − 1057 The end of a line is marked externally using ASCII CRLF. This is the
+ − 1058 standard format for MS-DOS text files.
+ − 1059 @item cr
+ − 1060 The end of a line is marked externally using ASCII CR. This is the
+ − 1061 standard format for Macintosh text files.
+ − 1062 @item t
+ − 1063 Automatically detect the end-of-line type but do not generate subsidiary
+ − 1064 coding systems. (This value is converted to @code{nil} when stored
+ − 1065 internally, and @code{coding-system-property} will return @code{nil}.)
+ − 1066 @end table
+ − 1067
442
+ − 1068 @node Coding System Properties, Basic Coding System Functions, EOL Conversion, Coding Systems
428
+ − 1069 @subsection Coding System Properties
+ − 1070
+ − 1071 @table @code
+ − 1072 @item mnemonic
+ − 1073 String to be displayed in the modeline when this coding system is
+ − 1074 active.
+ − 1075
+ − 1076 @item eol-type
+ − 1077 End-of-line conversion to be used. It should be one of the types
+ − 1078 listed in @ref{EOL Conversion}.
+ − 1079
442
+ − 1080 @item eol-lf
444
+ − 1081 The coding system which is the same as this one, except that it uses the
442
+ − 1082 Unix line-breaking convention.
+ − 1083
+ − 1084 @item eol-crlf
444
+ − 1085 The coding system which is the same as this one, except that it uses the
442
+ − 1086 DOS line-breaking convention.
+ − 1087
+ − 1088 @item eol-cr
444
+ − 1089 The coding system which is the same as this one, except that it uses the
442
+ − 1090 Macintosh line-breaking convention.
+ − 1091
428
+ − 1092 @item post-read-conversion
+ − 1093 Function called after a file has been read in, to perform the decoding.
444
+ − 1094 Called with two arguments, @var{start} and @var{end}, denoting a region of
428
+ − 1095 the current buffer to be decoded.
+ − 1096
+ − 1097 @item pre-write-conversion
+ − 1098 Function called before a file is written out, to perform the encoding.
444
+ − 1099 Called with two arguments, @var{start} and @var{end}, denoting a region of
428
+ − 1100 the current buffer to be encoded.
+ − 1101 @end table
+ − 1102
442
+ − 1103 The following additional properties are recognized if @var{type} is
428
+ − 1104 @code{iso2022}:
+ − 1105
+ − 1106 @table @code
+ − 1107 @item charset-g0
+ − 1108 @itemx charset-g1
+ − 1109 @itemx charset-g2
+ − 1110 @itemx charset-g3
+ − 1111 The character set initially designated to the G0 - G3 registers.
+ − 1112 The value should be one of
+ − 1113
+ − 1114 @itemize @bullet
+ − 1115 @item
+ − 1116 A charset object (designate that character set)
+ − 1117 @item
+ − 1118 @code{nil} (do not ever use this register)
+ − 1119 @item
+ − 1120 @code{t} (no character set is initially designated to the register, but
+ − 1121 may be later on; this automatically sets the corresponding
+ − 1122 @code{force-g*-on-output} property)
+ − 1123 @end itemize
+ − 1124
+ − 1125 @item force-g0-on-output
+ − 1126 @itemx force-g1-on-output
+ − 1127 @itemx force-g2-on-output
+ − 1128 @itemx force-g3-on-output
+ − 1129 If non-@code{nil}, send an explicit designation sequence on output
+ − 1130 before using the specified register.
+ − 1131
+ − 1132 @item short
+ − 1133 If non-@code{nil}, use the short forms @samp{ESC $ @@}, @samp{ESC $ A},
+ − 1134 and @samp{ESC $ B} on output in place of the full designation sequences
+ − 1135 @samp{ESC $ ( @@}, @samp{ESC $ ( A}, and @samp{ESC $ ( B}.
+ − 1136
+ − 1137 @item no-ascii-eol
+ − 1138 If non-@code{nil}, don't designate ASCII to G0 at each end of line on
+ − 1139 output. Setting this to non-@code{nil} also suppresses other
+ − 1140 state-resetting that normally happens at the end of a line.
+ − 1141
+ − 1142 @item no-ascii-cntl
+ − 1143 If non-@code{nil}, don't designate ASCII to G0 before control chars on
+ − 1144 output.
+ − 1145
+ − 1146 @item seven
+ − 1147 If non-@code{nil}, use 7-bit environment on output. Otherwise, use 8-bit
+ − 1148 environment.
+ − 1149
+ − 1150 @item lock-shift
+ − 1151 If non-@code{nil}, use locking-shift (SO/SI) instead of single-shift or
+ − 1152 designation by escape sequence.
+ − 1153
+ − 1154 @item no-iso6429
+ − 1155 If non-@code{nil}, don't use ISO6429's direction specification.
+ − 1156
+ − 1157 @item escape-quoted
444
+ − 1158 If non-@code{nil}, literal control characters that are the same as the
428
+ − 1159 beginning of a recognized ISO 2022 or ISO 6429 escape sequence (in
+ − 1160 particular, ESC (0x1B), SO (0x0E), SI (0x0F), SS2 (0x8E), SS3 (0x8F),
+ − 1161 and CSI (0x9B)) are ``quoted'' with an escape character so that they can
+ − 1162 be properly distinguished from an escape sequence. (Note that doing
+ − 1163 this results in a non-portable encoding.) This encoding flag is used for
+ − 1164 byte-compiled files. Note that ESC is a good choice for a quoting
+ − 1165 character because there are no escape sequences whose second byte is a
+ − 1166 character from the Control-0 or Control-1 character sets; this is
+ − 1167 explicitly disallowed by the ISO 2022 standard.
+ − 1168
+ − 1169 @item input-charset-conversion
+ − 1170 A list of conversion specifications, specifying conversion of characters
+ − 1171 in one charset to another when decoding is performed. Each
+ − 1172 specification is a list of two elements: the source charset, and the
+ − 1173 destination charset.
+ − 1174
+ − 1175 @item output-charset-conversion
+ − 1176 A list of conversion specifications, specifying conversion of characters
+ − 1177 in one charset to another when encoding is performed. The form of each
+ − 1178 specification is the same as for @code{input-charset-conversion}.
+ − 1179 @end table
+ − 1180
442
+ − 1181 The following additional properties are recognized (and required) if
428
+ − 1182 @var{type} is @code{ccl}:
+ − 1183
+ − 1184 @table @code
+ − 1185 @item decode
+ − 1186 CCL program used for decoding (converting to internal format).
+ − 1187
+ − 1188 @item encode
+ − 1189 CCL program used for encoding (converting to external format).
+ − 1190 @end table
+ − 1191
442
+ − 1192 The following properties are used internally: @var{eol-cr},
+ − 1193 @var{eol-crlf}, @var{eol-lf}, and @var{base}.
+ − 1194
+ − 1195 @node Basic Coding System Functions, Coding System Property Functions, Coding System Properties, Coding Systems
428
+ − 1196 @subsection Basic Coding System Functions
+ − 1197
+ − 1198 @defun find-coding-system coding-system-or-name
+ − 1199 This function retrieves the coding system of the given name.
+ − 1200
442
+ − 1201 If @var{coding-system-or-name} is a coding-system object, it is simply
428
+ − 1202 returned. Otherwise, @var{coding-system-or-name} should be a symbol.
+ − 1203 If there is no such coding system, @code{nil} is returned. Otherwise
+ − 1204 the associated coding system object is returned.
+ − 1205 @end defun
+ − 1206
+ − 1207 @defun get-coding-system name
+ − 1208 This function retrieves the coding system of the given name. Same as
+ − 1209 @code{find-coding-system} except an error is signalled if there is no
+ − 1210 such coding system instead of returning @code{nil}.
+ − 1211 @end defun
+ − 1212
+ − 1213 @defun coding-system-list
+ − 1214 This function returns a list of the names of all defined coding systems.
+ − 1215 @end defun
+ − 1216
+ − 1217 @defun coding-system-name coding-system
+ − 1218 This function returns the name of the given coding system.
+ − 1219 @end defun
+ − 1220
442
+ − 1221 @defun coding-system-base coding-system
+ − 1222 Returns the base coding system (undecided EOL convention)
+ − 1223 coding system.
+ − 1224 @end defun
+ − 1225
428
+ − 1226 @defun make-coding-system name type &optional doc-string props
+ − 1227 This function registers symbol @var{name} as a coding system.
+ − 1228
+ − 1229 @var{type} describes the conversion method used and should be one of
+ − 1230 the types listed in @ref{Coding System Types}.
+ − 1231
+ − 1232 @var{doc-string} is a string describing the coding system.
+ − 1233
+ − 1234 @var{props} is a property list, describing the specific nature of the
+ − 1235 character set. Recognized properties are as in @ref{Coding System
+ − 1236 Properties}.
+ − 1237 @end defun
+ − 1238
+ − 1239 @defun copy-coding-system old-coding-system new-name
+ − 1240 This function copies @var{old-coding-system} to @var{new-name}. If
+ − 1241 @var{new-name} does not name an existing coding system, a new one will
+ − 1242 be created.
+ − 1243 @end defun
+ − 1244
+ − 1245 @defun subsidiary-coding-system coding-system eol-type
+ − 1246 This function returns the subsidiary coding system of
+ − 1247 @var{coding-system} with eol type @var{eol-type}.
+ − 1248 @end defun
+ − 1249
442
+ − 1250 @node Coding System Property Functions, Encoding and Decoding Text, Basic Coding System Functions, Coding Systems
428
+ − 1251 @subsection Coding System Property Functions
+ − 1252
+ − 1253 @defun coding-system-doc-string coding-system
+ − 1254 This function returns the doc string for @var{coding-system}.
+ − 1255 @end defun
+ − 1256
+ − 1257 @defun coding-system-type coding-system
+ − 1258 This function returns the type of @var{coding-system}.
+ − 1259 @end defun
+ − 1260
+ − 1261 @defun coding-system-property coding-system prop
+ − 1262 This function returns the @var{prop} property of @var{coding-system}.
+ − 1263 @end defun
+ − 1264
442
+ − 1265 @node Encoding and Decoding Text, Detection of Textual Encoding, Coding System Property Functions, Coding Systems
428
+ − 1266 @subsection Encoding and Decoding Text
+ − 1267
+ − 1268 @defun decode-coding-region start end coding-system &optional buffer
+ − 1269 This function decodes the text between @var{start} and @var{end} which
+ − 1270 is encoded in @var{coding-system}. This is useful if you've read in
+ − 1271 encoded text from a file without decoding it (e.g. you read in a
+ − 1272 JIS-formatted file but used the @code{binary} or @code{no-conversion} coding
+ − 1273 system, so that it shows up as @samp{^[$B!<!+^[(B}). The length of the
+ − 1274 encoded text is returned. @var{buffer} defaults to the current buffer
+ − 1275 if unspecified.
+ − 1276 @end defun
+ − 1277
+ − 1278 @defun encode-coding-region start end coding-system &optional buffer
+ − 1279 This function encodes the text between @var{start} and @var{end} using
+ − 1280 @var{coding-system}. This will, for example, convert Japanese
+ − 1281 characters into stuff such as @samp{^[$B!<!+^[(B} if you use the JIS
+ − 1282 encoding. The length of the encoded text is returned. @var{buffer}
+ − 1283 defaults to the current buffer if unspecified.
+ − 1284 @end defun
+ − 1285
442
+ − 1286 @node Detection of Textual Encoding, Big5 and Shift-JIS Functions, Encoding and Decoding Text, Coding Systems
428
+ − 1287 @subsection Detection of Textual Encoding
+ − 1288
+ − 1289 @defun coding-category-list
+ − 1290 This function returns a list of all recognized coding categories.
+ − 1291 @end defun
+ − 1292
+ − 1293 @defun set-coding-priority-list list
+ − 1294 This function changes the priority order of the coding categories.
+ − 1295 @var{list} should be a list of coding categories, in descending order of
+ − 1296 priority. Unspecified coding categories will be lower in priority than
+ − 1297 all specified ones, in the same relative order they were in previously.
+ − 1298 @end defun
+ − 1299
+ − 1300 @defun coding-priority-list
+ − 1301 This function returns a list of coding categories in descending order of
+ − 1302 priority.
+ − 1303 @end defun
+ − 1304
+ − 1305 @defun set-coding-category-system coding-category coding-system
+ − 1306 This function changes the coding system associated with a coding category.
+ − 1307 @end defun
+ − 1308
+ − 1309 @defun coding-category-system coding-category
+ − 1310 This function returns the coding system associated with a coding category.
+ − 1311 @end defun
+ − 1312
+ − 1313 @defun detect-coding-region start end &optional buffer
+ − 1314 This function detects coding system of the text in the region between
+ − 1315 @var{start} and @var{end}. Returned value is a list of possible coding
+ − 1316 systems ordered by priority. If only ASCII characters are found, it
+ − 1317 returns @code{autodetect} or one of its subsidiary coding systems
+ − 1318 according to a detected end-of-line type. Optional arg @var{buffer}
+ − 1319 defaults to the current buffer.
+ − 1320 @end defun
+ − 1321
442
+ − 1322 @node Big5 and Shift-JIS Functions, Predefined Coding Systems, Detection of Textual Encoding, Coding Systems
428
+ − 1323 @subsection Big5 and Shift-JIS Functions
+ − 1324
442
+ − 1325 These are special functions for working with the non-standard
428
+ − 1326 Shift-JIS and Big5 encodings.
+ − 1327
+ − 1328 @defun decode-shift-jis-char code
442
+ − 1329 This function decodes a JIS X 0208 character of Shift-JIS coding-system.
428
+ − 1330 @var{code} is the character code in Shift-JIS as a cons of type bytes.
+ − 1331 The corresponding character is returned.
+ − 1332 @end defun
+ − 1333
444
+ − 1334 @defun encode-shift-jis-char character
+ − 1335 This function encodes a JIS X 0208 character @var{character} to
+ − 1336 SHIFT-JIS coding-system. The corresponding character code in SHIFT-JIS
+ − 1337 is returned as a cons of two bytes.
428
+ − 1338 @end defun
+ − 1339
+ − 1340 @defun decode-big5-char code
+ − 1341 This function decodes a Big5 character @var{code} of BIG5 coding-system.
+ − 1342 @var{code} is the character code in BIG5. The corresponding character
+ − 1343 is returned.
+ − 1344 @end defun
+ − 1345
444
+ − 1346 @defun encode-big5-char character
+ − 1347 This function encodes the Big5 character @var{character} to BIG5
428
+ − 1348 coding-system. The corresponding character code in Big5 is returned.
+ − 1349 @end defun
+ − 1350
442
+ − 1351 @node Predefined Coding Systems, , Big5 and Shift-JIS Functions, Coding Systems
+ − 1352 @subsection Coding Systems Implemented
+ − 1353
+ − 1354 MULE initializes most of the commonly used coding systems at XEmacs's
+ − 1355 startup. A few others are initialized only when the relevant language
+ − 1356 environment is selected and support libraries are loaded. (NB: The
444
+ − 1357 following list is based on XEmacs 21.2.19, the development branch at the
442
+ − 1358 time of writing. The list may be somewhat different for other
+ − 1359 versions. Recent versions of GNU Emacs 20 implement a few more rare
+ − 1360 coding systems; work is being done to port these to XEmacs.)
+ − 1361
444
+ − 1362 Unfortunately, there is not a consistent naming convention for character
+ − 1363 sets, and for practical purposes coding systems often take their name
442
+ − 1364 from their principal character sets (ASCII, KOI8-R, Shift JIS). Others
444
+ − 1365 take their names from the coding system (ISO-2022-JP, EUC-KR), and a few
+ − 1366 from their non-text usages (internal, binary). To provide for this, and
442
+ − 1367 for the fact that many coding systems have several common names, an
+ − 1368 aliasing system is provided. Finally, some effort has been made to use
+ − 1369 names that are registered as MIME charsets (this is why the name
+ − 1370 'shift_jis contains that un-Lisp-y underscore).
+ − 1371
+ − 1372 There is a systematic naming convention regarding end-of-line (EOL)
+ − 1373 conventions for different systems. A coding system whose name ends in
+ − 1374 "-unix" forces the assumptions that lines are broken by newlines (0x0A).
+ − 1375 A coding system whose name ends in "-mac" forces the assumptions that
+ − 1376 lines are broken by ASCII CRs (0x0D). A coding system whose name ends
+ − 1377 in "-dos" forces the assumptions that lines are broken by CRLF sequences
+ − 1378 (0x0D 0x0A). These subsidiary coding systems are automatically derived
+ − 1379 from a base coding system. Use of the base coding system implies
+ − 1380 autodetection of the text file convention. (The fact that the -unix,
+ − 1381 -mac, and -dos are derived from a base system results in them showing up
+ − 1382 as "aliases" in `list-coding-systems'.) These subsidiaries have a
+ − 1383 consistent modeline indicator as well. "-dos" coding systems have ":T"
+ − 1384 appended to their modeline indicator, while "-mac" coding systems have
+ − 1385 ":t" appended (eg, "ISO8:t" for iso-2022-8-mac).
+ − 1386
+ − 1387 In the following table, each coding system is given with its mode line
+ − 1388 indicator in parentheses. Non-textual coding systems are listed first,
+ − 1389 followed by textual coding systems and their aliases. (The coding system
+ − 1390 subsidiary modeline indicators ":T" and ":t" will be omitted from the
+ − 1391 table of coding systems.)
+ − 1392
+ − 1393 ### SJT 1999-08-23 Maybe should order these by language? Definitely
+ − 1394 need language usage for the ISO-8859 family.
+ − 1395
+ − 1396 Note that although true coding system aliases have been implemented for
444
+ − 1397 XEmacs 21.2, the coding system initialization has not yet been converted
442
+ − 1398 as of 21.2.19. So coding systems described as aliases have the same
+ − 1399 properties as the aliased coding system, but will not be equal as Lisp
+ − 1400 objects.
+ − 1401
+ − 1402 @table @code
+ − 1403
+ − 1404 @item automatic-conversion
+ − 1405 @itemx undecided
+ − 1406 @itemx undecided-dos
+ − 1407 @itemx undecided-mac
+ − 1408 @itemx undecided-unix
+ − 1409
+ − 1410 Modeline indicator: @code{Auto}. A type @code{undecided} coding system.
+ − 1411 Attempts to determine an appropriate coding system from file contents or
+ − 1412 the environment.
+ − 1413
+ − 1414 @item raw-text
+ − 1415 @itemx no-conversion
+ − 1416 @itemx raw-text-dos
+ − 1417 @itemx raw-text-mac
+ − 1418 @itemx raw-text-unix
+ − 1419 @itemx no-conversion-dos
+ − 1420 @itemx no-conversion-mac
+ − 1421 @itemx no-conversion-unix
+ − 1422
+ − 1423 Modeline indicator: @code{Raw}. A type @code{no-conversion} coding system,
+ − 1424 which converts only line-break-codes. An implementation quirk means
+ − 1425 that this coding system is also used for ISO8859-1.
+ − 1426
+ − 1427 @item binary
+ − 1428 Modeline indicator: @code{Binary}. A type @code{no-conversion} coding
+ − 1429 system which does no character coding or EOL conversions. An alias for
+ − 1430 @code{raw-text-unix}.
+ − 1431
+ − 1432 @item alternativnyj
+ − 1433 @itemx alternativnyj-dos
+ − 1434 @itemx alternativnyj-mac
+ − 1435 @itemx alternativnyj-unix
+ − 1436
+ − 1437 Modeline indicator: @code{Cy.Alt}. A type @code{ccl} coding system used for
+ − 1438 Alternativnyj, an encoding of the Cyrillic alphabet.
+ − 1439
+ − 1440 @item big5
+ − 1441 @itemx big5-dos
+ − 1442 @itemx big5-mac
+ − 1443 @itemx big5-unix
+ − 1444
+ − 1445 Modeline indicator: @code{Zh/Big5}. A type @code{big5} coding system used for
+ − 1446 BIG5, the most common encoding of traditional Chinese as used in Taiwan.
+ − 1447
+ − 1448 @item cn-gb-2312
+ − 1449 @itemx cn-gb-2312-dos
+ − 1450 @itemx cn-gb-2312-mac
+ − 1451 @itemx cn-gb-2312-unix
+ − 1452
+ − 1453 Modeline indicator: @code{Zh-GB/EUC}. A type @code{iso2022} coding system used
+ − 1454 for simplified Chinese (as used in the People's Republic of China), with
+ − 1455 the @code{ascii} (G0), @code{chinese-gb2312} (G1), and @code{sisheng}
+ − 1456 (G2) character sets initially designated. Chinese EUC (Extended Unix
+ − 1457 Code).
+ − 1458
+ − 1459 @item ctext-hebrew
+ − 1460 @itemx ctext-hebrew-dos
+ − 1461 @itemx ctext-hebrew-mac
+ − 1462 @itemx ctext-hebrew-unix
+ − 1463
+ − 1464 Modeline indicator: @code{CText/Hbrw}. A type @code{iso2022} coding system
+ − 1465 with the @code{ascii} (G0) and @code{hebrew-iso8859-8} (G1) character
+ − 1466 sets initially designated for Hebrew.
+ − 1467
+ − 1468 @item ctext
+ − 1469 @itemx ctext-dos
+ − 1470 @itemx ctext-mac
+ − 1471 @itemx ctext-unix
+ − 1472
+ − 1473 Modeline indicator: @code{CText}. A type @code{iso2022} 8-bit coding system
+ − 1474 with the @code{ascii} (G0) and @code{latin-iso8859-1} (G1) character
+ − 1475 sets initially designated. X11 Compound Text Encoding. Often
+ − 1476 mistakenly recognized instead of EUC encodings; usual cause is
+ − 1477 inappropriate setting of @code{coding-priority-list}.
+ − 1478
+ − 1479 @item escape-quoted
+ − 1480
+ − 1481 Modeline indicator: @code{ESC/Quot}. A type @code{iso2022} 8-bit coding
+ − 1482 system with the @code{ascii} (G0) and @code{latin-iso8859-1} (G1)
+ − 1483 character sets initially designated and escape quoting. Unix EOL
+ − 1484 conversion (ie, no conversion). It is used for .ELC files.
+ − 1485
+ − 1486 @item euc-jp
+ − 1487 @itemx euc-jp-dos
+ − 1488 @itemx euc-jp-mac
+ − 1489 @itemx euc-jp-unix
+ − 1490
+ − 1491 Modeline indicator: @code{Ja/EUC}. A type @code{iso2022} 8-bit coding system
+ − 1492 with @code{ascii} (G0), @code{japanese-jisx0208} (G1),
+ − 1493 @code{katakana-jisx0201} (G2), and @code{japanese-jisx0212} (G3)
+ − 1494 initially designated. Japanese EUC (Extended Unix Code).
+ − 1495
+ − 1496 @item euc-kr
+ − 1497 @itemx euc-kr-dos
+ − 1498 @itemx euc-kr-mac
+ − 1499 @itemx euc-kr-unix
+ − 1500
+ − 1501 Modeline indicator: @code{ko/EUC}. A type @code{iso2022} 8-bit coding system
+ − 1502 with @code{ascii} (G0) and @code{korean-ksc5601} (G1) initially
+ − 1503 designated. Korean EUC (Extended Unix Code).
+ − 1504
+ − 1505 @item hz-gb-2312
+ − 1506 Modeline indicator: @code{Zh-GB/Hz}. A type @code{no-conversion} coding
+ − 1507 system with Unix EOL convention (ie, no conversion) using
+ − 1508 post-read-decode and pre-write-encode functions to translate the Hz/ZW
+ − 1509 coding system used for Chinese.
+ − 1510
+ − 1511 @item iso-2022-7bit
+ − 1512 @itemx iso-2022-7bit-unix
+ − 1513 @itemx iso-2022-7bit-dos
+ − 1514 @itemx iso-2022-7bit-mac
+ − 1515 @itemx iso-2022-7
+ − 1516
+ − 1517 Modeline indicator: @code{ISO7}. A type @code{iso2022} 7-bit coding system
+ − 1518 with @code{ascii} (G0) initially designated. Other character sets must
+ − 1519 be explicitly designated to be used.
+ − 1520
+ − 1521 @item iso-2022-7bit-ss2
+ − 1522 @itemx iso-2022-7bit-ss2-dos
+ − 1523 @itemx iso-2022-7bit-ss2-mac
+ − 1524 @itemx iso-2022-7bit-ss2-unix
+ − 1525
+ − 1526 Modeline indicator: @code{ISO7/SS}. A type @code{iso2022} 7-bit coding system
+ − 1527 with @code{ascii} (G0) initially designated. Other character sets must
+ − 1528 be explicitly designated to be used. SS2 is used to invoke a
+ − 1529 96-charset, one character at a time.
+ − 1530
+ − 1531 @item iso-2022-8
+ − 1532 @itemx iso-2022-8-dos
+ − 1533 @itemx iso-2022-8-mac
+ − 1534 @itemx iso-2022-8-unix
+ − 1535
+ − 1536 Modeline indicator: @code{ISO8}. A type @code{iso2022} 8-bit coding system
+ − 1537 with @code{ascii} (G0) and @code{latin-iso8859-1} (G1) initially
+ − 1538 designated. Other character sets must be explicitly designated to be
+ − 1539 used. No single-shift or locking-shift.
+ − 1540
+ − 1541 @item iso-2022-8bit-ss2
+ − 1542 @itemx iso-2022-8bit-ss2-dos
+ − 1543 @itemx iso-2022-8bit-ss2-mac
+ − 1544 @itemx iso-2022-8bit-ss2-unix
+ − 1545
+ − 1546 Modeline indicator: @code{ISO8/SS}. A type @code{iso2022} 8-bit coding system
+ − 1547 with @code{ascii} (G0) and @code{latin-iso8859-1} (G1) initially
+ − 1548 designated. Other character sets must be explicitly designated to be
+ − 1549 used. SS2 is used to invoke a 96-charset, one character at a time.
+ − 1550
+ − 1551 @item iso-2022-int-1
+ − 1552 @itemx iso-2022-int-1-dos
+ − 1553 @itemx iso-2022-int-1-mac
+ − 1554 @itemx iso-2022-int-1-unix
+ − 1555
+ − 1556 Modeline indicator: @code{INT-1}. A type @code{iso2022} 7-bit coding system
+ − 1557 with @code{ascii} (G0) and @code{korean-ksc5601} (G1) initially
+ − 1558 designated. ISO-2022-INT-1.
+ − 1559
+ − 1560 @item iso-2022-jp-1978-irv
+ − 1561 @itemx iso-2022-jp-1978-irv-dos
+ − 1562 @itemx iso-2022-jp-1978-irv-mac
+ − 1563 @itemx iso-2022-jp-1978-irv-unix
+ − 1564
+ − 1565 Modeline indicator: @code{Ja-78/7bit}. A type @code{iso2022} 7-bit coding
+ − 1566 system. For compatibility with old Japanese terminals; if you need to
+ − 1567 know, look at the source.
+ − 1568
+ − 1569 @item iso-2022-jp
+ − 1570 @itemx iso-2022-jp-2 (ISO7/SS)
+ − 1571 @itemx iso-2022-jp-dos
+ − 1572 @itemx iso-2022-jp-mac
+ − 1573 @itemx iso-2022-jp-unix
+ − 1574 @itemx iso-2022-jp-2-dos
+ − 1575 @itemx iso-2022-jp-2-mac
+ − 1576 @itemx iso-2022-jp-2-unix
+ − 1577
+ − 1578 Modeline indicator: @code{MULE/7bit}. A type @code{iso2022} 7-bit coding
+ − 1579 system with @code{ascii} (G0) initially designated, and complex
+ − 1580 specifications to insure backward compatibility with old Japanese
+ − 1581 systems. Used for communication with mail and news in Japan. The "-2"
+ − 1582 versions also use SS2 to invoke a 96-charset one character at a time.
+ − 1583
+ − 1584 @item iso-2022-kr
+ − 1585 Modeline indicator: @code{Ko/7bit} A type @code{iso2022} 7-bit coding
+ − 1586 system with @code{ascii} (G0) and @code{korean-ksc5601} (G1) initially
+ − 1587 designated. Used for e-mail in Korea.
+ − 1588
+ − 1589 @item iso-2022-lock
+ − 1590 @itemx iso-2022-lock-dos
+ − 1591 @itemx iso-2022-lock-mac
+ − 1592 @itemx iso-2022-lock-unix
+ − 1593
+ − 1594 Modeline indicator: @code{ISO7/Lock}. A type @code{iso2022} 7-bit coding
+ − 1595 system with @code{ascii} (G0) initially designated, using Locking-Shift
+ − 1596 to invoke a 96-charset.
+ − 1597
+ − 1598 @item iso-8859-1
+ − 1599 @itemx iso-8859-1-dos
+ − 1600 @itemx iso-8859-1-mac
+ − 1601 @itemx iso-8859-1-unix
+ − 1602
+ − 1603 Due to implementation, this is not a type @code{iso2022} coding system,
+ − 1604 but rather an alias for the @code{raw-text} coding system.
+ − 1605
+ − 1606 @item iso-8859-2
+ − 1607 @itemx iso-8859-2-dos
+ − 1608 @itemx iso-8859-2-mac
+ − 1609 @itemx iso-8859-2-unix
+ − 1610
+ − 1611 Modeline indicator: @code{MIME/Ltn-2}. A type @code{iso2022} coding
+ − 1612 system with @code{ascii} (G0) and @code{latin-iso8859-2} (G1) initially
+ − 1613 invoked.
+ − 1614
+ − 1615 @item iso-8859-3
+ − 1616 @itemx iso-8859-3-dos
+ − 1617 @itemx iso-8859-3-mac
+ − 1618 @itemx iso-8859-3-unix
+ − 1619
+ − 1620 Modeline indicator: @code{MIME/Ltn-3}. A type @code{iso2022} coding system
+ − 1621 with @code{ascii} (G0) and @code{latin-iso8859-3} (G1) initially
+ − 1622 invoked.
+ − 1623
+ − 1624 @item iso-8859-4
+ − 1625 @itemx iso-8859-4-dos
+ − 1626 @itemx iso-8859-4-mac
+ − 1627 @itemx iso-8859-4-unix
+ − 1628
+ − 1629 Modeline indicator: @code{MIME/Ltn-4}. A type @code{iso2022} coding system
+ − 1630 with @code{ascii} (G0) and @code{latin-iso8859-4} (G1) initially
+ − 1631 invoked.
+ − 1632
+ − 1633 @item iso-8859-5
+ − 1634 @itemx iso-8859-5-dos
+ − 1635 @itemx iso-8859-5-mac
+ − 1636 @itemx iso-8859-5-unix
+ − 1637
+ − 1638 Modeline indicator: @code{ISO8/Cyr}. A type @code{iso2022} coding system with
+ − 1639 @code{ascii} (G0) and @code{cyrillic-iso8859-5} (G1) initially invoked.
+ − 1640
+ − 1641 @item iso-8859-7
+ − 1642 @itemx iso-8859-7-dos
+ − 1643 @itemx iso-8859-7-mac
+ − 1644 @itemx iso-8859-7-unix
+ − 1645
+ − 1646 Modeline indicator: @code{Grk}. A type @code{iso2022} coding system with
+ − 1647 @code{ascii} (G0) and @code{greek-iso8859-7} (G1) initially invoked.
+ − 1648
+ − 1649 @item iso-8859-8
+ − 1650 @itemx iso-8859-8-dos
+ − 1651 @itemx iso-8859-8-mac
+ − 1652 @itemx iso-8859-8-unix
+ − 1653
+ − 1654 Modeline indicator: @code{MIME/Hbrw}. A type @code{iso2022} coding system with
+ − 1655 @code{ascii} (G0) and @code{hebrew-iso8859-8} (G1) initially invoked.
+ − 1656
+ − 1657 @item iso-8859-9
+ − 1658 @itemx iso-8859-9-dos
+ − 1659 @itemx iso-8859-9-mac
+ − 1660 @itemx iso-8859-9-unix
+ − 1661
+ − 1662 Modeline indicator: @code{MIME/Ltn-5}. A type @code{iso2022} coding system
+ − 1663 with @code{ascii} (G0) and @code{latin-iso8859-9} (G1) initially
+ − 1664 invoked.
+ − 1665
+ − 1666 @item koi8-r
+ − 1667 @itemx koi8-r-dos
+ − 1668 @itemx koi8-r-mac
+ − 1669 @itemx koi8-r-unix
+ − 1670
+ − 1671 Modeline indicator: @code{KOI8}. A type @code{ccl} coding-system used for
+ − 1672 KOI8-R, an encoding of the Cyrillic alphabet.
+ − 1673
+ − 1674 @item shift_jis
+ − 1675 @itemx shift_jis-dos
+ − 1676 @itemx shift_jis-mac
+ − 1677 @itemx shift_jis-unix
+ − 1678
+ − 1679 Modeline indicator: @code{Ja/SJIS}. A type @code{shift-jis} coding-system
+ − 1680 implementing the Shift-JIS encoding for Japanese. The underscore is to
+ − 1681 conform to the MIME charset implementing this encoding.
+ − 1682
+ − 1683 @item tis-620
+ − 1684 @itemx tis-620-dos
+ − 1685 @itemx tis-620-mac
+ − 1686 @itemx tis-620-unix
+ − 1687
+ − 1688 Modeline indicator: @code{TIS620}. A type @code{ccl} encoding for Thai. The
+ − 1689 external encoding is defined by TIS620, the internal encoding is
+ − 1690 peculiar to MULE, and called @code{thai-xtis}.
+ − 1691
+ − 1692 @item viqr
+ − 1693
+ − 1694 Modeline indicator: @code{VIQR}. A type @code{no-conversion} coding
+ − 1695 system with Unix EOL convention (ie, no conversion) using
+ − 1696 post-read-decode and pre-write-encode functions to translate the VIQR
+ − 1697 coding system for Vietnamese.
+ − 1698
+ − 1699 @item viscii
+ − 1700 @itemx viscii-dos
+ − 1701 @itemx viscii-mac
+ − 1702 @itemx viscii-unix
+ − 1703
+ − 1704 Modeline indicator: @code{VISCII}. A type @code{ccl} coding-system used
+ − 1705 for VISCII 1.1 for Vietnamese. Differs slightly from VSCII; VISCII is
+ − 1706 given priority by XEmacs.
+ − 1707
+ − 1708 @item vscii
+ − 1709 @itemx vscii-dos
+ − 1710 @itemx vscii-mac
+ − 1711 @itemx vscii-unix
+ − 1712
+ − 1713 Modeline indicator: @code{VSCII}. A type @code{ccl} coding-system used
+ − 1714 for VSCII 1.1 for Vietnamese. Differs slightly from VISCII, which is
+ − 1715 given priority by XEmacs. Use
+ − 1716 @code{(prefer-coding-system 'vietnamese-vscii)} to give priority to VSCII.
+ − 1717
+ − 1718 @end table
+ − 1719
428
+ − 1720 @node CCL, Category Tables, Coding Systems, MULE
+ − 1721 @section CCL
+ − 1722
442
+ − 1723 CCL (Code Conversion Language) is a simple structured programming
428
+ − 1724 language designed for character coding conversions. A CCL program is
+ − 1725 compiled to CCL code (represented by a vector of integers) and executed
+ − 1726 by the CCL interpreter embedded in Emacs. The CCL interpreter
+ − 1727 implements a virtual machine with 8 registers called @code{r0}, ...,
+ − 1728 @code{r7}, a number of control structures, and some I/O operators. Take
+ − 1729 care when using registers @code{r0} (used in implicit @dfn{set}
+ − 1730 statements) and especially @code{r7} (used internally by several
444
+ − 1731 statements and operations, especially for multiple return values and I/O
428
+ − 1732 operations).
+ − 1733
442
+ − 1734 CCL is used for code conversion during process I/O and file I/O for
428
+ − 1735 non-ISO2022 coding systems. (It is the only way for a user to specify a
+ − 1736 code conversion function.) It is also used for calculating the code
+ − 1737 point of an X11 font from a character code. However, since CCL is
+ − 1738 designed as a powerful programming language, it can be used for more
+ − 1739 generic calculation where efficiency is demanded. A combination of
+ − 1740 three or more arithmetic operations can be calculated faster by CCL than
+ − 1741 by Emacs Lisp.
+ − 1742
442
+ − 1743 @strong{Warning:} The code in @file{src/mule-ccl.c} and
428
+ − 1744 @file{$packages/lisp/mule-base/mule-ccl.el} is the definitive
+ − 1745 description of CCL's semantics. The previous version of this section
+ − 1746 contained several typos and obsolete names left from earlier versions of
+ − 1747 MULE, and many may remain. (I am not an experienced CCL programmer; the
+ − 1748 few who know CCL well find writing English painful.)
+ − 1749
442
+ − 1750 A CCL program transforms an input data stream into an output data
428
+ − 1751 stream. The input stream, held in a buffer of constant bytes, is left
+ − 1752 unchanged. The buffer may be filled by an external input operation,
+ − 1753 taken from an Emacs buffer, or taken from a Lisp string. The output
+ − 1754 buffer is a dynamic array of bytes, which can be written by an external
+ − 1755 output operation, inserted into an Emacs buffer, or returned as a Lisp
+ − 1756 string.
+ − 1757
442
+ − 1758 A CCL program is a (Lisp) list containing two or three members. The
428
+ − 1759 first member is the @dfn{buffer magnification}, which indicates the
+ − 1760 required minimum size of the output buffer as a multiple of the input
+ − 1761 buffer. It is followed by the @dfn{main block} which executes while
+ − 1762 there is input remaining, and an optional @dfn{EOF block} which is
+ − 1763 executed when the input is exhausted. Both the main block and the EOF
+ − 1764 block are CCL blocks.
+ − 1765
442
+ − 1766 A @dfn{CCL block} is either a CCL statement or list of CCL statements.
444
+ − 1767 A @dfn{CCL statement} is either a @dfn{set statement} (either an integer
428
+ − 1768 or an @dfn{assignment}, which is a list of a register to receive the
444
+ − 1769 assignment, an assignment operator, and an expression) or a @dfn{control
428
+ − 1770 statement} (a list starting with a keyword, whose allowable syntax
+ − 1771 depends on the keyword).
+ − 1772
+ − 1773 @menu
+ − 1774 * CCL Syntax:: CCL program syntax in BNF notation.
+ − 1775 * CCL Statements:: Semantics of CCL statements.
+ − 1776 * CCL Expressions:: Operators and expressions in CCL.
+ − 1777 * Calling CCL:: Running CCL programs.
2640
+ − 1778 * CCL Example:: A trivial program to transform the Web's URL encoding.
428
+ − 1779 @end menu
+ − 1780
442
+ − 1781 @node CCL Syntax, CCL Statements, , CCL
428
+ − 1782 @comment Node, Next, Previous, Up
+ − 1783 @subsection CCL Syntax
+ − 1784
442
+ − 1785 The full syntax of a CCL program in BNF notation:
428
+ − 1786
+ − 1787 @format
+ − 1788 CCL_PROGRAM :=
+ − 1789 (BUFFER_MAGNIFICATION
+ − 1790 CCL_MAIN_BLOCK
+ − 1791 [ CCL_EOF_BLOCK ])
+ − 1792
+ − 1793 BUFFER_MAGNIFICATION := integer
+ − 1794 CCL_MAIN_BLOCK := CCL_BLOCK
+ − 1795 CCL_EOF_BLOCK := CCL_BLOCK
+ − 1796
+ − 1797 CCL_BLOCK :=
+ − 1798 STATEMENT | (STATEMENT [STATEMENT ...])
+ − 1799 STATEMENT :=
2367
+ − 1800 SET | IF | BRANCH | LOOP | REPEAT | BREAK | READ | WRITE | CALL
+ − 1801 | TRANSLATE | MAP | END
428
+ − 1802
+ − 1803 SET :=
+ − 1804 (REG = EXPRESSION)
+ − 1805 | (REG ASSIGNMENT_OPERATOR EXPRESSION)
2367
+ − 1806 | INT-OR-CHAR
428
+ − 1807
+ − 1808 EXPRESSION := ARG | (EXPRESSION OPERATOR ARG)
+ − 1809
+ − 1810 IF := (if EXPRESSION CCL_BLOCK [CCL_BLOCK])
+ − 1811 BRANCH := (branch EXPRESSION CCL_BLOCK [CCL_BLOCK ...])
+ − 1812 LOOP := (loop STATEMENT [STATEMENT ...])
+ − 1813 BREAK := (break)
+ − 1814 REPEAT :=
+ − 1815 (repeat)
2367
+ − 1816 | (write-repeat [REG | INT-OR-CHAR | string])
+ − 1817 | (write-read-repeat REG [INT-OR-CHAR | ARRAY])
428
+ − 1818 READ :=
+ − 1819 (read REG ...)
2367
+ − 1820 | (read-if (REG OPERATOR ARG) CCL_BLOCK [CCL_BLOCK])
428
+ − 1821 | (read-branch REG CCL_BLOCK [CCL_BLOCK ...])
+ − 1822 WRITE :=
+ − 1823 (write REG ...)
+ − 1824 | (write EXPRESSION)
2367
+ − 1825 | (write INT-OR-CHAR) | (write string) | (write REG ARRAY)
428
+ − 1826 | string
+ − 1827 CALL := (call ccl-program-name)
3439
+ − 1828
+ − 1829
+ − 1830 TRANSLATE := ;; Not implemented under XEmacs, except mule-to-unicode and
+ − 1831 ;; unicode-to-mule.
+ − 1832 (translate-character REG(table) REG(charset) REG(codepoint))
+ − 1833 | (translate-character SYMBOL REG(charset) REG(codepoint))
+ − 1834 | (mule-to-unicode REG(charset) REG(codepoint))
+ − 1835 | (unicode-to-mule REG(unicode,code) REG(CHARSET))
+ − 1836
428
+ − 1837 END := (end)
+ − 1838
+ − 1839 REG := r0 | r1 | r2 | r3 | r4 | r5 | r6 | r7
2367
+ − 1840 ARG := REG | INT-OR-CHAR
428
+ − 1841 OPERATOR :=
+ − 1842 + | - | * | / | % | & | '|' | ^ | << | >> | <8 | >8 | //
+ − 1843 | < | > | == | <= | >= | != | de-sjis | en-sjis
+ − 1844 ASSIGNMENT_OPERATOR :=
+ − 1845 += | -= | *= | /= | %= | &= | '|=' | ^= | <<= | >>=
2367
+ − 1846 ARRAY := '[' INT-OR-CHAR ... ']'
+ − 1847 INT-OR-CHAR := integer | character
+ − 1848
428
+ − 1849 @end format
+ − 1850
+ − 1851 @node CCL Statements, CCL Expressions, CCL Syntax, CCL
+ − 1852 @comment Node, Next, Previous, Up
+ − 1853 @subsection CCL Statements
+ − 1854
442
+ − 1855 The Emacs Code Conversion Language provides the following statement
428
+ − 1856 types: @dfn{set}, @dfn{if}, @dfn{branch}, @dfn{loop}, @dfn{repeat},
3439
+ − 1857 @dfn{break}, @dfn{read}, @dfn{write}, @dfn{call}, @dfn{translate} and
+ − 1858 @dfn{end}.
428
+ − 1859
+ − 1860 @heading Set statement:
+ − 1861
442
+ − 1862 The @dfn{set} statement has three variants with the syntaxes
428
+ − 1863 @samp{(@var{reg} = @var{expression})},
+ − 1864 @samp{(@var{reg} @var{assignment_operator} @var{expression})}, and
+ − 1865 @samp{@var{integer}}. The assignment operator variation of the
+ − 1866 @dfn{set} statement works the same way as the corresponding C expression
+ − 1867 statement does. The assignment operators are @code{+=}, @code{-=},
+ − 1868 @code{*=}, @code{/=}, @code{%=}, @code{&=}, @code{|=}, @code{^=},
+ − 1869 @code{<<=}, and @code{>>=}, and they have the same meanings as in C. A
+ − 1870 "naked integer" @var{integer} is equivalent to a @var{set} statement of
+ − 1871 the form @code{(r0 = @var{integer})}.
+ − 1872
+ − 1873 @heading I/O statements:
+ − 1874
442
+ − 1875 The @dfn{read} statement takes one or more registers as arguments. It
444
+ − 1876 reads one byte (a C char) from the input into each register in turn.
428
+ − 1877
442
+ − 1878 The @dfn{write} takes several forms. In the form @samp{(write @var{reg}
428
+ − 1879 ...)} it takes one or more registers as arguments and writes each in
+ − 1880 turn to the output. The integer in a register (interpreted as an
2367
+ − 1881 Ichar) is encoded to multibyte form (ie, Ibytes) and written to the
428
+ − 1882 current output buffer. If it is less than 256, it is written as is.
+ − 1883 The forms @samp{(write @var{expression})} and @samp{(write
+ − 1884 @var{integer})} are treated analogously. The form @samp{(write
+ − 1885 @var{string})} writes the constant string to the output. A
+ − 1886 "naked string" @samp{@var{string}} is equivalent to the statement @samp{(write
+ − 1887 @var{string})}. The form @samp{(write @var{reg} @var{array})} writes
+ − 1888 the @var{reg}th element of the @var{array} to the output.
+ − 1889
+ − 1890 @heading Conditional statements:
+ − 1891
442
+ − 1892 The @dfn{if} statement takes an @var{expression}, a @var{CCL block}, and
428
+ − 1893 an optional @var{second CCL block} as arguments. If the
+ − 1894 @var{expression} evaluates to non-zero, the first @var{CCL block} is
+ − 1895 executed. Otherwise, if there is a @var{second CCL block}, it is
+ − 1896 executed.
+ − 1897
442
+ − 1898 The @dfn{read-if} variant of the @dfn{if} statement takes an
428
+ − 1899 @var{expression}, a @var{CCL block}, and an optional @var{second CCL
+ − 1900 block} as arguments. The @var{expression} must have the form
+ − 1901 @code{(@var{reg} @var{operator} @var{operand})} (where @var{operand} is
+ − 1902 a register or an integer). The @code{read-if} statement first reads
+ − 1903 from the input into the first register operand in the @var{expression},
+ − 1904 then conditionally executes a CCL block just as the @code{if} statement
+ − 1905 does.
+ − 1906
442
+ − 1907 The @dfn{branch} statement takes an @var{expression} and one or more CCL
428
+ − 1908 blocks as arguments. The CCL blocks are treated as a zero-indexed
+ − 1909 array, and the @code{branch} statement uses the @var{expression} as the
+ − 1910 index of the CCL block to execute. Null CCL blocks may be used as
+ − 1911 no-ops, continuing execution with the statement following the
+ − 1912 @code{branch} statement in the containing CCL block. Out-of-range
444
+ − 1913 values for the @var{expression} are also treated as no-ops.
428
+ − 1914
442
+ − 1915 The @dfn{read-branch} variant of the @dfn{branch} statement takes an
428
+ − 1916 @var{register}, a @var{CCL block}, and an optional @var{second CCL
+ − 1917 block} as arguments. The @code{read-branch} statement first reads from
+ − 1918 the input into the @var{register}, then conditionally executes a CCL
+ − 1919 block just as the @code{branch} statement does.
+ − 1920
+ − 1921 @heading Loop control statements:
+ − 1922
442
+ − 1923 The @dfn{loop} statement creates a block with an implied jump from the
444
+ − 1924 end of the block back to its head. The loop is exited on a @code{break}
428
+ − 1925 statement, and continued without executing the tail by a @code{repeat}
+ − 1926 statement.
+ − 1927
442
+ − 1928 The @dfn{break} statement, written @samp{(break)}, terminates the
428
+ − 1929 current loop and continues with the next statement in the current
444
+ − 1930 block.
428
+ − 1931
442
+ − 1932 The @dfn{repeat} statement has three variants, @code{repeat},
428
+ − 1933 @code{write-repeat}, and @code{write-read-repeat}. Each continues the
+ − 1934 current loop from its head, possibly after performing I/O.
+ − 1935 @code{repeat} takes no arguments and does no I/O before jumping.
444
+ − 1936 @code{write-repeat} takes a single argument (a register, an
428
+ − 1937 integer, or a string), writes it to the output, then jumps.
+ − 1938 @code{write-read-repeat} takes one or two arguments. The first must
+ − 1939 be a register. The second may be an integer or an array; if absent, it
+ − 1940 is implicitly set to the first (register) argument.
+ − 1941 @code{write-read-repeat} writes its second argument to the output, then
+ − 1942 reads from the input into the register, and finally jumps. See the
+ − 1943 @code{write} and @code{read} statements for the semantics of the I/O
+ − 1944 operations for each type of argument.
+ − 1945
3439
+ − 1946 @heading Other statements:
428
+ − 1947
442
+ − 1948 The @dfn{call} statement, written @samp{(call @var{ccl-program-name})},
428
+ − 1949 executes a CCL program as a subroutine. It does not return a value to
+ − 1950 the caller, but can modify the register status.
+ − 1951
3439
+ − 1952 The @dfn{mule-to-unicode} statement translates an XEmacs character into a
+ − 1953 UCS code point, using U+FFFD REPLACEMENT CHARACTER if the given XEmacs
+ − 1954 character has no known corresponding code point. It takes two
+ − 1955 arguments; the first is a register in which is stored the character set
+ − 1956 ID of the character to be translated, and into which the UCS code is
+ − 1957 stored. The second is a register which stores the XEmacs code of the
+ − 1958 character in question; if it is from a multidimensional character set,
+ − 1959 like most of the East Asian national sets, it's stored as @samp{((c1 <<
+ − 1960 8) & c2)}, where @samp{c1} is the first code, and @samp{c2} the second.
+ − 1961 (That is, as a single integer, the high-order eight bits of which encode
+ − 1962 the first position code, and the low order bits of which encode the
+ − 1963 second.)
+ − 1964
+ − 1965 The @dfn{unicode-to-mule} statement translates a Unicode code point
+ − 1966 (an integer) into an XEmacs character. Its first argument is a register
+ − 1967 containing the UCS code point; the code for the correspond character
+ − 1968 will be written into this register, in the same format as for
+ − 1969 @samp{mule-to-unicode} The second argument is a register into which will
+ − 1970 be written the character set ID of the converted character.
+ − 1971
442
+ − 1972 The @dfn{end} statement, written @samp{(end)}, terminates the CCL
428
+ − 1973 program successfully, and returns to caller (which may be a CCL
+ − 1974 program). It does not alter the status of the registers.
+ − 1975
+ − 1976 @node CCL Expressions, Calling CCL, CCL Statements, CCL
+ − 1977 @comment Node, Next, Previous, Up
+ − 1978 @subsection CCL Expressions
+ − 1979
442
+ − 1980 CCL, unlike Lisp, uses infix expressions. The simplest CCL expressions
428
+ − 1981 consist of a single @var{operand}, either a register (one of @code{r0},
+ − 1982 ..., @code{r0}) or an integer. Complex expressions are lists of the
+ − 1983 form @code{( @var{expression} @var{operator} @var{operand} )}. Unlike
+ − 1984 C, assignments are not expressions.
+ − 1985
442
+ − 1986 In the following table, @var{X} is the target resister for a @dfn{set}.
428
+ − 1987 In subexpressions, this is implicitly @code{r7}. This means that
+ − 1988 @code{>8}, @code{//}, @code{de-sjis}, and @code{en-sjis} cannot be used
+ − 1989 freely in subexpressions, since they return parts of their values in
+ − 1990 @code{r7}. @var{Y} may be an expression, register, or integer, while
+ − 1991 @var{Z} must be a register or an integer.
+ − 1992
+ − 1993 @multitable @columnfractions .22 .14 .09 .55
+ − 1994 @item Name @tab Operator @tab Code @tab C-like Description
+ − 1995 @item CCL_PLUS @tab @code{+} @tab 0x00 @tab X = Y + Z
+ − 1996 @item CCL_MINUS @tab @code{-} @tab 0x01 @tab X = Y - Z
+ − 1997 @item CCL_MUL @tab @code{*} @tab 0x02 @tab X = Y * Z
+ − 1998 @item CCL_DIV @tab @code{/} @tab 0x03 @tab X = Y / Z
+ − 1999 @item CCL_MOD @tab @code{%} @tab 0x04 @tab X = Y % Z
+ − 2000 @item CCL_AND @tab @code{&} @tab 0x05 @tab X = Y & Z
+ − 2001 @item CCL_OR @tab @code{|} @tab 0x06 @tab X = Y | Z
+ − 2002 @item CCL_XOR @tab @code{^} @tab 0x07 @tab X = Y ^ Z
+ − 2003 @item CCL_LSH @tab @code{<<} @tab 0x08 @tab X = Y << Z
+ − 2004 @item CCL_RSH @tab @code{>>} @tab 0x09 @tab X = Y >> Z
+ − 2005 @item CCL_LSH8 @tab @code{<8} @tab 0x0A @tab X = (Y << 8) | Z
+ − 2006 @item CCL_RSH8 @tab @code{>8} @tab 0x0B @tab X = Y >> 8, r[7] = Y & 0xFF
+ − 2007 @item CCL_DIVMOD @tab @code{//} @tab 0x0C @tab X = Y / Z, r[7] = Y % Z
+ − 2008 @item CCL_LS @tab @code{<} @tab 0x10 @tab X = (X < Y)
+ − 2009 @item CCL_GT @tab @code{>} @tab 0x11 @tab X = (X > Y)
+ − 2010 @item CCL_EQ @tab @code{==} @tab 0x12 @tab X = (X == Y)
+ − 2011 @item CCL_LE @tab @code{<=} @tab 0x13 @tab X = (X <= Y)
+ − 2012 @item CCL_GE @tab @code{>=} @tab 0x14 @tab X = (X >= Y)
+ − 2013 @item CCL_NE @tab @code{!=} @tab 0x15 @tab X = (X != Y)
+ − 2014 @item CCL_ENCODE_SJIS @tab @code{en-sjis} @tab 0x16 @tab X = HIGHER_BYTE (SJIS (Y, Z))
+ − 2015 @item @tab @tab @tab r[7] = LOWER_BYTE (SJIS (Y, Z)
+ − 2016 @item CCL_DECODE_SJIS @tab @code{de-sjis} @tab 0x17 @tab X = HIGHER_BYTE (DE-SJIS (Y, Z))
+ − 2017 @item @tab @tab @tab r[7] = LOWER_BYTE (DE-SJIS (Y, Z))
+ − 2018 @end multitable
+ − 2019
442
+ − 2020 The CCL operators are as in C, with the addition of CCL_LSH8, CCL_RSH8,
428
+ − 2021 CCL_DIVMOD, CCL_ENCODE_SJIS, and CCL_DECODE_SJIS. The CCL_ENCODE_SJIS
+ − 2022 and CCL_DECODE_SJIS treat their first and second bytes as the high and
+ − 2023 low bytes of a two-byte character code. (SJIS stands for Shift JIS, an
+ − 2024 encoding of Japanese characters used by Microsoft. CCL_ENCODE_SJIS is a
+ − 2025 complicated transformation of the Japanese standard JIS encoding to
+ − 2026 Shift JIS. CCL_DECODE_SJIS is its inverse.) It is somewhat odd to
+ − 2027 represent the SJIS operations in infix form.
+ − 2028
2640
+ − 2029 @node Calling CCL, CCL Example, CCL Expressions, CCL
428
+ − 2030 @comment Node, Next, Previous, Up
+ − 2031 @subsection Calling CCL
+ − 2032
442
+ − 2033 CCL programs are called automatically during Emacs buffer I/O when the
428
+ − 2034 external representation has a coding system type of @code{shift-jis},
+ − 2035 @code{big5}, or @code{ccl}. The program is specified by the coding
+ − 2036 system (@pxref{Coding Systems}). You can also call CCL programs from
+ − 2037 other CCL programs, and from Lisp using these functions:
+ − 2038
+ − 2039 @defun ccl-execute ccl-program status
+ − 2040 Execute @var{ccl-program} with registers initialized by
+ − 2041 @var{status}. @var{ccl-program} is a vector of compiled CCL code
444
+ − 2042 created by @code{ccl-compile}. It is an error for the program to try to
428
+ − 2043 execute a CCL I/O command. @var{status} must be a vector of nine
+ − 2044 values, specifying the initial value for the R0, R1 .. R7 registers and
+ − 2045 for the instruction counter IC. A @code{nil} value for a register
+ − 2046 initializer causes the register to be set to 0. A @code{nil} value for
+ − 2047 the IC initializer causes execution to start at the beginning of the
+ − 2048 program. When the program is done, @var{status} is modified (by
+ − 2049 side-effect) to contain the ending values for the corresponding
444
+ − 2050 registers and IC.
428
+ − 2051 @end defun
+ − 2052
444
+ − 2053 @defun ccl-execute-on-string ccl-program status string &optional continue
428
+ − 2054 Execute @var{ccl-program} with initial @var{status} on
+ − 2055 @var{string}. @var{ccl-program} is a vector of compiled CCL code
+ − 2056 created by @code{ccl-compile}. @var{status} must be a vector of nine
+ − 2057 values, specifying the initial value for the R0, R1 .. R7 registers and
+ − 2058 for the instruction counter IC. A @code{nil} value for a register
+ − 2059 initializer causes the register to be set to 0. A @code{nil} value for
+ − 2060 the IC initializer causes execution to start at the beginning of the
444
+ − 2061 program. An optional fourth argument @var{continue}, if non-@code{nil}, causes
428
+ − 2062 the IC to
+ − 2063 remain on the unsatisfied read operation if the program terminates due
+ − 2064 to exhaustion of the input buffer. Otherwise the IC is set to the end
444
+ − 2065 of the program. When the program is done, @var{status} is modified (by
428
+ − 2066 side-effect) to contain the ending values for the corresponding
+ − 2067 registers and IC. Returns the resulting string.
+ − 2068 @end defun
+ − 2069
442
+ − 2070 To call a CCL program from another CCL program, it must first be
428
+ − 2071 registered:
+ − 2072
+ − 2073 @defun register-ccl-program name ccl-program
444
+ − 2074 Register @var{name} for CCL program @var{ccl-program} in
+ − 2075 @code{ccl-program-table}. @var{ccl-program} should be the compiled form of
+ − 2076 a CCL program, or @code{nil}. Return index number of the registered CCL
428
+ − 2077 program.
+ − 2078 @end defun
+ − 2079
442
+ − 2080 Information about the processor time used by the CCL interpreter can be
428
+ − 2081 obtained using these functions:
+ − 2082
+ − 2083 @defun ccl-elapsed-time
+ − 2084 Returns the elapsed processor time of the CCL interpreter as cons of
+ − 2085 user and system time, as
+ − 2086 floating point numbers measured in seconds. If only one
+ − 2087 overall value can be determined, the return value will be a cons of that
+ − 2088 value and 0.
+ − 2089 @end defun
+ − 2090
+ − 2091 @defun ccl-reset-elapsed-time
+ − 2092 Resets the CCL interpreter's internal elapsed time registers.
+ − 2093 @end defun
+ − 2094
2640
+ − 2095 @node CCL Example, , Calling CCL, CCL
428
+ − 2096 @comment Node, Next, Previous, Up
2640
+ − 2097 @subsection CCL Example
+ − 2098
+ − 2099 In this section, we describe the implementation of a trivial coding
+ − 2100 system to transform from the Web's URL encoding to XEmacs' internal
+ − 2101 coding. Many people will have been first exposed to URL encoding when
+ − 2102 they saw ``%20'' where they expected a space in a file's name on their
+ − 2103 local hard disk; this can happen when a browser saves a file from the
+ − 2104 web and doesn't encode the name, as passed from the server, properly.
+ − 2105
+ − 2106 URL encoding itself is underspecified with regard to encodings beyond
+ − 2107 ASCII. The relevant document, RFC 1738, explicitly doesn't give any
+ − 2108 information on how to encode non-ASCII characters, and the ``obvious''
+ − 2109 way---use the %xx values for the octets of the eight bit MIME character
+ − 2110 set in which the page was served---breaks when a user types a character
+ − 2111 outside that character set. Best practice for web development is to
+ − 2112 serve all pages as UTF-8 and treat incoming form data as using that
+ − 2113 coding system. (Oh, and gamble that your clients won't ever want to
+ − 2114 type anything outside Unicode. But that's not so much of a gamble with
+ − 2115 today's client operating systems.) We don't treat non-ASCII in this
+ − 2116 example, as dealing with @samp{(read-multibyte-character ...)} and
+ − 2117 errors therewith would make it much harder to understand.
+ − 2118
+ − 2119 Since CCL isn't a very rich language, we move much of the logic that
+ − 2120 would ordinarily be computed from operations like @code{(member ..)},
+ − 2121 @code{(and ...)} and @code{(or ...)} into tables, from which register
+ − 2122 values are read and written, and on which @code{if} statements are
+ − 2123 predicated. Much more of the implementation of this coding system is
+ − 2124 occupied with constructing these tables---in normal Emacs Lisp---than it
+ − 2125 is with actual CCL code.
+ − 2126
+ − 2127 All the @code{defvar} statements we deal with in the next few sections
+ − 2128 are surrounded by a @code{(eval-and-compile ...)}, which means that the
+ − 2129 logic which initializes these variables executes at compile time, and if
+ − 2130 XEmacs loads the compiled version of the file, these variables are
+ − 2131 initialized as constants.
+ − 2132
+ − 2133 @menu
+ − 2134 * Four bits to ASCII:: Two tables used for getting hex digits from ASCII.
+ − 2135 * URI Encoding constants:: Useful predefined characters.
+ − 2136 * Numeric to ASCII-hexadecimal conversion:: Trivial in Lisp, not so in CCL.
+ − 2137 * Characters to be preserved:: No transformation needed for these characters.
+ − 2138 * The program to decode to internal format:: .
+ − 2139 * The program to encode from internal format:: .
2690
+ − 2140 * The actual coding system:: .
2640
+ − 2141 @end menu
+ − 2142
+ − 2143 @node Four bits to ASCII, URI Encoding constants, , CCL Example
+ − 2144 @subsubsection Four bits to ASCII
+ − 2145
+ − 2146 The first @code{defvar} is for
+ − 2147 @code{url-coding-high-order-nybble-as-ascii}, a 256-entry table that
+ − 2148 maps from an octet's value to the ASCII encoding for the hex value of
+ − 2149 its most significant four bits. That might sound complex, but it isn't;
+ − 2150 for decimal 65, hex value @samp{#x41}, the entry in the table is the
+ − 2151 ASCII encoding of `4'. For decimal 122, ASCII `z', hex value
+ − 2152 @code{#x7a}, @code{(elt url-coding-high-order-nybble-as-ascii #x7a)}
+ − 2153 after this file is loaded gives the ASCII encoding of 7.
+ − 2154
+ − 2155 @example
+ − 2156 (defvar url-coding-high-order-nybble-as-ascii
+ − 2157 (let ((val (make-vector 256 0))
+ − 2158 (i 0))
+ − 2159 (while (< i (length val))
2690
+ − 2160 (aset val i (char-to-int (aref (format "%02X" i) 0)))
2640
+ − 2161 (setq i (1+ i)))
+ − 2162 val)
+ − 2163 "Table to find an ASCII version of an octet's most significant 4 bits.")
+ − 2164 @end example
+ − 2165
+ − 2166 The next table, @code{url-coding-low-order-nybble-as-ascii} is almost
+ − 2167 the same thing, but this time it has a map for the hex encoding of the
2690
+ − 2168 low-order four bits. So the sixty-fifth entry (offset @samp{#x41}) is
2640
+ − 2169 the ASCII encoding of `1', the hundred-and-twenty-second (offset
+ − 2170 @samp{#x7a}) is the ASCII encoding of `A'.
+ − 2171
+ − 2172 @example
+ − 2173 (defvar url-coding-low-order-nybble-as-ascii
+ − 2174 (let ((val (make-vector 256 0))
+ − 2175 (i 0))
+ − 2176 (while (< i (length val))
2690
+ − 2177 (aset val i (char-to-int (aref (format "%02X" i) 1)))
2640
+ − 2178 (setq i (1+ i)))
+ − 2179 val)
+ − 2180 "Table to find an ASCII version of an octet's least significant 4 bits.")
+ − 2181 @end example
+ − 2182
+ − 2183 @node URI Encoding constants, Numeric to ASCII-hexadecimal conversion, Four bits to ASCII, CCL Example
+ − 2184 @subsubsection URI Encoding constants
+ − 2185
+ − 2186 Next, we have a couple of variables that make the CCL code more
+ − 2187 readable. The first is the ASCII encoding of the percentage sign; this
+ − 2188 character is used as an escape code, to start the encoding of a
+ − 2189 non-printable character. For historical reasons, URL encoding allows
+ − 2190 the space character to be encoded as a plus sign--it does make typing
+ − 2191 URLs like @samp{http://google.com/search?q=XEmacs+home+page} easier--and
+ − 2192 as such, we have to check when decoding for this value, and map it to
+ − 2193 the space character. When doing this in CCL, we use the
+ − 2194 @code{url-coding-escaped-space-code} variable.
+ − 2195
+ − 2196 @example
2690
+ − 2197 (defvar url-coding-escape-character-code (char-to-int ?%)
2640
+ − 2198 "The code point for the percentage sign, in ASCII.")
+ − 2199
2690
+ − 2200 (defvar url-coding-escaped-space-code (char-to-int ?+)
2640
+ − 2201 "The URL-encoded value of the space character, that is, +.")
+ − 2202 @end example
+ − 2203
2690
+ − 2204 @node Numeric to ASCII-hexadecimal conversion, Characters to be preserved, URI Encoding constants, CCL Example
2640
+ − 2205 @subsubsection Numeric to ASCII-hexadecimal conversion
+ − 2206
+ − 2207 Now, we have a couple of utility tables that wouldn't be necessary in
+ − 2208 a more expressive programming language than is CCL. The first is sixteen
+ − 2209 in length, and maps a hexadecimal number to the ASCII encoding of that
+ − 2210 number; so zero maps to ASCII `0', ten maps to ASCII `A.' The second
+ − 2211 does the reverse; that is, it maps an ASCII character to its value when
+ − 2212 interpreted as a hexadecimal digit. ('A' => 10, 'c' => 12, '2' => 2, as
+ − 2213 a few examples.)
+ − 2214
+ − 2215 @example
+ − 2216 (defvar url-coding-hex-digit-table
+ − 2217 (let ((i 0)
+ − 2218 (val (make-vector 16 0)))
+ − 2219 (while (< i 16)
2690
+ − 2220 (aset val i (char-to-int (aref (format "%X" i) 0)))
2640
+ − 2221 (setq i (1+ i)))
+ − 2222 val)
+ − 2223 "A map from a hexadecimal digit's numeric value to its encoding in ASCII.")
+ − 2224
+ − 2225 (defvar url-coding-latin-1-as-hex-table
+ − 2226 (let ((val (make-vector 256 0))
+ − 2227 (i 0))
+ − 2228 (while (< i (length val))
+ − 2229 ;; Get a hex val for this ASCII character.
+ − 2230 (aset val i (string-to-int (format "%c" i) 16))
+ − 2231 (setq i (1+ i)))
+ − 2232 val)
+ − 2233 "A map from Latin 1 code points to their values as hexadecimal digits.")
+ − 2234 @end example
+ − 2235
2690
+ − 2236 @node Characters to be preserved, The program to decode to internal format, Numeric to ASCII-hexadecimal conversion, CCL Example
2640
+ − 2237 @subsubsection Characters to be preserved
+ − 2238
+ − 2239 And finally, the last of these tables. URL encoding says that
+ − 2240 alphanumeric characters, the underscore, hyphen and the full stop
+ − 2241 @footnote{That's what the standards call it, though my North American
+ − 2242 readers will be more familiar with it as the period character.} retain
+ − 2243 their ASCII encoding, and don't undergo transformation.
+ − 2244 @code{url-coding-should-preserve-table} is an array in which the entries
+ − 2245 are one if the corresponding ASCII character should be left as-is, and
+ − 2246 zero if they should be transformed. So the entries for all the control
+ − 2247 and most of the punctuation charcters are zero. Lisp programmers will
+ − 2248 observe that this initialization is particularly inefficient, but
+ − 2249 they'll also be aware that this is a long way from an inner loop where
+ − 2250 every nanosecond counts.
+ − 2251
+ − 2252 @example
+ − 2253 (defvar url-coding-should-preserve-table
+ − 2254 (let ((preserve
+ − 2255 (list ?- ?_ ?. ?a ?b ?c ?d ?e ?f ?g ?h ?i ?j ?k ?l ?m ?n ?o
+ − 2256 ?p ?q ?r ?s ?t ?u ?v ?w ?x ?y ?z ?A ?B ?C ?D ?E ?F ?G
+ − 2257 ?H ?I ?J ?K ?L ?M ?N ?O ?P ?Q ?R ?S ?T ?U ?V ?W ?X ?Y
+ − 2258 ?Z ?0 ?1 ?2 ?3 ?4 ?5 ?6 ?7 ?8 ?9))
+ − 2259 (i 0)
+ − 2260 (res (make-vector 256 0)))
+ − 2261 (while (< i 256)
+ − 2262 (when (member (int-char i) preserve)
+ − 2263 (aset res i 1))
+ − 2264 (setq i (1+ i)))
+ − 2265 res)
+ − 2266 "A 256-entry array of flags, indicating whether or not to preserve an
+ − 2267 octet as its ASCII encoding.")
+ − 2268 @end example
+ − 2269
2690
+ − 2270 @node The program to decode to internal format, The program to encode from internal format, Characters to be preserved, CCL Example
2640
+ − 2271 @subsubsection The program to decode to internal format
+ − 2272
+ − 2273 After the almost interminable tables, we get to the CCL. The first
+ − 2274 CCL program, @code{ccl-decode-urlcoding} decodes from the URL coding to
+ − 2275 our internal format; since this version of CCL doesn't have support for
+ − 2276 error checking on the input, we don't do any verification on it.
+ − 2277
+ − 2278 The buffer magnification--approximate ratio of the size of the output
+ − 2279 buffer to the size of the input buffer--is declared as one, because
+ − 2280 fractional values aren't allowed. (Since all those %20's will map to
+ − 2281 ` ', the length of the output text will be less than that of the input
+ − 2282 text.)
+ − 2283
+ − 2284 So, first we read an octet from the input buffer into register
+ − 2285 @samp{r0}, to set up the loop. Next, we start the loop, with a
+ − 2286 @code{(loop ...)} statement, and we check if the value in @samp{r0} is a
+ − 2287 percentage sign. (Note the comma before
+ − 2288 @code{url-coding-escape-character-code}; since CCL is a Lisp macro
+ − 2289 language, we can break out of the macro evaluation with a comman, and as
+ − 2290 such, ``@code{,url-coding-escape-character-code}'' will be evaluated as a
+ − 2291 literal `37.')
+ − 2292
+ − 2293 If it is a percentage sign, we read the next two octets into @samp{r2}
+ − 2294 and @samp{r3}, and convert them into their hexadecimal numeric values,
+ − 2295 using the @code{url-coding-latin-1-as-hex-table} array declared above.
+ − 2296 (But again, it'll be interpreted as a literal array.) We then left
+ − 2297 shift the first by four bits, mask the two together, and write the
+ − 2298 result to the output buffer.
+ − 2299
+ − 2300 If it isn't a percentage sign, and it is a `+' sign, we write a
+ − 2301 space--hexadecimal 20--to the output buffer.
+ − 2302
+ − 2303 If none of those things are true, we pass the octet to the output buffer
+ − 2304 untransformed. (This could be a place to put error checking, in a more
+ − 2305 expressive language.) We then read one more octet from the input
+ − 2306 buffer, and move to the next iteration of the loop.
+ − 2307
+ − 2308 @example
+ − 2309 (define-ccl-program ccl-decode-urlcoding
+ − 2310 `(1
+ − 2311 ((read r0)
+ − 2312 (loop
+ − 2313 (if (r0 == ,url-coding-escape-character-code)
+ − 2314 ((read r2 r3)
+ − 2315 ;; Assign the value at offset r2 in the url-coding-hex-digit-table
+ − 2316 ;; to r3.
+ − 2317 (r2 = r2 ,url-coding-latin-1-as-hex-table)
+ − 2318 (r3 = r3 ,url-coding-latin-1-as-hex-table)
+ − 2319 (r2 <<= 4)
+ − 2320 (r3 |= r2)
+ − 2321 (write r3))
+ − 2322 (if (r0 == ,url-coding-escaped-space-code)
+ − 2323 (write #x20)
+ − 2324 (write r0)))
+ − 2325 (read r0)
+ − 2326 (repeat))))
+ − 2327 "CCL program to take URI-encoded ASCII text and transform it to our
+ − 2328 internal encoding. ")
+ − 2329 @end example
+ − 2330
2690
+ − 2331 @node The program to encode from internal format, The actual coding system, The program to decode to internal format, CCL Example
2640
+ − 2332 @subsubsection The program to encode from internal format
+ − 2333
+ − 2334 Next, we see the CCL program to encode ASCII text as URL coded text.
+ − 2335 Here, the buffer magnification is specified as three, to account for ` '
+ − 2336 mapping to %20, etc. As before, we read an octet from the input into
+ − 2337 @samp{r0}, and move into the body of the loop. Next, we check if we
+ − 2338 should preserve the value of this octet, by reading from offset
+ − 2339 @samp{r0} in the @code{url-coding-should-preserve-table} into @samp{r1}.
+ − 2340 Then we have an @samp{if} statement predicated on the value in
+ − 2341 @samp{r1}; for the true branch, we write the input octet directly. For
+ − 2342 the false branch, we write a percentage sign, the ASCII encoding of the
+ − 2343 high four bits in hex, and then the ASCII encoding of the low four bits
+ − 2344 in hex.
+ − 2345
+ − 2346 We then read an octet from the input into @samp{r0}, and repeat the loop.
+ − 2347
+ − 2348 @example
+ − 2349 (define-ccl-program ccl-encode-urlcoding
+ − 2350 `(3
+ − 2351 ((read r0)
+ − 2352 (loop
+ − 2353 (r1 = r0 ,url-coding-should-preserve-table)
+ − 2354 ;; If we should preserve the value, just write the octet directly.
+ − 2355 (if r1
+ − 2356 (write r0)
+ − 2357 ;; else, write a percentage sign, and the hex value of the octet, in
+ − 2358 ;; an ASCII-friendly format.
+ − 2359 ((write ,url-coding-escape-character-code)
+ − 2360 (write r0 ,url-coding-high-order-nybble-as-ascii)
+ − 2361 (write r0 ,url-coding-low-order-nybble-as-ascii)))
+ − 2362 (read r0)
+ − 2363 (repeat))))
+ − 2364 "CCL program to encode octets (almost) according to RFC 1738")
+ − 2365 @end example
428
+ − 2366
2690
+ − 2367 @node The actual coding system, , The program to encode from internal format, CCL Example
+ − 2368 @subsubsection The actual coding system
+ − 2369
+ − 2370 To actually create the coding system, we call
+ − 2371 @samp{make-coding-system}. The first argument is the symbol that is to
+ − 2372 be the name of the coding system, in our case @samp{url-coding}. The
+ − 2373 second specifies that the coding system is to be of type
+ − 2374 @samp{ccl}---there are several other coding system types available,
+ − 2375 including, see the documentation for @samp{make-coding-system} for the
+ − 2376 full list. Then there's a documentation string describing the wherefore
+ − 2377 and caveats of the coding system, and the final argument is a property
+ − 2378 list giving information about the CCL programs and the coding system's
+ − 2379 mnemonic.
+ − 2380
+ − 2381 @example
+ − 2382 (make-coding-system
+ − 2383 'url-coding 'ccl
+ − 2384 "The coding used by application/x-www-form-urlencoded HTTP applications.
+ − 2385 This coding form doesn't specify anything about non-ASCII characters, so
+ − 2386 make sure you've transformed to a seven-bit coding system first."
+ − 2387 '(decode ccl-decode-urlcoding
+ − 2388 encode ccl-encode-urlcoding
+ − 2389 mnemonic "URLenc"))
+ − 2390 @end example
+ − 2391
+ − 2392 If you're lucky, the @samp{url-coding} coding system describe here
+ − 2393 should be available in the XEmacs package system. Otherwise, downloading
+ − 2394 it from @samp{http://www.parhasard.net/url-coding.el} should work for
+ − 2395 the foreseeable future.
+ − 2396
775
+ − 2397 @node Category Tables, Unicode Support, CCL, MULE
428
+ − 2398 @section Category Tables
+ − 2399
+ − 2400 A category table is a type of char table used for keeping track of
+ − 2401 categories. Categories are used for classifying characters for use in
440
+ − 2402 regexps---you can refer to a category rather than having to use a
428
+ − 2403 complicated [] expression (and category lookups are significantly
+ − 2404 faster).
+ − 2405
+ − 2406 There are 95 different categories available, one for each printable
+ − 2407 character (including space) in the ASCII charset. Each category is
+ − 2408 designated by one such character, called a @dfn{category designator}.
+ − 2409 They are specified in a regexp using the syntax @samp{\cX}, where X is a
+ − 2410 category designator. (This is not yet implemented.)
+ − 2411
+ − 2412 A category table specifies, for each character, the categories that
+ − 2413 the character is in. Note that a character can be in more than one
+ − 2414 category. More specifically, a category table maps from a character to
+ − 2415 either the value @code{nil} (meaning the character is in no categories)
+ − 2416 or a 95-element bit vector, specifying for each of the 95 categories
+ − 2417 whether the character is in that category.
+ − 2418
+ − 2419 Special Lisp functions are provided that abstract this, so you do not
+ − 2420 have to directly manipulate bit vectors.
+ − 2421
444
+ − 2422 @defun category-table-p object
+ − 2423 This function returns @code{t} if @var{object} is a category table.
428
+ − 2424 @end defun
+ − 2425
+ − 2426 @defun category-table &optional buffer
+ − 2427 This function returns the current category table. This is the one
+ − 2428 specified by the current buffer, or by @var{buffer} if it is
+ − 2429 non-@code{nil}.
+ − 2430 @end defun
+ − 2431
+ − 2432 @defun standard-category-table
+ − 2433 This function returns the standard category table. This is the one used
+ − 2434 for new buffers.
+ − 2435 @end defun
+ − 2436
444
+ − 2437 @defun copy-category-table &optional category-table
+ − 2438 This function returns a new category table which is a copy of
+ − 2439 @var{category-table}, which defaults to the standard category table.
428
+ − 2440 @end defun
+ − 2441
444
+ − 2442 @defun set-category-table category-table &optional buffer
+ − 2443 This function selects @var{category-table} as the new category table for
+ − 2444 @var{buffer}. @var{buffer} defaults to the current buffer if omitted.
428
+ − 2445 @end defun
+ − 2446
444
+ − 2447 @defun category-designator-p object
+ − 2448 This function returns @code{t} if @var{object} is a category designator (a
428
+ − 2449 char in the range @samp{' '} to @samp{'~'}).
+ − 2450 @end defun
+ − 2451
444
+ − 2452 @defun category-table-value-p object
+ − 2453 This function returns @code{t} if @var{object} is a category table value.
428
+ − 2454 Valid values are @code{nil} or a bit vector of size 95.
+ − 2455 @end defun
+ − 2456
775
+ − 2457
+ − 2458 @c Added 2002-03-13 sjt
1183
+ − 2459 @node Unicode Support, Charset Unification, Category Tables, MULE
775
+ − 2460 @section Unicode Support
+ − 2461 @cindex unicode
+ − 2462 @cindex utf-8
+ − 2463 @cindex utf-16
+ − 2464 @cindex ucs-2
+ − 2465 @cindex ucs-4
+ − 2466 @cindex bmp
+ − 2467 @cindex basic multilingual plance
+ − 2468
+ − 2469 Unicode support was added by Ben Wing to XEmacs 21.5.6.
+ − 2470
+ − 2471 @defun set-language-unicode-precedence-list list
+ − 2472 Set the language-specific precedence list used for Unicode decoding.
+ − 2473 This is a list of charsets, which are consulted in order for a translation
+ − 2474 matching a given Unicode character. If no matches are found, the charsets
+ − 2475 in the default precedence list (see
+ − 2476 @code{set-default-unicode-precedence-list}) are consulted, and then all
+ − 2477 remaining charsets, in some arbitrary order.
+ − 2478
+ − 2479 The language-specific precedence list is meant to be set as part of the
+ − 2480 language environment initialization; the default precedence list is meant
+ − 2481 to be set by the user.
+ − 2482 @end defun
+ − 2483
+ − 2484 @defun language-unicode-precedence-list
+ − 2485 Return the language-specific precedence list used for Unicode decoding.
+ − 2486 See @code{set-language-unicode-precedence-list} for more information.
+ − 2487 @end defun
+ − 2488
+ − 2489 @defun set-default-unicode-precedence-list list
+ − 2490 Set the default precedence list used for Unicode decoding.
+ − 2491 This is meant to be set by the user. See
+ − 2492 `set-language-unicode-precedence-list' for more information.
+ − 2493 @end defun
+ − 2494
+ − 2495 @defun default-unicode-precedence-list
+ − 2496 Return the default precedence list used for Unicode decoding.
+ − 2497 See @code{set-language-unicode-precedence-list} for more information.
+ − 2498 @end defun
+ − 2499
+ − 2500 @defun set-unicode-conversion character code
+ − 2501 Add conversion information between Unicode codepoints and characters.
+ − 2502 @var{character} is one of the following:
+ − 2503
+ − 2504 @c #### fix this markup
+ − 2505 -- A character (in which case @var{code} must be a non-negative integer)
+ − 2506 -- A vector of characters (in which case @var{code} must be a vector of
+ − 2507 non-negative integers of the same length)
+ − 2508
+ − 2509 Values of @var{code} above 2^20 - 1 are allowed for the purpose of specifying
+ − 2510 private characters, but will cause errors when converted to UTF-16 or UTF-32.
+ − 2511 UCS-4 and UTF-8 can handle values to 2^31 - 1, but XEmacs Lisp integers top
+ − 2512 out at 2^30 - 1.
+ − 2513 @end defun
+ − 2514
+ − 2515 @defun character-to-unicode character
+ − 2516 Convert @var{character} to Unicode codepoint.
+ − 2517 When there is no international support (i.e. MULE is not defined),
+ − 2518 this function simply does @code{char-to-int}.
+ − 2519 @end defun
+ − 2520
+ − 2521 @defun unicode-to-character code [charsets]
+ − 2522 Convert Unicode codepoint @var{code} to character.
+ − 2523 @var{code} should be a non-negative integer.
+ − 2524 If @var{charsets} is given, it should be a list of charsets, and only those
+ − 2525 charsets will be consulted, in the given order, for a translation.
+ − 2526 Otherwise, the default ordering of all charsets will be given (see
+ − 2527 @code{set-unicode-charset-precedence}).
+ − 2528
+ − 2529 When there is no international support (i.e. MULE is not defined),
+ − 2530 this function simply does @code{int-to-char} and ignores the
+ − 2531 @var{charsets} argument.
+ − 2532 @end defun
+ − 2533
+ − 2534 @defun parse-unicode-translation-table filename charset start end offset flags
+ − 2535 Parse Unicode translation data in @var{filename} for MULE @var{charset}.
+ − 2536 Data is text, in the form of one translation per line -- charset
+ − 2537 codepoint followed by Unicode codepoint. Numbers are decimal or hex
+ − 2538 \(preceded by 0x). Comments are marked with a #. Charset codepoints
+ − 2539 for two-dimensional charsets should have the first octet stored in the
+ − 2540 high 8 bits of the hex number and the second in the low 8 bits.
+ − 2541
+ − 2542 If @var{start} and @var{end} are given, only charset codepoints within
+ − 2543 the given range will be processed. If @var{offset} is given, that value
+ − 2544 will be added to all charset codepoints in the file to obtain the
+ − 2545 internal charset codepoint. @var{start} and @var{end} apply to the
+ − 2546 codepoints in the file, before @var{offset} is applied.
+ − 2547
+ − 2548 (Note that, as usual, we assume that octets are in the range 32 to
+ − 2549 127 or 33 to 126. If you have a table in kuten form, with octets in
+ − 2550 the range 1 to 94, you will have to use an offset of 5140,
+ − 2551 i.e. 0x2020.)
+ − 2552
+ − 2553 @var{flags}, if specified, control further how the tables are interpreted
+ − 2554 and are used to special-case certain known table weirdnesses in the
+ − 2555 Unicode tables:
+ − 2556
+ − 2557 @table @code
+ − 2558 @item ignore-first-column'
+ − 2559 Exactly as it sounds. The JIS X 0208 tables have 3 columns of data instead
+ − 2560 of 2; the first is the Shift-JIS codepoint.
+ − 2561
+ − 2562 @item big5
+ − 2563 The charset codepoint is a Big Five codepoint; convert it to the
+ − 2564 proper hacked-up codepoint in `chinese-big5-1' or `chinese-big5-2'.
+ − 2565 @end table
+ − 2566 @end defun
+ − 2567
1183
+ − 2568
+ − 2569 @node Charset Unification, Charsets and Coding Systems, Unicode Support, MULE
+ − 2570 @section Character Set Unification
+ − 2571
+ − 2572 Mule suffers from a design defect that causes it to consider the ISO
+ − 2573 Latin character sets to be disjoint. This results in oddities such as
+ − 2574 files containing both ISO 8859/1 and ISO 8859/15 codes, and using ISO
+ − 2575 2022 control sequences to switch between them, as well as more plausible
+ − 2576 but often unnecessary combinations like ISO 8859/1 with ISO 8859/2.
+ − 2577 This can be very annoying when sending messages or even in simple
+ − 2578 editing on a single host. Unification works around the problem by
+ − 2579 converting as many characters as possible to use a single Latin coded
+ − 2580 character set before saving the buffer.
+ − 2581
+ − 2582 This node and its children were ripp'd untimely from
+ − 2583 @file{latin-unity.texi}, and have been quickly converted for use here.
+ − 2584 However as APIs are likely to diverge, beware of inaccuracies. Please
+ − 2585 report any you discover with @kbd{M-x report-xemacs-bug RET}, as well
+ − 2586 as any ambiguities or downright unintelligible passages.
+ − 2587
+ − 2588 A lot of the stuff here doesn't belong here; it belongs in the
+ − 2589 @ref{Top, , , xemacs, XEmacs User's Manual}. Report those as bugs,
+ − 2590 too, preferably with patches.
+ − 2591
+ − 2592 @menu
+ − 2593 * Overview:: Unification history and general information.
+ − 2594 * Usage:: An overview of the operation of Unification.
+ − 2595 * Configuration:: Configuring Unification for use.
+ − 2596 * Theory of Operation:: How Unification works.
+ − 2597 * What Unification Cannot Do for You:: Inherent problems of 8-bit charsets.
+ − 2598 * Charsets and Coding Systems:: Reference lists with annotations.
1188
+ − 2599 * Unification Internals:: Utilities and implementation details.
1183
+ − 2600 @end menu
+ − 2601
+ − 2602 @node Overview, Usage, Charset Unification, Charset Unification
+ − 2603 @subsection An Overview of Unification
+ − 2604
+ − 2605 Mule suffers from a design defect that causes it to consider the ISO
+ − 2606 Latin character sets to be disjoint. This manifests itself when a user
+ − 2607 enters characters using input methods associated with different coded
+ − 2608 character sets into a single buffer.
+ − 2609
+ − 2610 A very important example involves email. Many sites, especially in the
+ − 2611 U.S., default to use of the ISO 8859/1 coded character set (also called
+ − 2612 ``Latin 1,'' though these are somewhat different concepts). However,
+ − 2613 ISO 8859/1 provides a generic CURRENCY SIGN character. Now that the
+ − 2614 Euro has become the official currency of most countries in Europe, this
+ − 2615 is unsatisfactory (and in practice, useless). So Europeans generally
+ − 2616 use ISO 8859/15, which is nearly identical to ISO 8859/1 for most
+ − 2617 languages, except that it substitutes EURO SIGN for CURRENCY SIGN.
+ − 2618
+ − 2619 Suppose a European user yanks text from a post encoded in ISO 8859/1
+ − 2620 into a message composition buffer, and enters some text including the
+ − 2621 Euro sign. Then Mule will consider the buffer to contain both ISO
+ − 2622 8859/1 and ISO 8859/15 text, and MUAs such as Gnus will (if naively
+ − 2623 programmed) send the message as a multipart mixed MIME body!
+ − 2624
+ − 2625 This is clearly stupid. What is not as obvious is that, just as any
+ − 2626 European can include American English in their text because ASCII is a
+ − 2627 subset of ISO 8859/15, most European languages which use Latin
+ − 2628 characters (eg, German and Polish) can typically be mixed while using
+ − 2629 only one Latin coded character set (in this case, ISO 8859/2). However,
+ − 2630 this often depends on exactly what text is to be encoded.
+ − 2631
+ − 2632 Unification works around the problem by converting as many characters as
+ − 2633 possible to use a single Latin coded character set before saving the
+ − 2634 buffer.
+ − 2635
+ − 2636 @node Usage, Configuration, Overview, Charset Unification
+ − 2637 @subsection Operation of Unification
+ − 2638
+ − 2639 Normally, Unification works in the background by installing
+ − 2640 @code{unity-sanity-check} on @code{write-region-pre-hook}. This is
+ − 2641 done by default for the ISO 8859 Latin family of character sets. The
+ − 2642 user activates this functionality for other character set families by
+ − 2643 invoking @code{enable-unification}, either interactively or in her
+ − 2644 init file. @xref{Init File, , , xemacs}. Unification can be
+ − 2645 deactivated by invoking @code{disable-unification}.
+ − 2646
+ − 2647 Unification also provides a few functions for remapping or recoding the
+ − 2648 buffer by hand. To @dfn{remap} a character means to change the buffer
+ − 2649 representation of the character by using another coded character set.
+ − 2650 Remapping never changes the identity of the character, but may involve
+ − 2651 altering the code point of the character. To @dfn{recode} a character
+ − 2652 means to simply change the coded character set. Recoding never alters
+ − 2653 the code point of the character, but may change the identity of the
+ − 2654 character. @xref{Theory of Operation}.
+ − 2655
+ − 2656 There are a few variables which determine which coding systems are
+ − 2657 always acceptable to Unification: @code{unity-ucs-list},
+ − 2658 @code{unity-preferred-coding-system-list}, and
+ − 2659 @code{unity-preapproved-coding-system-list}. The latter two default
+ − 2660 to @code{()}, and should probably be avoided because they short-circuit
+ − 2661 the sanity check. If you find you need to use them, consider reporting
+ − 2662 it as a bug or request for enhancement. Because they seem unsafe, the
+ − 2663 recommended interface is likely to change.
+ − 2664
+ − 2665 @menu
+ − 2666 * Basic Functionality:: User interface and customization.
+ − 2667 * Interactive Usage:: Treating text by hand.
+ − 2668 Also documents the hook function(s).
+ − 2669 @end menu
+ − 2670
+ − 2671
+ − 2672 @node Basic Functionality, Interactive Usage, , Usage
+ − 2673 @section Basic Functionality
+ − 2674
+ − 2675 These functions and user options initialize and configure Unification.
+ − 2676 In normal use, none of these should be needed.
+ − 2677
+ − 2678 @strong{These APIs are certain to change.}
+ − 2679
+ − 2680 @defun enable-unification
+ − 2681 Set up hooks and initialize variables for latin-unity.
+ − 2682
+ − 2683 There are no arguments.
+ − 2684
+ − 2685 This function is idempotent. It will reinitialize any hooks or variables
+ − 2686 that are not in initial state.
+ − 2687 @end defun
+ − 2688
+ − 2689 @defun disable-unification
+ − 2690 There are no arguments.
+ − 2691
+ − 2692 Clean up hooks and void variables used by latin-unity.
+ − 2693 @end defun
+ − 2694
+ − 2695 @defopt unity-ucs-list
+ − 2696 List of coding systems considered to be universal.
+ − 2697
+ − 2698 The default value is @code{'(utf-8 iso-2022-7 ctext escape-quoted)}.
+ − 2699
+ − 2700 Order matters; coding systems earlier in the list will be preferred when
+ − 2701 recommending a coding system. These coding systems will not be used
+ − 2702 without querying the user (unless they are also present in
+ − 2703 @code{unity-preapproved-coding-system-list}), and follow the
+ − 2704 @code{unity-preferred-coding-system-list} in the list of suggested
+ − 2705 coding systems.
+ − 2706
+ − 2707 If none of the preferred coding systems are feasible, the first in
+ − 2708 this list will be the default.
+ − 2709
+ − 2710 Notes on certain coding systems: @code{escape-quoted} is a special
+ − 2711 coding system used for autosaves and compiled Lisp in Mule. You should
+ − 2712 @c #### fix in latin-unity.texi
+ − 2713 never delete this, although it is rare that a user would want to use it
+ − 2714 directly. Unification does not try to be \"smart\" about other general
+ − 2715 ISO 2022 coding systems, such as ISO-2022-JP. (They are not recognized
+ − 2716 as equivalent to @code{iso-2022-7}.) If your preferred coding system is
+ − 2717 one of these, you may consider adding it to @code{unity-ucs-list}.
+ − 2718 However, this will typically have the side effect that (eg) ISO 8859/1
+ − 2719 files will be saved in 7-bit form with ISO 2022 escape sequences.
+ − 2720 @end defopt
+ − 2721
+ − 2722 Coding systems which are not Latin and not in
+ − 2723 @code{unity-ucs-list} are handled by short circuiting checks of
+ − 2724 coding system against the next two variables.
+ − 2725
+ − 2726 @defopt unity-preapproved-coding-system-list
+ − 2727 List of coding systems used without querying the user if feasible.
+ − 2728
+ − 2729 The default value is @samp{(buffer-default preferred)}.
+ − 2730
+ − 2731 The first feasible coding system in this list is used. The special values
+ − 2732 @samp{preferred} and @samp{buffer-default} may be present:
+ − 2733
+ − 2734 @table @code
+ − 2735 @item buffer-default
+ − 2736 Use the coding system used by @samp{write-region}, if feasible.
+ − 2737
+ − 2738 @item preferred
+ − 2739 Use the coding system specified by @samp{prefer-coding-system} if feasible.
+ − 2740 @end table
+ − 2741
+ − 2742 "Feasible" means that all characters in the buffer can be represented by
+ − 2743 the coding system. Coding systems in @samp{unity-ucs-list} are
+ − 2744 always considered feasible. Other feasible coding systems are computed
+ − 2745 by @samp{unity-representations-feasible-region}.
+ − 2746
+ − 2747 Note that the first universal coding system in this list shadows all
+ − 2748 other coding systems. In particular, if your preferred coding system is
+ − 2749 a universal coding system, and @code{preferred} is a member of this
+ − 2750 list, unification will blithely convert all your files to that coding
+ − 2751 system. This is considered a feature, but it may surprise most users.
+ − 2752 Users who don't like this behavior should put @code{preferred} in
+ − 2753 @code{unity-preferred-coding-system-list}.
+ − 2754 @end defopt
+ − 2755
+ − 2756 @defopt unity-preferred-coding-system-list
+ − 2757 @c #### fix in latin-unity.texi
+ − 2758 List of coding systems suggested to the user if feasible.
+ − 2759
+ − 2760 The default value is @samp{(iso-8859-1 iso-8859-15 iso-8859-2 iso-8859-3
+ − 2761 iso-8859-4 iso-8859-9)}.
+ − 2762
+ − 2763 If none of the coding systems in
+ − 2764 @c #### fix in latin-unity.texi
+ − 2765 @code{unity-preapproved-coding-system-list} are feasible, this list
+ − 2766 will be recommended to the user, followed by the
+ − 2767 @code{unity-ucs-list}. The first coding system in this list is default. The
+ − 2768 special values @samp{preferred} and @samp{buffer-default} may be
+ − 2769 present:
+ − 2770
+ − 2771 @table @code
+ − 2772 @item buffer-default
+ − 2773 Use the coding system used by @samp{write-region}, if feasible.
+ − 2774
+ − 2775 @item preferred
+ − 2776 Use the coding system specified by @samp{prefer-coding-system} if feasible.
+ − 2777 @end table
+ − 2778
+ − 2779 "Feasible" means that all characters in the buffer can be represented by
+ − 2780 the coding system. Coding systems in @samp{unity-ucs-list} are
+ − 2781 always considered feasible. Other feasible coding systems are computed
+ − 2782 by @samp{unity-representations-feasible-region}.
+ − 2783 @end defopt
+ − 2784
+ − 2785
+ − 2786 @defvar unity-iso-8859-1-aliases
+ − 2787 List of coding systems to be treated as aliases of ISO 8859/1.
+ − 2788
+ − 2789 The default value is '(iso-8859-1).
+ − 2790
+ − 2791 This is not a user variable; to customize input of coding systems or
+ − 2792 charsets, @samp{unity-coding-system-alias-alist} or
+ − 2793 @samp{unity-charset-alias-alist}.
+ − 2794 @end defvar
+ − 2795
+ − 2796
+ − 2797 @node Interactive Usage, , Basic Functionality, Usage
+ − 2798 @section Interactive Usage
+ − 2799
+ − 2800 First, the hook function @code{unity-sanity-check} is documented.
+ − 2801 (It is placed here because it is not an interactive function, and there
+ − 2802 is not yet a programmer's section of the manual.)
+ − 2803
+ − 2804 These functions provide access to internal functionality (such as the
+ − 2805 remapping function) and to extra functionality (the recoding functions
+ − 2806 and the test function).
+ − 2807
+ − 2808
+ − 2809 @defun unity-sanity-check begin end filename append visit lockname &optional coding-system
+ − 2810
+ − 2811 Check if @var{coding-system} can represent all characters between
+ − 2812 @var{begin} and @var{end}.
+ − 2813
+ − 2814 For compatibility with old broken versions of @code{write-region},
+ − 2815 @var{coding-system} defaults to @code{buffer-file-coding-system}.
+ − 2816 @var{filename}, @var{append}, @var{visit}, and @var{lockname} are
+ − 2817 ignored.
+ − 2818
+ − 2819 Return nil if buffer-file-coding-system is not (ISO-2022-compatible)
+ − 2820 Latin. If @code{buffer-file-coding-system} is safe for the charsets
+ − 2821 actually present in the buffer, return it. Otherwise, ask the user to
+ − 2822 choose a coding system, and return that.
+ − 2823
+ − 2824 This function does @emph{not} do the safe thing when
+ − 2825 @code{buffer-file-coding-system} is nil (aka no-conversion). It
+ − 2826 considers that ``non-Latin,'' and passes it on to the Mule detection
+ − 2827 mechanism.
+ − 2828
+ − 2829 This function is intended for use as a @code{write-region-pre-hook}. It
+ − 2830 does nothing except return @var{coding-system} if @code{write-region}
+ − 2831 handlers are inhibited.
+ − 2832 @end defun
+ − 2833
+ − 2834 @defun unity-buffer-representations-feasible
+ − 2835
+ − 2836 There are no arguments.
+ − 2837
+ − 2838 Apply unity-region-representations-feasible to the current buffer.
+ − 2839 @end defun
+ − 2840
+ − 2841 @defun unity-region-representations-feasible begin end &optional buf
+ − 2842
+ − 2843 Return character sets that can represent the text from @var{begin} to @var{end} in @var{buf}.
+ − 2844
+ − 2845 @var{buf} defaults to the current buffer. Called interactively, will be
+ − 2846 applied to the region. Function assumes @var{begin} <= @var{end}.
+ − 2847
+ − 2848 The return value is a cons. The car is the list of character sets
+ − 2849 that can individually represent all of the non-ASCII portion of the
+ − 2850 buffer, and the cdr is the list of character sets that can
+ − 2851 individually represent all of the ASCII portion.
+ − 2852
+ − 2853 The following is taken from a comment in the source. Please refer to
+ − 2854 the source to be sure of an accurate description.
+ − 2855
+ − 2856 The basic algorithm is to map over the region, compute the set of
+ − 2857 charsets that can represent each character (the ``feasible charset''),
+ − 2858 and take the intersection of those sets.
+ − 2859
+ − 2860 The current implementation takes advantage of the fact that ASCII
+ − 2861 characters are common and cannot change asciisets. Then using
+ − 2862 skip-chars-forward makes motion over ASCII subregions very fast.
+ − 2863
+ − 2864 This same strategy could be applied generally by precomputing classes
+ − 2865 of characters equivalent according to their effect on latinsets, and
+ − 2866 adding a whole class to the skip-chars-forward string once a member is
+ − 2867 found.
+ − 2868
+ − 2869 Probably efficiency is a function of the number of characters matched,
+ − 2870 or maybe the length of the match string? With @code{skip-category-forward}
+ − 2871 over a precomputed category table it should be really fast. In practice
+ − 2872 for Latin character sets there are only 29 classes.
+ − 2873 @end defun
+ − 2874
+ − 2875 @defun unity-remap-region begin end character-set &optional coding-system
+ − 2876
+ − 2877 Remap characters between @var{begin} and @var{end} to equivalents in
+ − 2878 @var{character-set}. Optional argument @var{coding-system} may be a
+ − 2879 coding system name (a symbol) or nil. Characters with no equivalent are
+ − 2880 left as-is.
+ − 2881
+ − 2882 When called interactively, @var{begin} and @var{end} are set to the
+ − 2883 beginning and end, respectively, of the active region, and the function
+ − 2884 prompts for @var{character-set}. The function does completion, knows
+ − 2885 how to guess a character set name from a coding system name, and also
+ − 2886 provides some common aliases. See @code{unity-guess-charset}.
+ − 2887 There is no way to specify @var{coding-system}, as it has no useful
+ − 2888 function interactively.
+ − 2889
+ − 2890 Return @var{coding-system} if @var{coding-system} can encode all
+ − 2891 characters in the region, t if @var{coding-system} is nil and the coding
+ − 2892 system with G0 = 'ascii and G1 = @var{character-set} can encode all
+ − 2893 characters, and otherwise nil. Note that a non-null return does
+ − 2894 @emph{not} mean it is safe to write the file, only the specified region.
+ − 2895 (This behavior is useful for multipart MIME encoding and the like.)
+ − 2896
+ − 2897 Note: by default this function is quite fascist about universal coding
+ − 2898 systems. It only admits @samp{utf-8}, @samp{iso-2022-7}, and
+ − 2899 @samp{ctext}. Customize @code{unity-approved-ucs-list} to change
+ − 2900 this.
+ − 2901
+ − 2902 This function remaps characters that are artificially distinguished by Mule
+ − 2903 internal code. It may change the code point as well as the character set.
+ − 2904 To recode characters that were decoded in the wrong coding system, use
+ − 2905 @code{unity-recode-region}.
+ − 2906 @end defun
+ − 2907
+ − 2908 @defun unity-recode-region begin end wrong-cs right-cs
+ − 2909
+ − 2910 Recode characters between @var{begin} and @var{end} from @var{wrong-cs}
+ − 2911 to @var{right-cs}.
+ − 2912
+ − 2913 @var{wrong-cs} and @var{right-cs} are character sets. Characters retain
+ − 2914 the same code point but the character set is changed. Only characters
+ − 2915 from @var{wrong-cs} are changed to @var{right-cs}. The identity of the
+ − 2916 character may change. Note that this could be dangerous, if characters
+ − 2917 whose identities you do not want changed are included in the region.
+ − 2918 This function cannot guess which characters you want changed, and which
+ − 2919 should be left alone.
+ − 2920
+ − 2921 When called interactively, @var{begin} and @var{end} are set to the
+ − 2922 beginning and end, respectively, of the active region, and the function
+ − 2923 prompts for @var{wrong-cs} and @var{right-cs}. The function does
+ − 2924 completion, knows how to guess a character set name from a coding system
+ − 2925 name, and also provides some common aliases. See
+ − 2926 @code{unity-guess-charset}.
+ − 2927
+ − 2928 Another way to accomplish this, but using coding systems rather than
+ − 2929 character sets to specify the desired recoding, is
+ − 2930 @samp{unity-recode-coding-region}. That function may be faster
+ − 2931 but is somewhat more dangerous, because it may recode more than one
+ − 2932 character set.
+ − 2933
+ − 2934 To change from one Mule representation to another without changing identity
+ − 2935 of any characters, use @samp{unity-remap-region}.
+ − 2936 @end defun
+ − 2937
+ − 2938 @defun unity-recode-coding-region begin end wrong-cs right-cs
+ − 2939
+ − 2940 Recode text between @var{begin} and @var{end} from @var{wrong-cs} to
+ − 2941 @var{right-cs}.
+ − 2942
+ − 2943 @var{wrong-cs} and @var{right-cs} are coding systems. Characters retain
+ − 2944 the same code point but the character set is changed. The identity of
+ − 2945 characters may change. This is an inherently dangerous function;
+ − 2946 multilingual text may be recoded in unexpected ways. #### It's also
+ − 2947 dangerous because the coding systems are not sanity-checked in the
+ − 2948 current implementation.
+ − 2949
+ − 2950 When called interactively, @var{begin} and @var{end} are set to the
+ − 2951 beginning and end, respectively, of the active region, and the function
+ − 2952 prompts for @var{wrong-cs} and @var{right-cs}. The function does
+ − 2953 completion, knows how to guess a coding system name from a character set
+ − 2954 name, and also provides some common aliases. See
+ − 2955 @code{unity-guess-coding-system}.
+ − 2956
+ − 2957 Another, safer, way to accomplish this, using character sets rather
+ − 2958 than coding systems to specify the desired recoding, is to use
+ − 2959 @c #### fixme in latin-unity.texi
+ − 2960 @code{unity-recode-region}.
+ − 2961
+ − 2962 To change from one Mule representation to another without changing identity
+ − 2963 of any characters, use @code{unity-remap-region}.
+ − 2964 @end defun
+ − 2965
+ − 2966 Helper functions for input of coding system and character set names.
+ − 2967
+ − 2968 @defun unity-guess-charset candidate
+ − 2969 Guess a charset based on the symbol @var{candidate}.
+ − 2970
+ − 2971 @var{candidate} itself is not tried as the value.
+ − 2972
+ − 2973 Uses the natural mapping in @samp{unity-cset-codesys-alist}, and
+ − 2974 the values in @samp{unity-charset-alias-alist}."
+ − 2975 @end defun
+ − 2976
+ − 2977 @defun unity-guess-coding-system candidate
+ − 2978 Guess a coding system based on the symbol @var{candidate}.
+ − 2979
+ − 2980 @var{candidate} itself is not tried as the value.
+ − 2981
+ − 2982 Uses the natural mapping in @samp{unity-cset-codesys-alist}, and
+ − 2983 the values in @samp{unity-coding-system-alias-alist}."
+ − 2984 @end defun
+ − 2985
+ − 2986 @defun unity-example
+ − 2987
+ − 2988 A cheesy example for Unification.
+ − 2989
+ − 2990 At present it just makes a multilingual buffer. To test, setq
+ − 2991 buffer-file-coding-system to some value, make the buffer dirty (eg
+ − 2992 with RET BackSpace), and save.
+ − 2993 @end defun
+ − 2994
+ − 2995
+ − 2996 @node Configuration, Theory of Operation, Usage, Charset Unification
+ − 2997 @subsection Configuring Unification for Use
+ − 2998
+ − 2999 If you want Unification to be automatically initialized, invoke
+ − 3000 @samp{enable-unification} with no arguments in your init file.
+ − 3001 @xref{Init File, , , xemacs}. If you are using GNU Emacs or an XEmacs
+ − 3002 earlier than 21.1, you should also load @file{auto-autoloads} using the
+ − 3003 full path (@emph{never} @samp{require} @file{auto-autoloads} libraries).
+ − 3004
+ − 3005 You may wish to define aliases for commonly used character sets and
+ − 3006 coding systems for convenience in input.
+ − 3007
+ − 3008 @defopt unity-charset-alias-alist
+ − 3009 Alist mapping aliases to Mule charset names (symbols)."
+ − 3010
+ − 3011 The default value is
+ − 3012 @example
+ − 3013 ((latin-1 . latin-iso8859-1)
+ − 3014 (latin-2 . latin-iso8859-2)
+ − 3015 (latin-3 . latin-iso8859-3)
+ − 3016 (latin-4 . latin-iso8859-4)
+ − 3017 (latin-5 . latin-iso8859-9)
+ − 3018 (latin-9 . latin-iso8859-15)
+ − 3019 (latin-10 . latin-iso8859-16))
+ − 3020 @end example
+ − 3021
+ − 3022 If a charset does not exist on your system, it will not complete and you
+ − 3023 will not be able to enter it in response to prompts. A real charset
+ − 3024 with the same name as an alias in this list will shadow the alias.
+ − 3025 @end defopt
+ − 3026
+ − 3027 @defopt unity-coding-system-alias-alist nil
+ − 3028 Alist mapping aliases to Mule coding system names (symbols).
+ − 3029
+ − 3030 The default value is @samp{nil}.
+ − 3031 @end defopt
+ − 3032
+ − 3033
+ − 3034 @node Theory of Operation, What Unification Cannot Do for You, Configuration, Charset Unification
+ − 3035 @subsection Theory of Operation
+ − 3036
+ − 3037 Standard encodings suffer from the design defect that they do not
+ − 3038 provide a reliable way to recognize which coded character sets in use.
+ − 3039 @xref{What Unification Cannot Do for You}. There are scores of
+ − 3040 character sets which can be represented by a single octet (8-bit byte),
+ − 3041 whose union contains many hundreds of characters. Obviously this
+ − 3042 results in great confusion, since you can't tell the players without a
+ − 3043 scorecard, and there is no scorecard.
+ − 3044
+ − 3045 There are two ways to solve this problem. The first is to create a
+ − 3046 universal coded character set. This is the concept behind Unicode.
+ − 3047 However, there have been satisfactory (nearly) universal character sets
+ − 3048 for several decades, but even today many Westerners resist using Unicode
+ − 3049 because they consider its space requirements excessive. On the other
+ − 3050 hand, Asians dislike Unicode because they consider it to be incomplete.
+ − 3051 (This is partly, but not entirely, political.)
+ − 3052
+ − 3053 In any case, Unicode only solves the internal representation problem.
+ − 3054 Many data sets will contain files in ``legacy'' encodings, and Unicode
+ − 3055 does not help distinguish among them.
+ − 3056
+ − 3057 The second approach is to embed information about the encodings used in
+ − 3058 a document in its text. This approach is taken by the ISO 2022
+ − 3059 standard. This would solve the problem completely from the users' of
+ − 3060 view, except that ISO 2022 is basically not implemented at all, in the
+ − 3061 sense that few applications or systems implement more than a small
+ − 3062 subset of ISO 2022 functionality. This is due to the fact that
+ − 3063 mono-literate users object to the presence of escape sequences in their
+ − 3064 texts (which they, with some justification, consider data corruption).
+ − 3065 Programmers are more than willing to cater to these users, since
+ − 3066 implementing ISO 2022 is a painstaking task.
+ − 3067
+ − 3068 In fact, Emacs/Mule adopts both of these approaches. Internally it uses
+ − 3069 a universal character set, @dfn{Mule code}. Externally it uses ISO 2022
+ − 3070 techniques both to save files in forms robust to encoding issues, and as
+ − 3071 hints when attempting to ``guess'' an unknown encoding. However, Mule
+ − 3072 suffers from a design defect, namely it embeds the character set
+ − 3073 information that ISO 2022 attaches to runs of characters by introducing
+ − 3074 them with a control sequence in each character. That causes Mule to
+ − 3075 consider the ISO Latin character sets to be disjoint. This manifests
+ − 3076 itself when a user enters characters using input methods associated with
+ − 3077 different coded character sets into a single buffer.
+ − 3078
+ − 3079 There are two problems stemming from this design. First, Mule
1188
+ − 3080 represents the same character in different ways. Abstractly, '�'
1183
+ − 3081 (LATIN SMALL LETTER O WITH ACUTE) can get represented as
+ − 3082 [latin-iso8859-1 #x73] or as [latin-iso8859-2 #x73]. So what looks like
1188
+ − 3083 '��' in the display might actually be represented [latin-iso8859-1
1183
+ − 3084 #x73][latin-iso8859-2 #x73] in the buffer, and saved as [#xF3 ESC - B
+ − 3085 #xF3 ESC - A] in the file. In some cases this treatment would be
+ − 3086 appropriate (consider HYPHEN, MINUS SIGN, EN DASH, EM DASH, and U+4E00
+ − 3087 (the CJK ideographic character meaning ``one'')), and although arguably
+ − 3088 incorrect it is convenient when mixing the CJK scripts. But in the case
+ − 3089 of the Latin scripts this is wrong.
+ − 3090
+ − 3091 Worse yet, it is very likely to occur when mixing ``different'' encodings
+ − 3092 (such as ISO 8859/1 and ISO 8859/15) that differ only in a few code
+ − 3093 points that are almost never used. A very important example involves
+ − 3094 email. Many sites, especially in the U.S., default to use of the ISO
+ − 3095 8859/1 coded character set (also called ``Latin 1,'' though these are
+ − 3096 somewhat different concepts). However, ISO 8859/1 provides a generic
+ − 3097 CURRENCY SIGN character. Now that the Euro has become the official
+ − 3098 currency of most countries in Europe, this is unsatisfactory (and in
+ − 3099 practice, useless). So Europeans generally use ISO 8859/15, which is
+ − 3100 nearly identical to ISO 8859/1 for most languages, except that it
+ − 3101 substitutes EURO SIGN for CURRENCY SIGN.
+ − 3102
+ − 3103 Suppose a European user yanks text from a post encoded in ISO 8859/1
+ − 3104 into a message composition buffer, and enters some text including the
+ − 3105 Euro sign. Then Mule will consider the buffer to contain both ISO
+ − 3106 8859/1 and ISO 8859/15 text, and MUAs such as Gnus will (if naively
+ − 3107 programmed) send the message as a multipart mixed MIME body!
+ − 3108
+ − 3109 This is clearly stupid. What is not as obvious is that, just as any
+ − 3110 European can include American English in their text because ASCII is a
+ − 3111 subset of ISO 8859/15, most European languages which use Latin
+ − 3112 characters (eg, German and Polish) can typically be mixed while using
+ − 3113 only one Latin coded character set (in the case of German and Polish,
+ − 3114 ISO 8859/2). However, this often depends on exactly what text is to be
+ − 3115 encoded (even for the same pair of languages).
+ − 3116
+ − 3117 Unification works around the problem by converting as many characters as
+ − 3118 possible to use a single Latin coded character set before saving the
+ − 3119 buffer.
+ − 3120
+ − 3121 Because the problem is rarely noticable in editing a buffer, but tends
+ − 3122 to manifest when that buffer is exported to a file or process, the
+ − 3123 Unification package uses the strategy of examining the buffer prior to
+ − 3124 export. If use of multiple Latin coded character sets is detected,
+ − 3125 Unification attempts to unify them by finding a single coded character
+ − 3126 set which contains all of the Latin characters in the buffer.
+ − 3127
+ − 3128 The primary purpose of Unification is to fix the problem by giving the
+ − 3129 user the choice to change the representation of all characters to one
+ − 3130 character set and give sensible recommendations based on context. In
1188
+ − 3131 the '�' example, either ISO 8859/1 or ISO 8859/2 is satisfactory, and
1183
+ − 3132 both will be suggested. In the EURO SIGN example, only ISO 8859/15
+ − 3133 makes sense, and that is what will be recommended. In both cases, the
+ − 3134 user will be reminded that there are universal encodings available.
+ − 3135
+ − 3136 I call this @dfn{remapping} (from the universal character set to a
+ − 3137 particular ISO 8859 coded character set). It is mere accident that this
+ − 3138 letter has the same code point in both character sets. (Not entirely,
+ − 3139 but there are many examples of Latin characters that have different code
+ − 3140 points in different Latin-X sets.)
+ − 3141
1188
+ − 3142 Note that, in the '�' example, that treating the buffer in this way will
1183
+ − 3143 result in a representation such as [latin-iso8859-2
+ − 3144 #x73][latin-iso8859-2 #x73], and the file will be saved as [#xF3 #xF3].
+ − 3145 This is guaranteed to occasionally result in the second problem you
+ − 3146 observed, to which we now turn.
+ − 3147
+ − 3148 This problem is that, although the file is intended to be an
+ − 3149 ISO-8859/2-encoded file, in an ISO 8859/1 locale Mule (and every POSIX
+ − 3150 compliant program---this is required by the standard, obvious if you
+ − 3151 think a bit, @pxref{What Unification Cannot Do for You}) will read that
+ − 3152 file as [latin-iso8859-1 #x73] [latin-iso8859-1 #x73]. Of course this
+ − 3153 is no problem if all of the characters in the file are contained in ISO
+ − 3154 8859/1, but suppose there are some which are not, but are contained in
+ − 3155 the (intended) ISO 8859/2.
+ − 3156
+ − 3157 You now want to fix this, but not by finding the same character in
+ − 3158 another set. Instead, you want to simply change the character set that
+ − 3159 Mule associates with that buffer position without changing the code.
+ − 3160 (This is conceptually somewhat distinct from the first problem, and
+ − 3161 logically ought to be handled in the code that defines coding systems.
+ − 3162 However, unification is not an unreasonable place for it.) Unification
+ − 3163 provides two functions (one fast and dangerous, the other slow and
+ − 3164 careful) to handle this. I call this @dfn{recoding}, because the
+ − 3165 transformation actually involves @emph{encoding} the buffer to file
+ − 3166 representation, then @emph{decoding} it to buffer representation (in a
+ − 3167 different character set). This cannot be done automatically because
+ − 3168 Mule can have no idea what the correct encoding is---after all, it
+ − 3169 already gave you its best guess. @xref{What Unification Cannot Do for
+ − 3170 You}. So these functions must be invoked by the user. @xref{Interactive
+ − 3171 Usage}.
+ − 3172
+ − 3173
+ − 3174 @node What Unification Cannot Do for You, Unification Internals, Theory of Operation, Charset Unification
+ − 3175 @subsection What Unification Cannot Do for You
+ − 3176
+ − 3177 Unification @strong{cannot} save you if you insist on exporting data in
+ − 3178 8-bit encodings in a multilingual environment. @emph{You will
+ − 3179 eventually corrupt data if you do this.} It is not Mule's, or any
+ − 3180 application's, fault. You will have only yourself to blame; consider
+ − 3181 yourself warned. (It is true that Mule has bugs, which make Mule
+ − 3182 somewhat more dangerous and inconvenient than some naive applications.
+ − 3183 We're working to address those, but no application can remedy the
+ − 3184 inherent defect of 8-bit encodings.)
+ − 3185
+ − 3186 Use standard universal encodings, preferably Unicode (UTF-8) unless
+ − 3187 applicable standards indicate otherwise. The most important such case
+ − 3188 is Internet messages, where MIME should be used, whether or not the
+ − 3189 subordinate encoding is a universal encoding. (Note that since one of
+ − 3190 the important provisions of MIME is the @samp{Content-Type} header,
+ − 3191 which has the charset parameter, MIME is to be considered a universal
+ − 3192 encoding for the purposes of this manual. Of course, technically
+ − 3193 speaking it's neither a coded character set nor a coding extension
+ − 3194 technique compliant with ISO 2022.)
+ − 3195
+ − 3196 As mentioned earlier, the problem is that standard encodings suffer from
+ − 3197 the design defect that they do not provide a reliable way to recognize
+ − 3198 which coded character sets are in use. There are scores of character
+ − 3199 sets which can be represented by a single octet (8-bit byte), whose
+ − 3200 union contains many hundreds of characters. Thus any 8-bit coded
+ − 3201 character set must contain characters that share code points used for
+ − 3202 different characters in other coded character sets.
+ − 3203
+ − 3204 This means that a given file's intended encoding cannot be identified
+ − 3205 with 100% reliability unless it contains encoding markers such as those
+ − 3206 provided by MIME or ISO 2022.
+ − 3207
+ − 3208 Unification actually makes it more likely that you will have problems of
+ − 3209 this kind. Traditionally Mule has been ``helpful'' by simply using an
+ − 3210 ISO 2022 universal coding system when the current buffer coding system
+ − 3211 cannot handle all the characters in the buffer. This has the effect
+ − 3212 that, because the file contains control sequences, it is not recognized
+ − 3213 as being in the locale's normal 8-bit encoding. It may be annoying if
+ − 3214 you are not a Mule expert, but your data is automatically recoverable
+ − 3215 with a tool you already have: Mule.
+ − 3216
+ − 3217 However, with unification, Mule converts to a single 8-bit character set
+ − 3218 when possible. But typically this will @emph{not} be in your usual
+ − 3219 locale. Ie, the times that an ISO 8859/1 user will need Unification is
+ − 3220 when there are ISO 8859/2 characters in the buffer. But then most
+ − 3221 likely the file will be saved in a pure 8-bit encoding that is not ISO
+ − 3222 8859/1, ie, ISO 8859/2. Mule's autorecognizer (which is probably the
+ − 3223 most sophisticated yet available) cannot tell the difference between ISO
+ − 3224 8859/1 and ISO 8859/2, and in a Western European locale will choose the
+ − 3225 former even though the latter was intended. Even the extension
+ − 3226 (``statistical recognition'') planned for XEmacs 22 is unlikely to be at
+ − 3227 all accurate in the case of mixed codes.
+ − 3228
+ − 3229 So now consider adding some additional ISO 8859/1 text to the buffer.
+ − 3230 If it includes any ISO 8859/1 codes that are used by different
+ − 3231 characters in ISO 8859/2, you now have a file that cannot be
+ − 3232 mechanically disentangled. You need a human being who can recognize
+ − 3233 that @emph{this is German and Swedish} and stays in Latin-1, while
+ − 3234 @emph{that is Polish} and needs to be recoded to Latin-2.
+ − 3235
+ − 3236 Moral: switch to a universal coded character set, preferably Unicode
+ − 3237 using the UTF-8 transformation format. If you really need the space,
+ − 3238 compress your files.
+ − 3239
+ − 3240
+ − 3241 @node Unification Internals, , What Unification Cannot Do for You, Charset Unification
+ − 3242 @subsection Internals
+ − 3243
+ − 3244 No internals documentation yet.
+ − 3245
+ − 3246 @file{unity-utils.el} provides one utility function.
+ − 3247
+ − 3248 @defun unity-dump-tables
+ − 3249
+ − 3250 Dump the temporary table created by loading @file{unity-utils.el}
+ − 3251 to @file{unity-tables.el}. Loading the latter file initializes
+ − 3252 @samp{unity-equivalences}.
+ − 3253 @end defun
+ − 3254
+ − 3255
+ − 3256 @node Charsets and Coding Systems, , Charset Unification, MULE
+ − 3257 @subsection Charsets and Coding Systems
+ − 3258
+ − 3259 This section provides reference lists of Mule charsets and coding
+ − 3260 systems. Mule charsets are typically named by character set and
+ − 3261 standard.
+ − 3262
+ − 3263 @table @strong
+ − 3264 @item ASCII variants
+ − 3265
+ − 3266 Identification of equivalent characters in these sets is not properly
+ − 3267 implemented. Unification does not distinguish the two charsets.
+ − 3268
+ − 3269 @samp{ascii} @samp{latin-jisx0201}
+ − 3270
+ − 3271 @item Extended Latin
+ − 3272
+ − 3273 Characters from the following ISO 2022 conformant charsets are
+ − 3274 identified with equivalents in other charsets in the group by
+ − 3275 Unification.
+ − 3276
+ − 3277 @samp{latin-iso8859-1} @samp{latin-iso8859-15} @samp{latin-iso8859-2}
+ − 3278 @samp{latin-iso8859-3} @samp{latin-iso8859-4} @samp{latin-iso8859-9}
+ − 3279 @samp{latin-iso8859-13} @samp{latin-iso8859-16}
+ − 3280
+ − 3281 The follow charsets are Latin variants which are not understood by
+ − 3282 Unification. In addition, many of the Asian language standards provide
+ − 3283 ASCII, at least, and sometimes other Latin characters. None of these
+ − 3284 are identified with their ISO 8859 equivalents.
+ − 3285
+ − 3286 @samp{vietnamese-viscii-lower}
+ − 3287 @samp{vietnamese-viscii-upper}
+ − 3288
+ − 3289 @item Other character sets
+ − 3290
+ − 3291 @samp{arabic-1-column}
+ − 3292 @samp{arabic-2-column}
+ − 3293 @samp{arabic-digit}
+ − 3294 @samp{arabic-iso8859-6}
+ − 3295 @samp{chinese-big5-1}
+ − 3296 @samp{chinese-big5-2}
+ − 3297 @samp{chinese-cns11643-1}
+ − 3298 @samp{chinese-cns11643-2}
+ − 3299 @samp{chinese-cns11643-3}
+ − 3300 @samp{chinese-cns11643-4}
+ − 3301 @samp{chinese-cns11643-5}
+ − 3302 @samp{chinese-cns11643-6}
+ − 3303 @samp{chinese-cns11643-7}
+ − 3304 @samp{chinese-gb2312}
+ − 3305 @samp{chinese-isoir165}
+ − 3306 @samp{cyrillic-iso8859-5}
+ − 3307 @samp{ethiopic}
+ − 3308 @samp{greek-iso8859-7}
+ − 3309 @samp{hebrew-iso8859-8}
+ − 3310 @samp{ipa}
+ − 3311 @samp{japanese-jisx0208}
+ − 3312 @samp{japanese-jisx0208-1978}
+ − 3313 @samp{japanese-jisx0212}
+ − 3314 @samp{katakana-jisx0201}
+ − 3315 @samp{korean-ksc5601}
+ − 3316 @samp{sisheng}
+ − 3317 @samp{thai-tis620}
+ − 3318 @samp{thai-xtis}
+ − 3319
+ − 3320 @item Non-graphic charsets
+ − 3321
+ − 3322 @samp{control-1}
+ − 3323 @end table
+ − 3324
+ − 3325 @table @strong
+ − 3326 @item No conversion
+ − 3327
+ − 3328 Some of these coding systems may specify EOL conventions. Note that
+ − 3329 @samp{iso-8859-1} is a no-conversion coding system, not an ISO 2022
+ − 3330 coding system. Although unification attempts to compensate for this, it
+ − 3331 is possible that the @samp{iso-8859-1} coding system will behave
+ − 3332 differently from other ISO 8859 coding systems.
+ − 3333
+ − 3334 @samp{binary} @samp{no-conversion} @samp{raw-text} @samp{iso-8859-1}
+ − 3335
+ − 3336 @item Latin coding systems
+ − 3337
+ − 3338 These coding systems are all single-byte, 8-bit ISO 2022 coding systems,
+ − 3339 combining ASCII in the GL register (bytes with high-bit clear) and an
+ − 3340 extended Latin character set in the GR register (bytes with high-bit set).
+ − 3341
+ − 3342 @samp{iso-8859-15} @samp{iso-8859-2} @samp{iso-8859-3} @samp{iso-8859-4}
+ − 3343 @samp{iso-8859-9} @samp{iso-8859-13} @samp{iso-8859-14} @samp{iso-8859-16}
+ − 3344
+ − 3345 These coding systems are single-byte, 8-bit coding systems that do not
+ − 3346 conform to international standards. They should be avoided in all
+ − 3347 potentially multilingual contexts, including any text distributed over
+ − 3348 the Internet and World Wide Web.
+ − 3349
+ − 3350 @samp{windows-1251}
+ − 3351
+ − 3352 @item Multilingual coding systems
+ − 3353
+ − 3354 The following ISO-2022-based coding systems are useful for multilingual
+ − 3355 text.
+ − 3356
+ − 3357 @samp{ctext} @samp{iso-2022-lock} @samp{iso-2022-7} @samp{iso-2022-7bit}
+ − 3358 @samp{iso-2022-7bit-ss2} @samp{iso-2022-8} @samp{iso-2022-8bit-ss2}
+ − 3359
+ − 3360 XEmacs also supports Unicode with the Mule-UCS package. These are the
+ − 3361 preferred coding systems for multilingual use. (There is a possible
+ − 3362 exception for texts that mix several Asian ideographic character sets.)
+ − 3363
+ − 3364 @samp{utf-16-be} @samp{utf-16-be-no-signature} @samp{utf-16-le}
+ − 3365 @samp{utf-16-le-no-signature} @samp{utf-7} @samp{utf-7-safe}
+ − 3366 @samp{utf-8} @samp{utf-8-ws}
+ − 3367
+ − 3368 Development versions of XEmacs (the 21.5 series) support Unicode
+ − 3369 internally, with (at least) the following coding systems implemented:
+ − 3370
+ − 3371 @samp{utf-16-be} @samp{utf-16-be-bom} @samp{utf-16-le}
+ − 3372 @samp{utf-16-le-bom} @samp{utf-8} @samp{utf-8-bom}
+ − 3373
+ − 3374 @item Asian ideographic languages
+ − 3375
+ − 3376 The following coding systems are based on ISO 2022, and are more or less
+ − 3377 suitable for encoding multilingual texts. They all can represent ASCII
+ − 3378 at least, and sometimes several other foreign character sets, without
+ − 3379 resort to arbitrary ISO 2022 designations. However, these subsets are
+ − 3380 not identified with the corresponding national standards in XEmacs Mule.
+ − 3381
+ − 3382 @samp{chinese-euc} @samp{cn-big5} @samp{cn-gb-2312} @samp{gb2312}
+ − 3383 @samp{hz} @samp{hz-gb-2312} @samp{old-jis} @samp{japanese-euc}
+ − 3384 @samp{junet} @samp{euc-japan} @samp{euc-jp} @samp{iso-2022-jp}
+ − 3385 @samp{iso-2022-jp-1978-irv} @samp{iso-2022-jp-2} @samp{euc-kr}
+ − 3386 @samp{korean-euc} @samp{iso-2022-kr} @samp{iso-2022-int-1}
+ − 3387
+ − 3388 The following coding systems cannot be used for general multilingual
+ − 3389 text and do not cooperate well with other coding systems.
+ − 3390
+ − 3391 @samp{big5} @samp{shift_jis}
+ − 3392
+ − 3393 @item Other languages
+ − 3394
+ − 3395 The following coding systems are based on ISO 2022. Though none of them
+ − 3396 provides any Latin characters beyond ASCII, XEmacs Mule allows (and up
+ − 3397 to 21.4 defaults to) use of ISO 2022 control sequences to designate
+ − 3398 other character sets for inclusion the text.
+ − 3399
+ − 3400 @samp{iso-8859-5} @samp{iso-8859-7} @samp{iso-8859-8}
+ − 3401 @samp{ctext-hebrew}
+ − 3402
+ − 3403 The following are character sets that do not conform to ISO 2022 and
+ − 3404 thus cannot be safely used in a multilingual context.
+ − 3405
+ − 3406 @samp{alternativnyj} @samp{koi8-r} @samp{tis-620} @samp{viqr}
+ − 3407 @samp{viscii} @samp{vscii}
+ − 3408
+ − 3409 @item Special coding systems
+ − 3410
+ − 3411 Mule uses the following coding systems for special purposes.
+ − 3412
+ − 3413 @samp{automatic-conversion} @samp{undecided} @samp{escape-quoted}
+ − 3414
+ − 3415 @samp{escape-quoted} is especially important, as it is used internally
+ − 3416 as the coding system for autosaved data.
+ − 3417
+ − 3418 The following coding systems are aliases for others, and are used for
+ − 3419 communication with the host operating system.
+ − 3420
+ − 3421 @samp{file-name} @samp{keyboard} @samp{terminal}
+ − 3422
+ − 3423 @end table
+ − 3424
+ − 3425 Mule detection of coding systems is actually limited to detection of
+ − 3426 classes of coding systems called @dfn{coding categories}. These coding
+ − 3427 categories are identified by the ISO 2022 control sequences they use, if
+ − 3428 any, by their conformance to ISO 2022 restrictions on code points that
+ − 3429 may be used, and by characteristic patterns of use of 8-bit code points.
+ − 3430
+ − 3431 @samp{no-conversion}
+ − 3432 @samp{utf-8}
+ − 3433 @samp{ucs-4}
+ − 3434 @samp{iso-7}
+ − 3435 @samp{iso-lock-shift}
+ − 3436 @samp{iso-8-1}
+ − 3437 @samp{iso-8-2}
+ − 3438 @samp{iso-8-designate}
+ − 3439 @samp{shift-jis}
+ − 3440 @samp{big5}
+ − 3441
+ − 3442
+ − 3443 @c end of mule.texi
+ − 3444