428
|
1 /*
|
|
2 * Copyright (c) 1995 by Sun Microsystems, Inc.
|
|
3 * All rights reserved.
|
|
4 *
|
|
5 * This source code is a product of Sun Microsystems, Inc. and is provided
|
|
6 * for unrestricted use provided that this legend is included on all tape
|
|
7 * media and as a part of the software program in whole or part. Users
|
|
8 * may copy or modify this source code without charge, but are not authorized
|
|
9 * to license or distribute it to anyone else except as part of a product or
|
|
10 * program developed by the user.
|
|
11 *
|
|
12 * THIS PROGRAM CONTAINS SOURCE CODE COPYRIGHTED BY SUN MICROSYSTEMS, INC.
|
|
13 * SUN MICROSYSTEMS, INC., MAKES NO REPRESENTATIONS ABOUT THE SUITABLITY
|
|
14 * OF SUCH SOURCE CODE FOR ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT
|
|
15 * EXPRESS OR IMPLIED WARRANTY OF ANY KIND. SUN MICROSYSTEMS, INC. DISCLAIMS
|
|
16 * ALL WARRANTIES WITH REGARD TO SUCH SOURCE CODE, INCLUDING ALL IMPLIED
|
|
17 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN
|
|
18 * NO EVENT SHALL SUN MICROSYSTEMS, INC. BE LIABLE FOR ANY SPECIAL, INDIRECT,
|
|
19 * INCIDENTAL, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
|
|
20 * FROM USE OF SUCH SOURCE CODE, REGARDLESS OF THE THEORY OF LIABILITY.
|
|
21 *
|
|
22 * This source code is provided with no support and without any obligation on
|
|
23 * the part of Sun Microsystems, Inc. to assist in its use, correction,
|
|
24 * modification or enhancement.
|
|
25 *
|
|
26 * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
|
|
27 * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS
|
|
28 * SOURCE CODE OR ANY PART THEREOF.
|
|
29 *
|
|
30 * Sun Microsystems, Inc.
|
|
31 * 2550 Garcia Avenue
|
|
32 * Mountain View, California 94043
|
|
33 */
|
|
34
|
|
35 #pragma ident "@(#) $Id: _relocate.c,v 1.4 1998/03/31 20:10:55 steve Exp $ - SMI"
|
|
36
|
|
37 /* LINTLIBRARY */
|
|
38
|
|
39 #include <string.h>
|
|
40 #include <sys/elf_ppc.h>
|
|
41 #include "_dynodump.h"
|
|
42
|
|
43
|
|
44 /*
|
|
45 * NOTE: These macros will work reliably only on 32-bit 2's
|
|
46 * complement machines. The type of P in all cases should
|
|
47 * by unsigned char *
|
|
48 */
|
|
49 #if defined(_BIG_ENDIAN)
|
|
50
|
|
51 #define GET4(P) ((long)(((unsigned long)(P)[0] << 24) | \
|
|
52 ((unsigned long)(P)[1] << 16) | \
|
|
53 ((unsigned long)(P)[2] << 8) | \
|
|
54 (unsigned long)(P)[3]))
|
|
55 #define PUT4(V, P) { \
|
|
56 (P)[0] = (unsigned char)((V) >> 24); \
|
|
57 (P)[1] = (unsigned char)((V) >> 16); \
|
|
58 (P)[2] = (unsigned char)((V) >> 8); \
|
|
59 (P)[3] = (unsigned char)(V); \
|
|
60 }
|
|
61 #define GEThalf(P) ((long) (((unsigned long) (P)[0] << 8) | \
|
|
62 ((unsigned long) (P)[1])))
|
|
63 #define GETword(P) GET4(P)
|
|
64 #define PUThalf(V, P) { \
|
|
65 (P)[0] = ((V) >> 8); \
|
|
66 (P)[1] = ((V)); \
|
|
67 }
|
|
68 #define PUTword(V, P) PUT4(V, P)
|
|
69
|
|
70 #elif defined(_LITTLE_ENDIAN)
|
|
71
|
|
72 #define GET4(P) ((long)(((unsigned long)(P)[0]) | \
|
|
73 ((unsigned long)(P)[1] << 8) | \
|
|
74 ((unsigned long)(P)[2] << 16) | \
|
|
75 ((unsigned long)(P)[3]) << 24))
|
|
76 #define PUT4(V, P) { \
|
|
77 (P)[0] = (unsigned char)(V); \
|
|
78 (P)[1] = (unsigned char)((V) >> 8); \
|
|
79 (P)[2] = (unsigned char)((V) >> 16); \
|
|
80 (P)[3] = (unsigned char)((V) >> 24); \
|
|
81 }
|
|
82 #define GEThalf(P) ((long) (((unsigned long) (P)[0]) | \
|
|
83 ((unsigned long) (P)[1] << 8)))
|
|
84 #define GETword(P) GET4(P)
|
|
85 #define PUThalf(V, P) { \
|
|
86 (P)[0] = (V); \
|
|
87 (P)[1] = ((V) >> 8); \
|
|
88 }
|
|
89 #define PUTword(V, P) PUT4(V, P)
|
|
90
|
|
91 #endif /* defined(_LITTLE_ENDIAN) */
|
|
92
|
|
93 /*
|
|
94 * NAME VALUE FIELD CALCULATION
|
|
95 *
|
|
96 * R_PPC_NONE 0 none none
|
|
97 * R_PPC_ADDR32 1 word32 S + A
|
|
98 * R_PPC_ADDR24 2 low24 (S + A) >> 2
|
|
99 * R_PPC_ADDR16 3 half16 S + A
|
|
100 * R_PPC_ADDR16_LO 4 half16 #lo(S + A)
|
|
101 * R_PPC_ADDR16_HI 5 half16 #hi(S + A)
|
|
102 * R_PPC_ADDR16_HA 6 half16 #ha(S + A)
|
|
103 * R_PPC_ADDR14 7 low14 (S + A) >> 2
|
|
104 * R_PPC_ADDR14_BRTAKEN 8 low14 (S + A) >> 2
|
|
105 * R_PPC_ADDR14_BRNTAKEN 9 low14 (S + A) >> 2
|
|
106 * R_PPC_REL24 10 low24 (S + A - P) >> 2
|
|
107 * R_PPC_REL14 11 low14 (S + A - P) >> 2
|
|
108 * R_PPC_REL14_BRTAKEN 12 low14 (S + A - P) >> 2
|
|
109 * R_PPC_REL14_BRNTAKEN 13 low14 (S + A - P) >> 2
|
|
110 * R_PPC_GOT16 14 half16 G + A
|
|
111 * R_PPC_GOT16_LO 15 half16 #lo(G + A)
|
|
112 * R_PPC_GOT16_HI 16 half16 #hi(G + A)
|
|
113 * R_PPC_GOT16_HA 17 half16 #ha(G + A)
|
|
114 * R_PPC_PLT24 18 low24 (L + A - P) >> 2
|
|
115 * R_PPC_COPY 19 none none
|
|
116 * R_PPC_GLOB_DAT 20 word32 S + A
|
|
117 * R_PPC_JMP_SLOT 21 none see below
|
|
118 * R_PPC_RELATIVE 22 word32 B + A
|
|
119 * R_PPC_LOCAL24PC 23 low24 see below
|
|
120 * R_PPC_UADDR32 24 word32 S + A
|
|
121 * R_PPC_UADDR16 25 half16 S + A
|
|
122 *
|
|
123 * This is Figure 4-3: Relocation Types from the Draft Copy of
|
|
124 * the ABI, Printed on 7/25/94.
|
|
125 *
|
|
126 * The field column specifies how much of the data
|
|
127 * at the reference address is to be used. The data are assumed to be
|
|
128 * right-justified with the least significant bit at the right.
|
|
129 * In the case of plt24 addresses, the reference address is
|
|
130 * assumed to be that of a 6-word PLT entry. The address is the right-
|
|
131 * most 24 bits of the third word.
|
|
132 */
|
|
133 static void
|
|
134 move_reloc(unsigned char *iaddr, unsigned char *oaddr, unsigned char type)
|
|
135 {
|
|
136 switch(type) {
|
|
137 case R_PPC_NONE:
|
|
138 break;
|
|
139
|
|
140 case R_PPC_ADDR32:
|
|
141 case R_PPC_UADDR32:
|
|
142 PUTword(GETword(iaddr), oaddr);
|
|
143 break;
|
|
144
|
|
145 case R_PPC_ADDR24:
|
|
146 case R_PPC_REL24:
|
|
147 case R_PPC_PLT24:
|
|
148 case R_PPC_LOCAL24PC:
|
|
149 /* XXX - big assumption here that the original contents were masked
|
|
150 * properly. If this assumption proves correct, then these 24bit
|
|
151 * cases can be folded into the above 32bit cases.
|
|
152 */
|
|
153 PUTword(GETword(iaddr), oaddr);
|
|
154 break;
|
|
155
|
|
156 case R_PPC_ADDR16:
|
|
157 case R_PPC_UADDR16:
|
|
158 case R_PPC_GOT16:
|
|
159 PUThalf(GEThalf(iaddr), oaddr);
|
|
160 break;
|
|
161
|
|
162 case R_PPC_ADDR16_LO:
|
|
163 case R_PPC_GOT16_LO:
|
|
164 /* XXX - more assumptions which if proved correct, we can
|
|
165 * do some folding with above cases
|
|
166 */
|
|
167 PUThalf(GEThalf(iaddr), oaddr);
|
|
168 break;
|
|
169
|
|
170 case R_PPC_ADDR16_HI:
|
|
171 case R_PPC_GOT16_HI:
|
|
172 /* XXX - more assumptions which if proved correct, we can
|
|
173 * do some folding with above cases
|
|
174 */
|
|
175 PUThalf(GEThalf(iaddr), oaddr);
|
|
176 break;
|
|
177
|
|
178 case R_PPC_ADDR16_HA:
|
|
179 case R_PPC_GOT16_HA:
|
|
180 /* XXX - more assumptions which if proved correct, we can
|
|
181 * do some folding with above cases
|
|
182 */
|
|
183 PUThalf(GEThalf(iaddr), oaddr);
|
|
184 break;
|
|
185
|
|
186 case R_PPC_ADDR14:
|
|
187 case R_PPC_ADDR14_BRTAKEN:
|
|
188 case R_PPC_ADDR14_BRNTAKEN:
|
|
189 case R_PPC_REL14:
|
|
190 case R_PPC_REL14_BRTAKEN:
|
|
191 case R_PPC_REL14_BRNTAKEN:
|
|
192 /* XXX - big assumption here that the original contents were masked
|
|
193 * properly. If this assumption proves correct, then these 14bit
|
|
194 * cases can be folded into the above 32bit cases.
|
|
195 */
|
|
196 PUTword(GETword(iaddr), oaddr);
|
|
197 break;
|
|
198
|
|
199 case R_PPC_COPY:
|
|
200 break;
|
|
201
|
|
202 case R_PPC_GLOB_DAT:
|
|
203 case R_PPC_RELATIVE:
|
|
204 PUTword(GETword(iaddr), oaddr);
|
|
205 break;
|
|
206
|
|
207 case R_PPC_JMP_SLOT:
|
|
208 break;
|
|
209
|
|
210 default:
|
|
211 break;
|
|
212 }
|
|
213 }
|
|
214
|
|
215 void
|
|
216 update_reloc(Cache *ocache, Cache *_ocache, Cache *icache, Cache *_icache, Half shnum)
|
|
217 {
|
|
218 Shdr *shdr;
|
|
219 Rel *rels;
|
|
220 int reln, cnt;
|
|
221 Cache *orcache, * ircache;
|
|
222
|
|
223 /*
|
|
224 * Set up to read the output relocation table.
|
|
225 */
|
|
226 shdr = _ocache->c_shdr;
|
|
227 rels = (Rel *)_ocache->c_data->d_buf;
|
|
228 reln = shdr->sh_size / shdr->sh_entsize;
|
|
229
|
|
230 /*
|
|
231 * Determine the section that is being relocated.
|
|
232 */
|
|
233 orcache = &ocache[shdr->sh_info];
|
|
234 shdr = _icache->c_shdr;
|
|
235 ircache = &icache[shdr->sh_info];
|
|
236
|
|
237 /*
|
|
238 * Loop through the relocation table.
|
|
239 */
|
|
240 for (cnt = 0; cnt < reln; cnt++, rels++) {
|
|
241 unsigned char type = ELF_R_TYPE(rels->r_info);
|
|
242
|
|
243 /*
|
|
244 * Ignore some relocations as these can safely be carried out
|
|
245 * twice (they simply override any existing data). In fact,
|
|
246 * some relocations like __iob's copy relocation must be carried
|
|
247 * out each time the process restarts otherwise stdio blows up.
|
|
248 */
|
|
249 if ((type == R_PPC_COPY) || (type == R_PPC_JMP_SLOT) ||
|
|
250 (type == R_PPC_NONE))
|
|
251 continue;
|
|
252
|
|
253 {
|
|
254 unsigned char *iaddr, *oaddr;
|
|
255 Addr off;
|
|
256
|
|
257 /*
|
|
258 * If we are required to restore the relocation location
|
|
259 * to its value prior to relocation, then read the
|
|
260 * locations original contents from the input image and
|
|
261 * copy it to the output image.
|
|
262 */
|
|
263 off = rels->r_offset - ircache->c_shdr->sh_addr;
|
|
264 iaddr = (unsigned char *)ircache->c_data->d_buf + off;
|
|
265 oaddr = (unsigned char *)orcache->c_data->d_buf + off;
|
|
266 move_reloc(iaddr, oaddr, type);
|
|
267 }
|
|
268 }
|
|
269 }
|