70
|
1 /* CCL -- Code Conversion Language Interpreter
|
|
2 Copyright (C) 1992, 1995 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
4
|
|
5 This file is part of XEmacs.
|
|
6
|
|
7 XEmacs is free software; you can redistribute it and/or modify it
|
|
8 under the terms of the GNU General Public License as published by the
|
|
9 Free Software Foundation; either version 2, or (at your option) any
|
|
10 later version.
|
|
11
|
|
12 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
15 for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with XEmacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
|
22 /* Synched up with: Mule 2.3. Not in FSF. */
|
|
23
|
|
24 #include <config.h>
|
|
25 #include "lisp.h"
|
|
26
|
|
27 #include "buffer.h"
|
|
28 #include "mule-coding.h"
|
|
29
|
|
30 /* CCL operators */
|
|
31 #define CCL_SetCS 0x00
|
|
32 #define CCL_SetCL 0x01
|
|
33 #define CCL_SetR 0x02
|
|
34 #define CCL_SetA 0x03
|
|
35 #define CCL_Jump 0x04
|
|
36 #define CCL_JumpCond 0x05
|
|
37 #define CCL_WriteJump 0x06
|
|
38 #define CCL_WriteReadJump 0x07
|
|
39 #define CCL_WriteCJump 0x08
|
|
40 #define CCL_WriteCReadJump 0x09
|
|
41 #define CCL_WriteSJump 0x0A
|
|
42 #define CCL_WriteSReadJump 0x0B
|
|
43 #define CCL_WriteAReadJump 0x0C
|
|
44 #define CCL_Branch 0x0D
|
|
45 #define CCL_Read1 0x0E
|
|
46 #define CCL_Read2 0x0F
|
|
47 #define CCL_ReadBranch 0x10
|
|
48 #define CCL_Write1 0x11
|
|
49 #define CCL_Write2 0x12
|
|
50 #define CCL_WriteC 0x13
|
|
51 #define CCL_WriteS 0x14
|
|
52 #define CCL_WriteA 0x15
|
|
53 #define CCL_End 0x16
|
|
54 #define CCL_SetSelfCS 0x17
|
|
55 #define CCL_SetSelfCL 0x18
|
|
56 #define CCL_SetSelfR 0x19
|
|
57 #define CCL_SetExprCL 0x1A
|
|
58 #define CCL_SetExprR 0x1B
|
|
59 #define CCL_JumpCondC 0x1C
|
|
60 #define CCL_JumpCondR 0x1D
|
|
61 #define CCL_ReadJumpCondC 0x1E
|
|
62 #define CCL_ReadJumpCondR 0x1F
|
|
63
|
|
64 #define CCL_PLUS 0x00
|
|
65 #define CCL_MINUS 0x01
|
|
66 #define CCL_MUL 0x02
|
|
67 #define CCL_DIV 0x03
|
|
68 #define CCL_MOD 0x04
|
|
69 #define CCL_AND 0x05
|
|
70 #define CCL_OR 0x06
|
|
71 #define CCL_XOR 0x07
|
|
72 #define CCL_LSH 0x08
|
|
73 #define CCL_RSH 0x09
|
|
74 #define CCL_LSH8 0x0A
|
|
75 #define CCL_RSH8 0x0B
|
|
76 #define CCL_DIVMOD 0x0C
|
|
77 #define CCL_LS 0x10
|
|
78 #define CCL_GT 0x11
|
|
79 #define CCL_EQ 0x12
|
|
80 #define CCL_LE 0x13
|
|
81 #define CCL_GE 0x14
|
|
82 #define CCL_NE 0x15
|
|
83
|
|
84 /* Header of CCL compiled code */
|
|
85 #define CCL_HEADER_EOF 0
|
|
86 #define CCL_HEADER_MAIN 1
|
|
87
|
|
88 #define CCL_STAT_SUCCESS 0
|
|
89 #define CCL_STAT_SUSPEND 1
|
|
90 #define CCL_STAT_INVALID_CMD 2
|
|
91
|
|
92 #define CCL_SUCCESS \
|
|
93 ccl->status = CCL_STAT_SUCCESS; \
|
|
94 goto ccl_finish
|
|
95 #define CCL_SUSPEND \
|
|
96 ccl->ic = --ic; \
|
|
97 ccl->status = CCL_STAT_SUSPEND; \
|
|
98 goto ccl_finish
|
|
99 #define CCL_INVALID_CMD \
|
|
100 ccl->status = CCL_STAT_INVALID_CMD; \
|
|
101 goto ccl_error_handler
|
|
102
|
|
103 #define CCL_WRITE_CHAR(ch) do \
|
|
104 { \
|
|
105 if (!src) \
|
|
106 { \
|
|
107 CCL_INVALID_CMD; \
|
|
108 } \
|
|
109 else \
|
|
110 { \
|
|
111 /* !!#### is this correct for both directions????? */ \
|
|
112 Bufbyte __buf__[MAX_EMCHAR_LEN]; \
|
|
113 int __len__; \
|
|
114 __len__ = set_charptr_emchar (__buf__, ch); \
|
|
115 Dynarr_add_many (dst, __buf__, __len__); \
|
|
116 } \
|
|
117 } while (0)
|
|
118
|
|
119 #define CCL_WRITE_STRING(len) do \
|
|
120 { \
|
|
121 if (!src) \
|
|
122 { \
|
|
123 CCL_INVALID_CMD; \
|
|
124 } \
|
|
125 else \
|
|
126 { \
|
|
127 for (j = 0; j < len; j++) \
|
|
128 Dynarr_add (dst, XINT (prog[ic + 1 + j])); \
|
|
129 } \
|
|
130 } while (0)
|
|
131
|
|
132 #define CCL_READ_CHAR(r) do \
|
|
133 { \
|
|
134 if (!src) \
|
|
135 { \
|
|
136 CCL_INVALID_CMD; \
|
|
137 } \
|
|
138 else if (s < s_end) \
|
|
139 r = *s++; \
|
|
140 else if (end_flag) \
|
|
141 { \
|
|
142 ic = XINT (prog[CCL_HEADER_EOF]); \
|
|
143 continue; \
|
|
144 } \
|
|
145 else \
|
|
146 { \
|
|
147 CCL_SUSPEND; \
|
|
148 } \
|
|
149 } while (0)
|
|
150
|
|
151
|
|
152 /* Run a CCL program. The initial state and program are contained in
|
|
153 CCL. SRC, if non-zero, specifies a source string (of size N)
|
|
154 to read bytes from, and DST, of non-zero, specifies a destination
|
|
155 Dynarr to write bytes to. If END_FLAG is set, it means that
|
|
156 the end section of the CCL program should be run rather than
|
|
157 the normal section.
|
|
158
|
|
159 For CCL programs that do not involve code conversion (e.g.
|
|
160 converting a single character into a font index), all parameters
|
|
161 but the first will usually be 0. */
|
|
162
|
|
163 int
|
|
164 ccl_driver (struct ccl_program *ccl, CONST unsigned char *src,
|
|
165 unsigned_char_dynarr *dst, int n, int end_flag)
|
|
166 {
|
|
167 int code, op, rrr, cc, i, j;
|
|
168 CONST unsigned char *s, *s_end;
|
|
169 int ic = ccl->ic;
|
|
170 int *reg = ccl->reg;
|
|
171 Lisp_Object *prog = ccl->prog;
|
|
172
|
|
173 if (!ic)
|
|
174 ic = CCL_HEADER_MAIN;
|
|
175
|
|
176 if (src)
|
|
177 {
|
|
178 s = src;
|
|
179 s_end = s + n;
|
|
180 }
|
|
181
|
|
182 while (1)
|
|
183 {
|
|
184 code = XINT (prog[ic++]);
|
|
185 op = code & 0x1F;
|
|
186 rrr = (code >> 5) & 0x7;
|
|
187 cc = code >> 8;
|
|
188
|
|
189 switch (op)
|
|
190 {
|
|
191 case CCL_SetCS:
|
|
192 reg[rrr] = cc; continue;
|
|
193 case CCL_SetCL:
|
|
194 reg[rrr] = XINT (prog[ic++]); continue;
|
|
195 case CCL_SetR:
|
|
196 reg[rrr] = reg[cc]; continue;
|
|
197 case CCL_SetA:
|
|
198 cc = reg[cc];
|
|
199 i = XINT (prog[ic++]);
|
|
200 if (cc >= 0 && cc < i)
|
|
201 reg[rrr] = XINT (prog[ic + cc]);
|
|
202 ic += i;
|
|
203 continue;
|
|
204 case CCL_Jump:
|
|
205 ic = cc; continue;
|
|
206 case CCL_JumpCond:
|
|
207 if (!reg[rrr])
|
|
208 ic = cc;
|
|
209 continue;
|
|
210 case CCL_WriteJump:
|
|
211 CCL_WRITE_CHAR (reg[rrr]);
|
|
212 ic = cc;
|
|
213 continue;
|
|
214 case CCL_WriteReadJump:
|
|
215 if (ccl->status != CCL_STAT_SUSPEND)
|
|
216 {
|
|
217 CCL_WRITE_CHAR (reg[rrr]);
|
|
218 }
|
|
219 else
|
|
220 ccl->status = CCL_STAT_SUCCESS;
|
|
221 CCL_READ_CHAR (reg[rrr]);
|
|
222 ic = cc;
|
|
223 continue;
|
|
224 case CCL_WriteCJump:
|
|
225 CCL_WRITE_CHAR (XINT (prog[ic]));
|
|
226 ic = cc;
|
|
227 continue;
|
|
228 case CCL_WriteCReadJump:
|
|
229 if (ccl->status != CCL_STAT_SUSPEND)
|
|
230 {
|
|
231 CCL_WRITE_CHAR (XINT (prog[ic]));
|
|
232 }
|
|
233 else
|
|
234 ccl->status = CCL_STAT_SUCCESS;
|
|
235 CCL_READ_CHAR (reg[rrr]);
|
|
236 ic = cc;
|
|
237 continue;
|
|
238 case CCL_WriteSJump:
|
|
239 i = XINT (prog[ic]);
|
|
240 CCL_WRITE_STRING (i);
|
|
241 ic = cc;
|
|
242 continue;
|
|
243 case CCL_WriteSReadJump:
|
|
244 if (ccl->status != CCL_STAT_SUSPEND)
|
|
245 {
|
|
246 i = XINT (prog[ic]);
|
|
247 CCL_WRITE_STRING (i);
|
|
248 }
|
|
249 else
|
|
250 ccl->status = CCL_STAT_SUCCESS;
|
|
251 CCL_READ_CHAR (reg[rrr]);
|
|
252 ic = cc;
|
|
253 continue;
|
|
254 case CCL_WriteAReadJump:
|
|
255 if (ccl->status != CCL_STAT_SUSPEND)
|
|
256 {
|
|
257 i = XINT (prog[ic]);
|
|
258 if (reg[rrr] >= 0 && reg[rrr] < i)
|
|
259 CCL_WRITE_CHAR (XINT (prog[ic + 1 + reg[rrr]]));
|
|
260 }
|
|
261 else
|
|
262 ccl->status = CCL_STAT_SUCCESS;
|
|
263 CCL_READ_CHAR (reg[rrr]);
|
|
264 ic = cc;
|
|
265 continue;
|
|
266 case CCL_ReadBranch:
|
|
267 CCL_READ_CHAR (reg[rrr]);
|
|
268 case CCL_Branch:
|
|
269 ic = XINT (prog[ic + (((unsigned int) reg[rrr] < cc)
|
|
270 ? reg[rrr] : cc)]);
|
|
271 continue;
|
|
272 case CCL_Read1:
|
|
273 CCL_READ_CHAR (reg[rrr]);
|
|
274 continue;
|
|
275 case CCL_Read2:
|
|
276 CCL_READ_CHAR (reg[rrr]);
|
|
277 CCL_READ_CHAR (reg[cc]);
|
|
278 continue;
|
|
279 case CCL_Write1:
|
|
280 CCL_WRITE_CHAR (reg[rrr]);
|
|
281 continue;
|
|
282 case CCL_Write2:
|
|
283 CCL_WRITE_CHAR (reg[rrr]);
|
|
284 CCL_WRITE_CHAR (reg[cc]);
|
|
285 continue;
|
|
286 case CCL_WriteC:
|
|
287 i = XINT (prog[ic++]);
|
|
288 CCL_WRITE_CHAR (i);
|
|
289 continue;
|
|
290 case CCL_WriteS:
|
|
291 cc = XINT (prog[ic]);
|
|
292 CCL_WRITE_STRING (cc);
|
|
293 ic += cc + 1;
|
|
294 continue;
|
|
295 case CCL_WriteA:
|
|
296 i = XINT (prog[ic++]);
|
|
297 cc = reg[rrr];
|
|
298 if (cc >= 0 && cc < i)
|
|
299 CCL_WRITE_CHAR (XINT (prog[ic + cc]));
|
|
300 ic += i;
|
|
301 continue;
|
|
302 case CCL_End:
|
|
303 CCL_SUCCESS;
|
|
304 case CCL_SetSelfCS:
|
|
305 i = cc;
|
|
306 op = XINT (prog[ic++]);
|
|
307 goto ccl_set_self;
|
|
308 case CCL_SetSelfCL:
|
|
309 i = XINT (prog[ic++]);
|
|
310 op = XINT (prog[ic++]);
|
|
311 goto ccl_set_self;
|
|
312 case CCL_SetSelfR:
|
|
313 i = reg[cc];
|
|
314 op = XINT (prog[ic++]);
|
|
315 ccl_set_self:
|
|
316 switch (op)
|
|
317 {
|
|
318 case CCL_PLUS: reg[rrr] += i; break;
|
|
319 case CCL_MINUS: reg[rrr] -= i; break;
|
|
320 case CCL_MUL: reg[rrr] *= i; break;
|
|
321 case CCL_DIV: reg[rrr] /= i; break;
|
|
322 case CCL_MOD: reg[rrr] %= i; break;
|
|
323 case CCL_AND: reg[rrr] &= i; break;
|
|
324 case CCL_OR: reg[rrr] |= i; break;
|
|
325 case CCL_XOR: reg[rrr] ^= i; break;
|
|
326 case CCL_LSH: reg[rrr] <<= i; break;
|
|
327 case CCL_RSH: reg[rrr] >>= i; break;
|
|
328 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
|
|
329 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
|
|
330 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
|
|
331 case CCL_LS: reg[rrr] = reg[rrr] < i; break;
|
|
332 case CCL_GT: reg[rrr] = reg[rrr] > i; break;
|
|
333 case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
|
|
334 case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
|
|
335 case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
|
|
336 case CCL_NE: reg[rrr] = reg[rrr] != i; break;
|
|
337 default: CCL_INVALID_CMD;
|
|
338 }
|
|
339 continue;
|
|
340 case CCL_SetExprCL:
|
|
341 i = reg[cc];
|
|
342 j = XINT (prog[ic++]);
|
|
343 op = XINT (prog[ic++]);
|
|
344 cc = 0;
|
|
345 goto ccl_set_expr;
|
|
346 case CCL_SetExprR:
|
|
347 i = reg[cc];
|
|
348 j = reg[XINT (prog[ic++])];
|
|
349 op = XINT (prog[ic++]);
|
|
350 cc = 0;
|
|
351 goto ccl_set_expr;
|
|
352 case CCL_ReadJumpCondC:
|
|
353 CCL_READ_CHAR (reg[rrr]);
|
|
354 case CCL_JumpCondC:
|
|
355 i = reg[rrr];
|
|
356 j = XINT (prog[ic++]);
|
|
357 rrr = 7;
|
|
358 op = XINT (prog[ic++]);
|
|
359 goto ccl_set_expr;
|
|
360 case CCL_ReadJumpCondR:
|
|
361 CCL_READ_CHAR (reg[rrr]);
|
|
362 case CCL_JumpCondR:
|
|
363 i = reg[rrr];
|
|
364 j = reg[XINT (prog[ic++])];
|
|
365 rrr = 7;
|
|
366 op = XINT (prog[ic++]);
|
|
367 ccl_set_expr:
|
|
368 switch (op)
|
|
369 {
|
|
370 case CCL_PLUS: reg[rrr] = i + j; break;
|
|
371 case CCL_MINUS: reg[rrr] = i - j; break;
|
|
372 case CCL_MUL: reg[rrr] = i * j; break;
|
|
373 case CCL_DIV: reg[rrr] = i / j; break;
|
|
374 case CCL_MOD: reg[rrr] = i % j; break;
|
|
375 case CCL_AND: reg[rrr] = i & j; break;
|
|
376 case CCL_OR: reg[rrr] = i | j; break;
|
|
377 case CCL_XOR: reg[rrr] = i ^ j;; break;
|
|
378 case CCL_LSH: reg[rrr] = i << j; break;
|
|
379 case CCL_RSH: reg[rrr] = i >> j; break;
|
|
380 case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
|
|
381 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
|
|
382 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
|
|
383 case CCL_LS: reg[rrr] = i < j; break;
|
|
384 case CCL_GT: reg[rrr] = i > j; break;
|
|
385 case CCL_EQ: reg[rrr] = i == j; break;
|
|
386 case CCL_LE: reg[rrr] = i <= j; break;
|
|
387 case CCL_GE: reg[rrr] = i >= j; break;
|
|
388 case CCL_NE: reg[rrr] = i != j; break;
|
|
389 default: CCL_INVALID_CMD;
|
|
390 }
|
|
391 if (cc && !reg[rrr])
|
|
392 ic = cc;
|
|
393 continue;
|
|
394 default:
|
|
395 CCL_INVALID_CMD;
|
|
396 }
|
|
397 }
|
|
398
|
|
399 ccl_error_handler:
|
|
400 if (dst)
|
|
401 {
|
|
402 char buf[200];
|
|
403 switch (ccl->status)
|
|
404 {
|
|
405 case CCL_STAT_INVALID_CMD:
|
|
406 sprintf (buf, "CCL: Invalid command (%x).\n", op);
|
|
407 break;
|
|
408 default:
|
|
409 sprintf (buf, "CCL: Unknown error type (%d).\n", ccl->status);
|
|
410 }
|
|
411 Dynarr_add_many (dst, (unsigned char *) buf, strlen (buf));
|
|
412 }
|
|
413
|
|
414 ccl_finish:
|
|
415 ccl->ic = ic;
|
|
416 if (dst)
|
|
417 return Dynarr_length (dst);
|
|
418 else
|
|
419 return 0;
|
|
420 }
|
|
421
|
|
422 /* Set up CCL to execute CCL program VAL, with initial register values
|
|
423 coming from REGS (NUMREGS of them are specified) and initial
|
|
424 instruction counter coming from INITIAL_IC (a value of 0 means
|
|
425 start at the beginning of the program, wherever that is).
|
|
426 */
|
|
427
|
|
428 void
|
|
429 set_ccl_program (struct ccl_program *ccl, Lisp_Object val, int *regs,
|
|
430 int numregs, int initial_ic)
|
|
431 {
|
|
432 int i;
|
|
433
|
|
434 ccl->saved_vector = val;
|
|
435 ccl->prog = XVECTOR (val)->contents;
|
|
436 ccl->size = XVECTOR (val)->size;
|
|
437 if (initial_ic == 0)
|
|
438 ccl->ic = CCL_HEADER_MAIN;
|
|
439 else
|
|
440 ccl->ic = initial_ic;
|
|
441 for (i = 0; i < numregs; i++)
|
|
442 ccl->reg[i] = regs[i];
|
|
443 for (; i < 8; i++)
|
|
444 ccl->reg[i] = 0;
|
|
445 ccl->end_flag = 0;
|
|
446 ccl->status = 0;
|
|
447 }
|
|
448
|
|
449 #ifdef emacs
|
|
450
|
|
451 static void
|
|
452 set_ccl_program_from_lisp_values (struct ccl_program *ccl,
|
|
453 Lisp_Object prog,
|
|
454 Lisp_Object status)
|
|
455 {
|
|
456 int i;
|
|
457 int intregs[8];
|
|
458 int ic;
|
|
459
|
|
460 CHECK_VECTOR (prog);
|
|
461 CHECK_VECTOR (status);
|
|
462
|
|
463 if (vector_length (XVECTOR (status)) != 9)
|
|
464 signal_simple_error ("Must specify values for the eight registers and IC",
|
|
465 status);
|
|
466 for (i = 0; i < 8; i++)
|
|
467 {
|
|
468 Lisp_Object regval = XVECTOR (status)->contents[i];
|
|
469 if (NILP (regval))
|
|
470 intregs[i] = 0;
|
|
471 else
|
|
472 {
|
|
473 CHECK_INT (regval);
|
|
474 intregs[i] = XINT (regval);
|
|
475 }
|
|
476 }
|
|
477
|
|
478 {
|
|
479 Lisp_Object lic = XVECTOR (status)->contents[8];
|
|
480 if (NILP (lic))
|
|
481 ic = 0;
|
|
482 else
|
|
483 {
|
|
484 CHECK_NATNUM (lic);
|
|
485 ic = XINT (lic);
|
|
486 }
|
|
487 }
|
|
488
|
|
489 set_ccl_program (ccl, prog, intregs, 8, ic);
|
|
490 }
|
|
491
|
|
492 static void
|
|
493 set_lisp_status_from_ccl_program (Lisp_Object status,
|
|
494 struct ccl_program *ccl)
|
|
495 {
|
|
496 int i;
|
|
497
|
|
498 for (i = 0; i < 8; i++)
|
|
499 XVECTOR (status)->contents[i] = make_int (ccl->reg[i]);
|
|
500 XVECTOR (status)->contents[8] = make_int (ccl->ic);
|
|
501 }
|
|
502
|
|
503
|
|
504 DEFUN ("execute-ccl-program", Fexecute_ccl_program, 2, 2, 0, /*
|
|
505 Execute CCL-PROGRAM with registers initialized by STATUS.
|
|
506 CCL-PROGRAM is a vector of compiled CCL code created by `ccl-compile'.
|
|
507 STATUS must be a vector of nine values, specifying the initial value
|
|
508 for the R0, R1 .. R7 registers and for the instruction counter IC.
|
|
509 A nil value for a register initializer causes the register to be set
|
|
510 to 0. A nil value for the IC initializer causes execution to start
|
|
511 at the beginning of the program.
|
|
512 When the program is done, STATUS is modified (by side-effect) to contain
|
|
513 the ending values for the corresponding registers and IC.
|
|
514 */
|
|
515 (ccl_program, status))
|
|
516 {
|
|
517 struct ccl_program ccl;
|
|
518
|
|
519 set_ccl_program_from_lisp_values (&ccl, ccl_program, status);
|
|
520 ccl_driver (&ccl, 0, 0, 0, 0);
|
|
521 set_lisp_status_from_ccl_program (status, &ccl);
|
|
522 return Qnil;
|
|
523 }
|
|
524
|
|
525 DEFUN ("execute-ccl-program-string", Fexecute_ccl_program_string, 3, 3, 0, /*
|
|
526 Execute CCL-PROGRAM with initial STATUS on STRING.
|
|
527 CCL-PROGRAM is a vector of compiled CCL code created by `ccl-compile'.
|
|
528 STATUS must be a vector of nine values, specifying the initial value
|
|
529 for the R0, R1 .. R7 registers and for the instruction counter IC.
|
|
530 A nil value for a register initializer causes the register to be set
|
|
531 to 0. A nil value for the IC initializer causes execution to start
|
|
532 at the beginning of the program.
|
|
533 When the program is done, STATUS is modified (by side-effect) to contain
|
|
534 the ending values for the corresponding registers and IC.
|
|
535 Returns the resulting string.
|
|
536 */
|
|
537 (ccl_program, status, str))
|
|
538 {
|
|
539 struct ccl_program ccl;
|
|
540 Lisp_Object val;
|
|
541 int len;
|
|
542 unsigned_char_dynarr *outbuf;
|
|
543
|
|
544 set_ccl_program_from_lisp_values (&ccl, ccl_program, status);
|
|
545 CHECK_STRING (str);
|
|
546
|
|
547 outbuf = Dynarr_new (unsigned char);
|
|
548 len = ccl_driver (&ccl, XSTRING_DATA (str), outbuf, XSTRING_LENGTH (str), 0);
|
|
549 ccl_driver (&ccl, (unsigned char *) "", outbuf, 0, 1);
|
|
550 set_lisp_status_from_ccl_program (status, &ccl);
|
|
551
|
|
552 val = make_string (Dynarr_atp (outbuf, 0), len);
|
|
553 Dynarr_free (outbuf);
|
|
554 return val;
|
|
555 }
|
|
556
|
|
557 DEFUN ("ccl-reset-elapsed-time", Fccl_reset_elapsed_time, 0, 0, 0, /*
|
|
558 Reset the internal value which holds the time elapsed by CCL interpreter.
|
|
559 */
|
|
560 ())
|
|
561 {
|
|
562 error ("Not yet implemented; use `current-process-time'");
|
|
563 return Qnil;
|
|
564 }
|
|
565
|
|
566 DEFUN ("ccl-elapsed-time", Fccl_elapsed_time, 0, 0, 0, /*
|
|
567 Return the time elapsed by CCL interpreter as cons of user and system time.
|
|
568 This measures processor time, not real time. Both values are floating point
|
|
569 numbers measured in seconds. If only one overall value can be determined,
|
|
570 the return value will be a cons of that value and 0.
|
|
571 */
|
|
572 ())
|
|
573 {
|
|
574 error ("Not yet implemented; use `current-process-time'");
|
|
575 return Qnil;
|
|
576 }
|
|
577
|
|
578 void
|
|
579 syms_of_mule_ccl (void)
|
|
580 {
|
|
581 DEFSUBR (Fexecute_ccl_program);
|
|
582 DEFSUBR (Fexecute_ccl_program_string);
|
|
583 DEFSUBR (Fccl_reset_elapsed_time);
|
|
584 DEFSUBR (Fccl_elapsed_time);
|
|
585 }
|
|
586
|
|
587 #else /* not emacs */
|
|
588 #ifdef standalone
|
|
589
|
|
590 #define INBUF_SIZE 1024
|
|
591 #define MAX_CCL_CODE_SIZE 4096
|
|
592
|
|
593 void
|
|
594 main (int argc, char **argv)
|
|
595 {
|
|
596 FILE *progf;
|
|
597 char inbuf[INBUF_SIZE];
|
|
598 unsigned_char_dynarr *outbuf;
|
|
599 struct ccl_program ccl;
|
|
600 int i;
|
|
601 Lisp_Object ccl_prog = make_vector (MAX_CCL_CODE_SIZE);
|
|
602
|
|
603 if (argc < 2)
|
|
604 {
|
|
605 fprintf (stderr,
|
|
606 "Usage: %s ccl_program_file_name <infile >outfile\n",
|
|
607 argv[0]);
|
|
608 exit (1);
|
|
609 }
|
|
610
|
|
611 if ((progf = fopen (argv[1], "r")) == NULL)
|
|
612 {
|
|
613 fprintf (stderr, "%s: Can't read file %s", argv[0], argv[1]);
|
|
614 exit (1);
|
|
615 }
|
|
616
|
|
617 XVECTOR (ccl_prog)->size = 0;
|
|
618 while (fscanf (progf, "%x", &i) == 1)
|
|
619 XVECTOR (ccl_prog)->contents[XVECTOR (ccl_prog)->size++] = make_int (i);
|
|
620 set_ccl_program (&ccl, ccl_prog, 0, 0, 0);
|
|
621
|
|
622 outbuf = Dynarr_new (unsigned char);
|
|
623
|
|
624 while ((i = fread (inbuf, 1, INBUF_SIZE, stdin)) == INBUF_SIZE)
|
|
625 {
|
|
626 i = ccl_driver (&ccl, inbuf, outbuf, INBUF_SIZE, 0);
|
|
627 fwrite (Dynarr_atp (outbuf, 0), 1, i, stdout);
|
|
628 }
|
|
629 if (i)
|
|
630 {
|
|
631 i = ccl_driver (&ccl, inbuf, outbuf, i, 1);
|
|
632 fwrite (Dynarr_atp (outbuf, 0), 1, i, stdout);
|
|
633 }
|
|
634
|
|
635 fclose (progf);
|
|
636 exit (0);
|
|
637 }
|
|
638 #endif /* standalone */
|
|
639 #endif /* not emacs */
|