Mercurial > hg > xemacs-beta
annotate src/ralloc.c @ 5088:207dad9e74f7
Signal an error upon reading 1/0.
Thanks to Ben Wing for finding the problem. See xemacs-patches message with ID
<870180fe1003021239k77d81203xb7b6f94ce83208b3@mail.gmail.com> and also
<d7ba68911002240223u36bb87c2nf4ccfde06b5519cc@mail.gmail.com> in xemacs-beta.
| author | Jerry James <james@xemacs.org> |
|---|---|
| date | Tue, 02 Mar 2010 13:42:37 -0700 |
| parents | 6f2158fa75ed |
| children | 308d34e9f07d |
| rev | line source |
|---|---|
| 428 | 1 /* Block-relocating memory allocator. |
| 2 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc. | |
|
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
3 Copyright (C) 2010 Ben Wing. |
| 428 | 4 |
| 5 This file is part of XEmacs. | |
| 6 | |
| 7 XEmacs is free software; you can redistribute it and/or modify it | |
| 8 under the terms of the GNU General Public License as published by the | |
| 9 Free Software Foundation; either version 2, or (at your option) any | |
| 10 later version. | |
| 11 | |
| 12 XEmacs is distributed in the hope that it will be useful, but WITHOUT | |
| 13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | |
| 14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | |
| 15 for more details. | |
| 16 | |
| 17 You should have received a copy of the GNU General Public License | |
| 613 | 18 along with XEmacs; see the file COPYING. If not, write to |
| 428 | 19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| 20 Boston, MA 02111-1307, USA. | |
| 21 | |
| 22 Synched Up with: FSF 20.2 (non-mmap portion only) | |
| 23 */ | |
| 24 | |
| 25 /* NOTES: | |
| 26 | |
| 27 Only relocate the blocs necessary for SIZE in r_alloc_sbrk, | |
| 28 rather than all of them. This means allowing for a possible | |
| 29 hole between the first bloc and the end of malloc storage. */ | |
| 30 | |
| 31 #ifdef HAVE_CONFIG_H | |
| 32 #include <config.h> | |
| 33 #endif | |
| 34 | |
| 35 #ifdef HAVE_UNISTD_H | |
| 36 #include <unistd.h> /* for getpagesize() */ | |
| 37 #endif | |
| 38 | |
| 39 #ifdef emacs | |
| 40 | |
| 41 #include "lisp.h" | |
| 42 | |
| 43 /* The important properties of this type are that 1) it's a pointer, and | |
| 44 2) arithmetic on it should work as if the size of the object pointed | |
| 45 to has a size of 1. */ | |
| 46 #if 0 /* Arithmetic on void* is a GCC extension. */ | |
| 47 #ifdef __STDC__ | |
| 48 typedef void *POINTER; | |
| 49 #else | |
| 50 typedef unsigned char *POINTER; | |
| 51 #endif | |
| 52 #endif /* 0 */ | |
| 53 | |
| 54 /* Unconditionally use unsigned char * for this. */ | |
| 55 typedef unsigned char *POINTER; | |
| 56 | |
| 57 #ifdef DOUG_LEA_MALLOC | |
| 58 #define M_TOP_PAD -2 | |
| 59 #include <malloc.h> | |
| 60 #endif | |
| 61 | |
| 62 #include "getpagesize.h" | |
| 63 | |
| 64 #include <string.h> | |
| 3263 | 65 #ifndef NEW_GC |
| 428 | 66 void refill_memory_reserve (void); |
| 3263 | 67 #endif /* not NEW_GC */ |
| 428 | 68 |
| 69 #else /* Not emacs. */ | |
| 70 | |
| 1333 | 71 #define REGEX_MALLOC_CHECK() |
| 72 | |
| 428 | 73 #include <stddef.h> |
| 74 | |
| 75 typedef void *POINTER; | |
| 76 | |
| 77 #include <unistd.h> | |
| 78 #include <malloc.h> | |
| 79 #include <string.h> | |
| 80 | |
| 81 #endif /* emacs. */ | |
| 82 | |
| 83 void init_ralloc (void); | |
| 84 | |
| 85 #define NIL ((POINTER) 0) | |
| 86 | |
| 87 | |
| 88 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC) | |
| 89 | |
| 90 /* A flag to indicate whether we have initialized ralloc yet. For | |
| 91 Emacs's sake, please do not make this local to malloc_init; on some | |
| 92 machines, the dumping procedure makes all static variables | |
| 93 read-only. On these machines, the word static is #defined to be | |
| 94 the empty string, meaning that r_alloc_initialized becomes an | |
| 95 automatic variable, and loses its value each time Emacs is started up. */ | |
| 96 static int r_alloc_initialized = 0; | |
| 97 | |
| 98 | |
| 99 /* Declarations for working with the malloc, ralloc, and system breaks. */ | |
| 100 | |
| 101 /* Function to set the real break value. */ | |
| 102 static POINTER (*real_morecore) (ptrdiff_t size); | |
| 103 | |
| 104 /* The break value, as seen by malloc (). */ | |
| 105 static POINTER virtual_break_value; | |
| 106 | |
| 107 /* The break value, viewed by the relocatable blocs. */ | |
| 108 static POINTER break_value; | |
| 109 | |
| 110 /* This is the size of a page. We round memory requests to this boundary. */ | |
| 111 static int page_size; | |
| 112 | |
| 113 /* Whenever we get memory from the system, get this many extra bytes. This | |
| 114 must be a multiple of page_size. */ | |
| 115 static int extra_bytes; | |
| 116 | |
| 117 /* Macros for rounding. Note that rounding to any value is possible | |
| 118 by changing the definition of PAGE. */ | |
| 119 #define PAGE (getpagesize ()) | |
| 120 #define ALIGNED(addr) (((unsigned long int) (addr) & (page_size - 1)) == 0) | |
| 121 #define ROUNDUP(size) (((unsigned long int) (size) + page_size - 1) \ | |
| 122 & ~(page_size - 1)) | |
| 123 #define ROUND_TO_PAGE(addr) (addr & (~(page_size - 1))) | |
| 124 | |
| 125 #define MEM_ALIGN sizeof(double) | |
| 126 #define MEM_ROUNDUP(addr) (((unsigned long int)(addr) + MEM_ALIGN - 1) \ | |
| 127 & ~(MEM_ALIGN - 1)) | |
| 128 | |
| 129 /* Data structures of heaps and blocs. */ | |
| 130 | |
| 131 /* The relocatable objects, or blocs, and the malloc data | |
| 132 both reside within one or more heaps. | |
| 133 Each heap contains malloc data, running from `start' to `bloc_start', | |
| 134 and relocatable objects, running from `bloc_start' to `free'. | |
| 135 | |
| 136 Relocatable objects may relocate within the same heap | |
| 137 or may move into another heap; the heaps themselves may grow | |
| 138 but they never move. | |
| 139 | |
| 140 We try to make just one heap and make it larger as necessary. | |
| 141 But sometimes we can't do that, because we can't get contiguous | |
| 142 space to add onto the heap. When that happens, we start a new heap. */ | |
| 143 | |
| 144 typedef struct heap | |
| 145 { | |
| 146 struct heap *next; | |
| 147 struct heap *prev; | |
| 148 /* Start of memory range of this heap. */ | |
| 149 POINTER start; | |
| 150 /* End of memory range of this heap. */ | |
| 151 POINTER end; | |
| 152 /* Start of relocatable data in this heap. */ | |
| 153 POINTER bloc_start; | |
| 154 /* Start of unused space in this heap. */ | |
| 155 POINTER free; | |
| 156 /* First bloc in this heap. */ | |
| 157 struct bp *first_bloc; | |
| 158 /* Last bloc in this heap. */ | |
| 159 struct bp *last_bloc; | |
| 160 } *heap_ptr; | |
| 161 | |
| 162 #define NIL_HEAP ((heap_ptr) 0) | |
| 163 #define HEAP_PTR_SIZE (sizeof (struct heap)) | |
| 164 | |
| 165 /* This is the first heap object. | |
| 166 If we need additional heap objects, each one resides at the beginning of | |
| 167 the space it covers. */ | |
| 168 static struct heap heap_base; | |
| 169 | |
| 170 /* Head and tail of the list of heaps. */ | |
| 171 static heap_ptr first_heap, last_heap; | |
| 172 | |
| 173 /* These structures are allocated in the malloc arena. | |
| 174 The linked list is kept in order of increasing '.data' members. | |
| 175 The data blocks abut each other; if b->next is non-nil, then | |
| 176 b->data + b->size == b->next->data. | |
| 177 | |
| 178 An element with variable==NIL denotes a freed block, which has not yet | |
| 179 been collected. They may only appear while r_alloc_freeze > 0, and will be | |
| 180 freed when the arena is thawed. Currently, these blocs are not reusable, | |
| 181 while the arena is frozen. Very inefficient. */ | |
| 182 | |
| 183 typedef struct bp | |
| 184 { | |
| 185 struct bp *next; | |
| 186 struct bp *prev; | |
| 187 POINTER *variable; | |
| 188 POINTER data; | |
| 440 | 189 size_t size; |
| 428 | 190 POINTER new_data; /* temporarily used for relocation */ |
| 191 struct heap *heap; /* Heap this bloc is in. */ | |
| 192 } *bloc_ptr; | |
| 193 | |
| 194 #define NIL_BLOC ((bloc_ptr) 0) | |
| 195 #define BLOC_PTR_SIZE (sizeof (struct bp)) | |
| 196 | |
| 197 /* Head and tail of the list of relocatable blocs. */ | |
| 198 static bloc_ptr first_bloc, last_bloc; | |
| 199 | |
| 200 static int use_relocatable_buffers; | |
| 201 | |
| 202 /* If >0, no relocation whatsoever takes place. */ | |
| 203 static int r_alloc_freeze_level; | |
| 204 | |
| 205 /* Obtain SIZE bytes of space. If enough space is not presently available | |
| 206 in our process reserve, (i.e., (page_break_value - break_value)), | |
| 207 this means getting more page-aligned space from the system. | |
| 208 | |
| 209 Return non-zero if all went well, or zero if we couldn't allocate | |
| 210 the memory. */ | |
| 211 | |
| 212 /* Functions to get and return memory from the system. */ | |
| 213 | |
| 214 /* Find the heap that ADDRESS falls within. */ | |
| 215 | |
| 216 static heap_ptr | |
| 217 find_heap (POINTER address) | |
| 218 { | |
| 219 heap_ptr heap; | |
| 220 | |
| 221 for (heap = last_heap; heap; heap = heap->prev) | |
| 222 { | |
| 223 if (heap->start <= address && address <= heap->end) | |
| 224 return heap; | |
| 225 } | |
| 226 | |
| 227 return NIL_HEAP; | |
| 228 } | |
| 229 | |
| 230 /* Find SIZE bytes of space in a heap. | |
| 231 Try to get them at ADDRESS (which must fall within some heap's range) | |
| 232 if we can get that many within one heap. | |
| 233 | |
| 234 If enough space is not presently available in our reserve, this means | |
| 235 getting more page-aligned space from the system. If the returned space | |
| 236 is not contiguous to the last heap, allocate a new heap, and append it | |
| 237 | |
| 238 obtain does not try to keep track of whether space is in use | |
| 239 or not in use. It just returns the address of SIZE bytes that | |
| 240 fall within a single heap. If you call obtain twice in a row | |
| 241 with the same arguments, you typically get the same value. | |
| 242 to the heap list. It's the caller's responsibility to keep | |
| 243 track of what space is in use. | |
| 244 | |
| 245 Return the address of the space if all went well, or zero if we couldn't | |
| 246 allocate the memory. */ | |
| 247 | |
| 248 static POINTER | |
| 440 | 249 obtain (POINTER address, size_t size) |
| 428 | 250 { |
| 251 heap_ptr heap; | |
| 440 | 252 size_t already_available; |
| 428 | 253 |
| 254 /* Find the heap that ADDRESS falls within. */ | |
| 255 for (heap = last_heap; heap; heap = heap->prev) | |
| 256 { | |
| 257 if (heap->start <= address && address <= heap->end) | |
| 258 break; | |
| 259 } | |
| 260 | |
|
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
261 assert (heap); |
| 428 | 262 |
| 263 /* If we can't fit SIZE bytes in that heap, | |
| 264 try successive later heaps. */ | |
| 265 while (heap && address + size > heap->end) | |
| 266 { | |
| 267 heap = heap->next; | |
| 268 if (heap == NIL_HEAP) | |
| 269 break; | |
| 270 address = heap->bloc_start; | |
| 271 } | |
| 272 | |
| 273 /* If we can't fit them within any existing heap, | |
| 274 get more space. */ | |
| 275 if (heap == NIL_HEAP) | |
| 276 { | |
| 3025 | 277 POINTER new_ = (*real_morecore)(0); |
| 440 | 278 size_t get; |
| 428 | 279 |
| 280 already_available = (char *)last_heap->end - (char *)address; | |
| 281 | |
| 3025 | 282 if (new_ != last_heap->end) |
| 428 | 283 { |
| 284 /* Someone else called sbrk. Make a new heap. */ | |
| 285 | |
| 3025 | 286 heap_ptr new_heap = (heap_ptr) MEM_ROUNDUP (new_); |
| 428 | 287 POINTER bloc_start = (POINTER) MEM_ROUNDUP ((POINTER)(new_heap + 1)); |
| 288 | |
| 3025 | 289 if ((*real_morecore) (bloc_start - new_) != new_) |
| 428 | 290 return 0; |
| 291 | |
| 3025 | 292 new_heap->start = new_; |
| 428 | 293 new_heap->end = bloc_start; |
| 294 new_heap->bloc_start = bloc_start; | |
| 295 new_heap->free = bloc_start; | |
| 296 new_heap->next = NIL_HEAP; | |
| 297 new_heap->prev = last_heap; | |
| 298 new_heap->first_bloc = NIL_BLOC; | |
| 299 new_heap->last_bloc = NIL_BLOC; | |
| 300 last_heap->next = new_heap; | |
| 301 last_heap = new_heap; | |
| 302 | |
| 303 address = bloc_start; | |
| 304 already_available = 0; | |
| 305 } | |
| 306 | |
| 307 /* Add space to the last heap (which we may have just created). | |
| 308 Get some extra, so we can come here less often. */ | |
| 309 | |
| 310 get = size + extra_bytes - already_available; | |
| 311 get = (char *) ROUNDUP ((char *)last_heap->end + get) | |
| 312 - (char *) last_heap->end; | |
| 313 | |
| 314 if ((*real_morecore) (get) != last_heap->end) | |
| 315 return 0; | |
| 316 | |
| 317 last_heap->end += get; | |
| 318 } | |
| 319 | |
| 320 return address; | |
| 321 } | |
| 322 | |
| 323 #if 0 | |
| 324 /* Obtain SIZE bytes of space and return a pointer to the new area. | |
| 325 If we could not allocate the space, return zero. */ | |
| 326 | |
| 327 static POINTER | |
| 440 | 328 get_more_space (size_t size) |
| 428 | 329 { |
| 330 POINTER ptr = break_value; | |
| 331 if (obtain (size)) | |
| 332 return ptr; | |
| 333 else | |
| 334 return 0; | |
| 335 } | |
| 336 #endif | |
| 337 | |
| 338 /* Note that SIZE bytes of space have been relinquished by the process. | |
| 339 If SIZE is more than a page, return the space to the system. */ | |
| 340 | |
| 341 static void | |
| 342 relinquish (void) | |
| 343 { | |
| 344 register heap_ptr h; | |
| 345 int excess = 0; | |
| 346 | |
| 347 /* Add the amount of space beyond break_value | |
| 348 in all heaps which have extend beyond break_value at all. */ | |
| 349 | |
| 350 for (h = last_heap; h && break_value < h->end; h = h->prev) | |
| 351 { | |
| 352 excess += (char *) h->end - (char *) ((break_value < h->bloc_start) | |
| 353 ? h->bloc_start : break_value); | |
| 354 } | |
| 355 | |
| 356 if (excess > extra_bytes * 2 && (*real_morecore) (0) == last_heap->end) | |
| 357 { | |
| 358 /* Keep extra_bytes worth of empty space. | |
| 359 And don't free anything unless we can free at least extra_bytes. */ | |
| 360 excess -= extra_bytes; | |
| 361 | |
| 362 if ((char *)last_heap->end - (char *)last_heap->bloc_start <= excess) | |
| 363 { | |
| 364 /* This heap should have no blocs in it. */ | |
|
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
365 assert (last_heap->first_bloc == NIL_BLOC && |
|
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
366 last_heap->last_bloc == NIL_BLOC); |
| 428 | 367 |
| 368 /* Return the last heap, with its header, to the system. */ | |
| 369 excess = (char *)last_heap->end - (char *)last_heap->start; | |
| 370 last_heap = last_heap->prev; | |
| 371 last_heap->next = NIL_HEAP; | |
| 372 } | |
| 373 else | |
| 374 { | |
| 375 excess = (char *) last_heap->end | |
| 376 - (char *) ROUNDUP ((char *)last_heap->end - excess); | |
| 377 last_heap->end -= excess; | |
| 378 } | |
| 379 | |
| 380 if ((*real_morecore) (- excess) == 0) | |
| 2500 | 381 ABORT (); |
| 428 | 382 } |
| 383 } | |
| 384 | |
| 385 /* Return the total size in use by relocating allocator, | |
| 386 above where malloc gets space. */ | |
| 387 | |
| 388 long r_alloc_size_in_use (void); | |
| 389 long | |
| 440 | 390 r_alloc_size_in_use (void) |
| 428 | 391 { |
| 392 return break_value - virtual_break_value; | |
| 393 } | |
| 394 | |
| 395 /* The meat - allocating, freeing, and relocating blocs. */ | |
| 396 | |
| 397 | |
| 398 /* Find the bloc referenced by the address in PTR. Returns a pointer | |
| 399 to that block. */ | |
| 400 | |
| 401 static bloc_ptr | |
| 402 find_bloc (POINTER *ptr) | |
| 403 { | |
| 404 register bloc_ptr p = first_bloc; | |
| 405 | |
| 406 while (p != NIL_BLOC) | |
| 407 { | |
| 408 if (p->variable == ptr && p->data == *ptr) | |
| 409 return p; | |
| 410 | |
| 411 p = p->next; | |
| 412 } | |
| 413 | |
| 414 return p; | |
| 415 } | |
| 416 | |
| 417 /* Allocate a bloc of SIZE bytes and append it to the chain of blocs. | |
| 418 Returns a pointer to the new bloc, or zero if we couldn't allocate | |
| 419 memory for the new block. */ | |
| 420 | |
| 421 static bloc_ptr | |
| 440 | 422 get_bloc (size_t size) |
| 428 | 423 { |
| 424 register bloc_ptr new_bloc; | |
| 425 register heap_ptr heap; | |
| 426 | |
| 427 if (! (new_bloc = (bloc_ptr) malloc (BLOC_PTR_SIZE)) | |
| 428 || ! (new_bloc->data = obtain (break_value, size))) | |
| 429 { | |
| 430 if (new_bloc) | |
| 431 free (new_bloc); | |
| 432 | |
| 433 return 0; | |
| 434 } | |
| 435 | |
| 436 break_value = new_bloc->data + size; | |
| 437 | |
| 438 new_bloc->size = size; | |
| 439 new_bloc->next = NIL_BLOC; | |
| 440 new_bloc->variable = (POINTER *) NIL; | |
| 441 new_bloc->new_data = 0; | |
| 442 | |
| 443 /* Record in the heap that this space is in use. */ | |
| 444 heap = find_heap (new_bloc->data); | |
| 445 heap->free = break_value; | |
| 446 | |
| 447 /* Maintain the correspondence between heaps and blocs. */ | |
| 448 new_bloc->heap = heap; | |
| 449 heap->last_bloc = new_bloc; | |
| 450 if (heap->first_bloc == NIL_BLOC) | |
| 451 heap->first_bloc = new_bloc; | |
| 452 | |
| 453 /* Put this bloc on the doubly-linked list of blocs. */ | |
| 454 if (first_bloc) | |
| 455 { | |
| 456 new_bloc->prev = last_bloc; | |
| 457 last_bloc->next = new_bloc; | |
| 458 last_bloc = new_bloc; | |
| 459 } | |
| 460 else | |
| 461 { | |
| 462 first_bloc = last_bloc = new_bloc; | |
| 463 new_bloc->prev = NIL_BLOC; | |
| 464 } | |
| 465 | |
| 466 return new_bloc; | |
| 467 } | |
| 468 | |
| 469 /* Calculate new locations of blocs in the list beginning with BLOC, | |
| 470 relocating it to start at ADDRESS, in heap HEAP. If enough space is | |
| 471 not presently available in our reserve, call obtain for | |
| 472 more space. | |
| 473 | |
| 474 Store the new location of each bloc in its new_data field. | |
| 475 Do not touch the contents of blocs or break_value. */ | |
| 476 | |
| 477 static int | |
| 478 relocate_blocs (bloc_ptr bloc, heap_ptr heap, POINTER address) | |
| 479 { | |
| 480 register bloc_ptr b = bloc; | |
| 481 | |
| 482 /* No need to ever call this if arena is frozen, bug somewhere! */ | |
|
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
483 assert (!r_alloc_freeze_level); |
| 428 | 484 |
| 485 while (b) | |
| 486 { | |
| 487 /* If bloc B won't fit within HEAP, | |
| 488 move to the next heap and try again. */ | |
| 489 while (heap && address + b->size > heap->end) | |
| 490 { | |
| 491 heap = heap->next; | |
| 492 if (heap == NIL_HEAP) | |
| 493 break; | |
| 494 address = heap->bloc_start; | |
| 495 } | |
| 496 | |
| 497 /* If BLOC won't fit in any heap, | |
| 498 get enough new space to hold BLOC and all following blocs. */ | |
| 499 if (heap == NIL_HEAP) | |
| 500 { | |
| 501 register bloc_ptr tb = b; | |
| 440 | 502 register size_t s = 0; |
| 428 | 503 |
| 504 /* Add up the size of all the following blocs. */ | |
| 505 while (tb != NIL_BLOC) | |
| 506 { | |
| 507 if (tb->variable) | |
| 508 s += tb->size; | |
| 509 | |
| 510 tb = tb->next; | |
| 511 } | |
| 512 | |
| 513 /* Get that space. */ | |
| 514 address = obtain (address, s); | |
| 515 if (address == 0) | |
| 516 return 0; | |
| 517 | |
| 518 heap = last_heap; | |
| 519 } | |
| 520 | |
| 521 /* Record the new address of this bloc | |
| 522 and update where the next bloc can start. */ | |
| 523 b->new_data = address; | |
| 524 if (b->variable) | |
| 525 address += b->size; | |
| 526 b = b->next; | |
| 527 } | |
| 528 | |
| 529 return 1; | |
| 530 } | |
| 531 | |
| 532 #if 0 /* unused */ | |
| 533 /* Reorder the bloc BLOC to go before bloc BEFORE in the doubly linked list. | |
| 534 This is necessary if we put the memory of space of BLOC | |
| 535 before that of BEFORE. */ | |
| 536 | |
| 537 static void | |
| 538 reorder_bloc (bloc_ptr bloc, bloc_ptr before) | |
| 539 { | |
| 540 bloc_ptr prev, next; | |
| 541 | |
| 542 /* Splice BLOC out from where it is. */ | |
| 543 prev = bloc->prev; | |
| 544 next = bloc->next; | |
| 545 | |
| 546 if (prev) | |
| 547 prev->next = next; | |
| 548 if (next) | |
| 549 next->prev = prev; | |
| 550 | |
| 551 /* Splice it in before BEFORE. */ | |
| 552 prev = before->prev; | |
| 553 | |
| 554 if (prev) | |
| 555 prev->next = bloc; | |
| 556 bloc->prev = prev; | |
| 557 | |
| 558 before->prev = bloc; | |
| 559 bloc->next = before; | |
| 560 } | |
| 561 #endif /* unused */ | |
| 562 | |
| 563 /* Update the records of which heaps contain which blocs, starting | |
| 564 with heap HEAP and bloc BLOC. */ | |
| 565 | |
| 566 static void | |
| 567 update_heap_bloc_correspondence (bloc_ptr bloc, heap_ptr heap) | |
| 568 { | |
| 569 register bloc_ptr b; | |
| 570 | |
| 571 /* Initialize HEAP's status to reflect blocs before BLOC. */ | |
| 572 if (bloc != NIL_BLOC && bloc->prev != NIL_BLOC && bloc->prev->heap == heap) | |
| 573 { | |
| 574 /* The previous bloc is in HEAP. */ | |
| 575 heap->last_bloc = bloc->prev; | |
| 576 heap->free = bloc->prev->data + bloc->prev->size; | |
| 577 } | |
| 578 else | |
| 579 { | |
| 580 /* HEAP contains no blocs before BLOC. */ | |
| 581 heap->first_bloc = NIL_BLOC; | |
| 582 heap->last_bloc = NIL_BLOC; | |
| 583 heap->free = heap->bloc_start; | |
| 584 } | |
| 585 | |
| 586 /* Advance through blocs one by one. */ | |
| 587 for (b = bloc; b != NIL_BLOC; b = b->next) | |
| 588 { | |
| 589 /* Advance through heaps, marking them empty, | |
| 590 till we get to the one that B is in. */ | |
| 591 while (heap) | |
| 592 { | |
| 593 if (heap->bloc_start <= b->data && b->data <= heap->end) | |
| 594 break; | |
| 595 heap = heap->next; | |
| 596 /* We know HEAP is not null now, | |
| 597 because there has to be space for bloc B. */ | |
| 598 heap->first_bloc = NIL_BLOC; | |
| 599 heap->last_bloc = NIL_BLOC; | |
| 600 heap->free = heap->bloc_start; | |
| 601 } | |
| 602 | |
| 603 /* Update HEAP's status for bloc B. */ | |
| 604 heap->free = b->data + b->size; | |
| 605 heap->last_bloc = b; | |
| 606 if (heap->first_bloc == NIL_BLOC) | |
| 607 heap->first_bloc = b; | |
| 608 | |
| 609 /* Record that B is in HEAP. */ | |
| 610 b->heap = heap; | |
| 611 } | |
| 612 | |
| 613 /* If there are any remaining heaps and no blocs left, | |
| 614 mark those heaps as empty. */ | |
| 615 heap = heap->next; | |
| 616 while (heap) | |
| 617 { | |
| 618 heap->first_bloc = NIL_BLOC; | |
| 619 heap->last_bloc = NIL_BLOC; | |
| 620 heap->free = heap->bloc_start; | |
| 621 heap = heap->next; | |
| 622 } | |
| 623 } | |
| 624 | |
| 625 /* Resize BLOC to SIZE bytes. This relocates the blocs | |
| 626 that come after BLOC in memory. */ | |
| 627 | |
| 628 static int | |
| 440 | 629 resize_bloc (bloc_ptr bloc, size_t size) |
| 428 | 630 { |
| 631 register bloc_ptr b; | |
| 632 heap_ptr heap; | |
| 633 POINTER address; | |
| 440 | 634 size_t old_size; |
| 428 | 635 |
| 636 /* No need to ever call this if arena is frozen, bug somewhere! */ | |
|
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
637 assert (!r_alloc_freeze_level); |
| 428 | 638 |
| 639 if (bloc == NIL_BLOC || size == bloc->size) | |
| 640 return 1; | |
| 641 | |
| 642 for (heap = first_heap; heap != NIL_HEAP; heap = heap->next) | |
| 643 { | |
| 644 if (heap->bloc_start <= bloc->data && bloc->data <= heap->end) | |
| 645 break; | |
| 646 } | |
| 647 | |
|
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
648 assert (heap != NIL_HEAP); |
| 428 | 649 |
| 650 old_size = bloc->size; | |
| 651 bloc->size = size; | |
| 652 | |
| 653 /* Note that bloc could be moved into the previous heap. */ | |
| 654 address = (bloc->prev ? bloc->prev->data + bloc->prev->size | |
| 655 : first_heap->bloc_start); | |
| 656 while (heap) | |
| 657 { | |
| 658 if (heap->bloc_start <= address && address <= heap->end) | |
| 659 break; | |
| 660 heap = heap->prev; | |
| 661 } | |
| 662 | |
| 663 if (! relocate_blocs (bloc, heap, address)) | |
| 664 { | |
| 665 bloc->size = old_size; | |
| 666 return 0; | |
| 667 } | |
| 668 | |
| 669 if (size > old_size) | |
| 670 { | |
| 671 for (b = last_bloc; b != bloc; b = b->prev) | |
| 672 { | |
| 673 if (!b->variable) | |
| 674 { | |
| 675 b->size = 0; | |
| 676 b->data = b->new_data; | |
| 677 } | |
| 678 else | |
| 679 { | |
| 440 | 680 memmove (b->new_data, b->data, b->size); |
| 428 | 681 *b->variable = b->data = b->new_data; |
| 682 } | |
| 683 } | |
| 684 if (!bloc->variable) | |
| 685 { | |
| 686 bloc->size = 0; | |
| 687 bloc->data = bloc->new_data; | |
| 688 } | |
| 689 else | |
| 690 { | |
| 440 | 691 memmove (bloc->new_data, bloc->data, old_size); |
| 428 | 692 memset (bloc->new_data + old_size, 0, size - old_size); |
| 693 *bloc->variable = bloc->data = bloc->new_data; | |
| 694 } | |
| 695 } | |
| 696 else | |
| 697 { | |
| 698 for (b = bloc; b != NIL_BLOC; b = b->next) | |
| 699 { | |
| 700 if (!b->variable) | |
| 701 { | |
| 702 b->size = 0; | |
| 703 b->data = b->new_data; | |
| 704 } | |
| 705 else | |
| 706 { | |
| 440 | 707 memmove (b->new_data, b->data, b->size); |
| 428 | 708 *b->variable = b->data = b->new_data; |
| 709 } | |
| 710 } | |
| 711 } | |
| 712 | |
| 713 update_heap_bloc_correspondence (bloc, heap); | |
| 714 | |
| 715 break_value = (last_bloc ? last_bloc->data + last_bloc->size | |
| 716 : first_heap->bloc_start); | |
| 717 return 1; | |
| 718 } | |
| 719 | |
| 720 /* Free BLOC from the chain of blocs, relocating any blocs above it | |
| 721 and returning BLOC->size bytes to the free area. */ | |
| 722 | |
| 723 static void | |
| 724 free_bloc (bloc_ptr bloc) | |
| 725 { | |
| 726 heap_ptr heap = bloc->heap; | |
| 727 | |
| 728 if (r_alloc_freeze_level) | |
| 729 { | |
| 730 bloc->variable = (POINTER *) NIL; | |
| 731 return; | |
| 732 } | |
| 733 | |
| 734 resize_bloc (bloc, 0); | |
| 735 | |
| 736 if (bloc == first_bloc && bloc == last_bloc) | |
| 737 { | |
| 738 first_bloc = last_bloc = NIL_BLOC; | |
| 739 } | |
| 740 else if (bloc == last_bloc) | |
| 741 { | |
| 742 last_bloc = bloc->prev; | |
| 743 last_bloc->next = NIL_BLOC; | |
| 744 } | |
| 745 else if (bloc == first_bloc) | |
| 746 { | |
| 747 first_bloc = bloc->next; | |
| 748 first_bloc->prev = NIL_BLOC; | |
| 749 } | |
| 750 else | |
| 751 { | |
| 752 bloc->next->prev = bloc->prev; | |
| 753 bloc->prev->next = bloc->next; | |
| 754 } | |
| 755 | |
| 756 /* Update the records of which blocs are in HEAP. */ | |
| 757 if (heap->first_bloc == bloc) | |
| 758 { | |
| 759 if (bloc->next != 0 && bloc->next->heap == heap) | |
| 760 heap->first_bloc = bloc->next; | |
| 761 else | |
| 762 heap->first_bloc = heap->last_bloc = NIL_BLOC; | |
| 763 } | |
| 764 if (heap->last_bloc == bloc) | |
| 765 { | |
| 766 if (bloc->prev != 0 && bloc->prev->heap == heap) | |
| 767 heap->last_bloc = bloc->prev; | |
| 768 else | |
| 769 heap->first_bloc = heap->last_bloc = NIL_BLOC; | |
| 770 } | |
| 771 | |
| 772 relinquish (); | |
| 773 free (bloc); | |
| 774 } | |
| 775 | |
| 776 /* Interface routines. */ | |
| 777 | |
| 778 /* Obtain SIZE bytes of storage from the free pool, or the system, as | |
| 779 necessary. If relocatable blocs are in use, this means relocating | |
| 780 them. This function gets plugged into the GNU malloc's __morecore | |
| 781 hook. | |
| 782 | |
| 783 We provide hysteresis, never relocating by less than extra_bytes. | |
| 784 | |
| 785 If we're out of memory, we should return zero, to imitate the other | |
| 786 __morecore hook values - in particular, __default_morecore in the | |
| 787 GNU malloc package. */ | |
| 788 | |
| 789 POINTER r_alloc_sbrk (ptrdiff_t size); | |
| 790 POINTER | |
| 791 r_alloc_sbrk (ptrdiff_t size) | |
| 792 { | |
| 793 register bloc_ptr b; | |
| 794 POINTER address; | |
| 795 | |
| 796 if (! r_alloc_initialized) | |
| 797 init_ralloc (); | |
| 798 | |
| 799 if (! use_relocatable_buffers) | |
| 800 return (*real_morecore) (size); | |
| 801 | |
| 802 if (size == 0) | |
| 803 return virtual_break_value; | |
| 804 | |
| 805 if (size > 0) | |
| 806 { | |
| 807 /* Allocate a page-aligned space. GNU malloc would reclaim an | |
| 808 extra space if we passed an unaligned one. But we could | |
| 809 not always find a space which is contiguous to the previous. */ | |
| 810 POINTER new_bloc_start; | |
| 811 heap_ptr h = first_heap; | |
| 440 | 812 size_t get = ROUNDUP (size); |
| 428 | 813 |
| 814 address = (POINTER) ROUNDUP (virtual_break_value); | |
| 815 | |
| 816 /* Search the list upward for a heap which is large enough. */ | |
| 817 while ((char *) h->end < (char *) MEM_ROUNDUP ((char *)address + get)) | |
| 818 { | |
| 819 h = h->next; | |
| 820 if (h == NIL_HEAP) | |
| 821 break; | |
| 822 address = (POINTER) ROUNDUP (h->start); | |
| 823 } | |
| 824 | |
| 825 /* If not found, obtain more space. */ | |
| 826 if (h == NIL_HEAP) | |
| 827 { | |
| 828 get += extra_bytes + page_size; | |
| 829 | |
| 830 if (! obtain (address, get)) | |
| 831 return 0; | |
| 832 | |
| 833 if (first_heap == last_heap) | |
| 834 address = (POINTER) ROUNDUP (virtual_break_value); | |
| 835 else | |
| 836 address = (POINTER) ROUNDUP (last_heap->start); | |
| 837 h = last_heap; | |
| 838 } | |
| 839 | |
| 840 new_bloc_start = (POINTER) MEM_ROUNDUP ((char *)address + get); | |
| 841 | |
| 842 if (first_heap->bloc_start < new_bloc_start) | |
| 843 { | |
| 844 /* This is no clean solution - no idea how to do it better. */ | |
| 845 if (r_alloc_freeze_level) | |
| 846 return NIL; | |
| 847 | |
| 848 /* There is a bug here: if the above obtain call succeeded, but the | |
| 849 relocate_blocs call below does not succeed, we need to free | |
| 850 the memory that we got with obtain. */ | |
| 851 | |
| 852 /* Move all blocs upward. */ | |
| 853 if (! relocate_blocs (first_bloc, h, new_bloc_start)) | |
| 854 return 0; | |
| 855 | |
| 856 /* Note that (POINTER)(h+1) <= new_bloc_start since | |
| 857 get >= page_size, so the following does not destroy the heap | |
| 858 header. */ | |
| 859 for (b = last_bloc; b != NIL_BLOC; b = b->prev) | |
| 860 { | |
| 440 | 861 memmove (b->new_data, b->data, b->size); |
| 428 | 862 *b->variable = b->data = b->new_data; |
| 863 } | |
| 864 | |
| 865 h->bloc_start = new_bloc_start; | |
| 866 | |
| 867 update_heap_bloc_correspondence (first_bloc, h); | |
| 868 } | |
| 869 if (h != first_heap) | |
| 870 { | |
| 871 /* Give up managing heaps below the one the new | |
| 872 virtual_break_value points to. */ | |
| 873 first_heap->prev = NIL_HEAP; | |
| 874 first_heap->next = h->next; | |
| 875 first_heap->start = h->start; | |
| 876 first_heap->end = h->end; | |
| 877 first_heap->free = h->free; | |
| 878 first_heap->first_bloc = h->first_bloc; | |
| 879 first_heap->last_bloc = h->last_bloc; | |
| 880 first_heap->bloc_start = h->bloc_start; | |
| 881 | |
| 882 if (first_heap->next) | |
| 883 first_heap->next->prev = first_heap; | |
| 884 else | |
| 885 last_heap = first_heap; | |
| 886 } | |
| 887 | |
| 888 memset (address, 0, size); | |
| 889 } | |
| 890 else /* size < 0 */ | |
| 891 { | |
| 440 | 892 size_t excess = (char *)first_heap->bloc_start |
| 428 | 893 - ((char *)virtual_break_value + size); |
| 894 | |
| 895 address = virtual_break_value; | |
| 896 | |
| 897 if (r_alloc_freeze_level == 0 && excess > 2 * extra_bytes) | |
| 898 { | |
| 899 excess -= extra_bytes; | |
| 900 first_heap->bloc_start | |
| 901 = (POINTER) MEM_ROUNDUP ((char *)first_heap->bloc_start - excess); | |
| 902 | |
| 903 relocate_blocs (first_bloc, first_heap, first_heap->bloc_start); | |
| 904 | |
| 905 for (b = first_bloc; b != NIL_BLOC; b = b->next) | |
| 906 { | |
| 440 | 907 memmove (b->new_data, b->data, b->size); |
| 428 | 908 *b->variable = b->data = b->new_data; |
| 909 } | |
| 910 } | |
| 911 | |
| 912 if ((char *)virtual_break_value + size < (char *)first_heap->start) | |
| 913 { | |
| 914 /* We found an additional space below the first heap */ | |
| 915 first_heap->start = (POINTER) ((char *)virtual_break_value + size); | |
| 916 } | |
| 917 } | |
| 918 | |
| 919 virtual_break_value = (POINTER) ((char *)address + size); | |
| 920 break_value = (last_bloc | |
| 921 ? last_bloc->data + last_bloc->size | |
| 922 : first_heap->bloc_start); | |
| 923 if (size < 0) | |
| 924 relinquish (); | |
| 925 | |
| 926 return address; | |
| 927 } | |
| 928 | |
| 929 /* Allocate a relocatable bloc of storage of size SIZE. A pointer to | |
| 930 the data is returned in *PTR. PTR is thus the address of some variable | |
| 931 which will use the data area. | |
| 932 | |
| 933 The allocation of 0 bytes is valid. | |
| 934 In case r_alloc_freeze is set, a best fit of unused blocs could be done | |
| 935 before allocating a new area. Not yet done. | |
| 936 | |
| 937 If we can't allocate the necessary memory, set *PTR to zero, and | |
| 938 return zero. */ | |
| 939 | |
| 440 | 940 POINTER r_alloc (POINTER *ptr, size_t size); |
| 428 | 941 POINTER |
| 440 | 942 r_alloc (POINTER *ptr, size_t size) |
| 428 | 943 { |
| 944 bloc_ptr new_bloc; | |
| 945 | |
| 1333 | 946 REGEX_MALLOC_CHECK (); |
| 947 | |
| 428 | 948 if (! r_alloc_initialized) |
| 949 init_ralloc (); | |
| 950 | |
| 951 new_bloc = get_bloc (size); | |
| 952 if (new_bloc) | |
| 953 { | |
| 954 new_bloc->variable = ptr; | |
| 955 *ptr = new_bloc->data; | |
| 956 } | |
| 957 else | |
| 958 *ptr = 0; | |
| 959 | |
| 960 return *ptr; | |
| 961 } | |
| 962 | |
| 963 /* Free a bloc of relocatable storage whose data is pointed to by PTR. | |
| 964 Store 0 in *PTR to show there's no block allocated. */ | |
| 965 | |
| 966 void r_alloc_free (POINTER *ptr); | |
| 967 void | |
| 968 r_alloc_free (POINTER *ptr) | |
| 969 { | |
| 970 register bloc_ptr dead_bloc; | |
| 971 | |
| 1333 | 972 REGEX_MALLOC_CHECK (); |
| 973 | |
| 428 | 974 if (! r_alloc_initialized) |
| 975 init_ralloc (); | |
| 976 | |
| 977 dead_bloc = find_bloc (ptr); | |
|
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
978 assert (dead_bloc != NIL_BLOC); |
| 428 | 979 |
| 980 free_bloc (dead_bloc); | |
| 981 *ptr = 0; | |
| 982 | |
| 983 #ifdef emacs | |
| 3263 | 984 #ifndef NEW_GC |
| 428 | 985 refill_memory_reserve (); |
| 3263 | 986 #endif /* not NEW_GC */ |
| 428 | 987 #endif |
| 988 } | |
| 989 | |
| 990 /* Given a pointer at address PTR to relocatable data, resize it to SIZE. | |
| 991 Do this by shifting all blocks above this one up in memory, unless | |
| 992 SIZE is less than or equal to the current bloc size, in which case | |
| 993 do nothing. | |
| 994 | |
| 995 In case r_alloc_freeze is set, a new bloc is allocated, and the | |
| 996 memory copied to it. Not very efficient. We could traverse the | |
| 997 bloc_list for a best fit of free blocs first. | |
| 998 | |
| 999 Change *PTR to reflect the new bloc, and return this value. | |
| 1000 | |
| 1001 If more memory cannot be allocated, then leave *PTR unchanged, and | |
| 1002 return zero. */ | |
| 1003 | |
| 440 | 1004 POINTER r_re_alloc (POINTER *ptr, size_t size); |
| 428 | 1005 POINTER |
| 440 | 1006 r_re_alloc (POINTER *ptr, size_t size) |
| 428 | 1007 { |
| 1008 register bloc_ptr bloc; | |
| 1009 | |
| 1333 | 1010 REGEX_MALLOC_CHECK (); |
| 1011 | |
| 428 | 1012 if (! r_alloc_initialized) |
| 1013 init_ralloc (); | |
| 1014 | |
| 1015 if (!*ptr) | |
| 1016 return r_alloc (ptr, size); | |
| 1017 if (!size) | |
| 1018 { | |
| 1019 r_alloc_free (ptr); | |
| 1020 return r_alloc (ptr, 0); | |
| 1021 } | |
| 1022 | |
| 1023 bloc = find_bloc (ptr); | |
|
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
1024 assert (bloc != NIL_BLOC); |
| 428 | 1025 |
| 1026 if (size < bloc->size) | |
| 1027 { | |
| 1028 /* Wouldn't it be useful to actually resize the bloc here? */ | |
| 1029 /* I think so too, but not if it's too expensive... */ | |
| 1030 if ((bloc->size - MEM_ROUNDUP (size) >= page_size) | |
| 1031 && r_alloc_freeze_level == 0) | |
| 1032 { | |
| 1033 resize_bloc (bloc, MEM_ROUNDUP (size)); | |
| 1034 /* Never mind if this fails, just do nothing... */ | |
| 1035 /* It *should* be infallible! */ | |
| 1036 } | |
| 1037 } | |
| 1038 else if (size > bloc->size) | |
| 1039 { | |
| 1040 if (r_alloc_freeze_level) | |
| 1041 { | |
| 1042 bloc_ptr new_bloc; | |
| 1043 new_bloc = get_bloc (MEM_ROUNDUP (size)); | |
| 1044 if (new_bloc) | |
| 1045 { | |
| 1046 new_bloc->variable = ptr; | |
| 1047 *ptr = new_bloc->data; | |
| 1048 bloc->variable = (POINTER *) NIL; | |
| 1049 } | |
| 1050 else | |
| 1051 return NIL; | |
| 1052 } | |
| 1053 else | |
| 1054 { | |
| 1055 if (! resize_bloc (bloc, MEM_ROUNDUP (size))) | |
| 1056 return NIL; | |
| 1057 } | |
| 1058 } | |
| 1059 return *ptr; | |
| 1060 } | |
| 1061 | |
| 1062 /* Disable relocations, after making room for at least SIZE bytes | |
| 1063 of non-relocatable heap if possible. The relocatable blocs are | |
| 1064 guaranteed to hold still until thawed, even if this means that | |
| 1065 malloc must return a null pointer. */ | |
| 1066 | |
| 1067 void r_alloc_freeze (long size); | |
| 1068 void | |
| 1069 r_alloc_freeze (long size) | |
| 1070 { | |
| 1071 if (! r_alloc_initialized) | |
| 1072 init_ralloc (); | |
| 1073 | |
| 1074 /* If already frozen, we can't make any more room, so don't try. */ | |
| 1075 if (r_alloc_freeze_level > 0) | |
| 1076 size = 0; | |
| 1077 /* If we can't get the amount requested, half is better than nothing. */ | |
| 1078 while (size > 0 && r_alloc_sbrk (size) == 0) | |
| 1079 size /= 2; | |
| 1080 ++r_alloc_freeze_level; | |
| 1081 if (size > 0) | |
| 1082 r_alloc_sbrk (-size); | |
| 1083 } | |
| 1084 | |
| 1085 void r_alloc_thaw (void); | |
| 1086 void | |
| 1087 r_alloc_thaw (void) | |
| 1088 { | |
| 1089 | |
| 1090 if (! r_alloc_initialized) | |
| 1091 init_ralloc (); | |
| 1092 | |
|
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
1093 assert (--r_alloc_freeze_level >= 0); |
| 428 | 1094 |
| 1095 /* This frees all unused blocs. It is not too inefficient, as the resize | |
| 440 | 1096 and memmove is done only once. Afterwards, all unreferenced blocs are |
| 428 | 1097 already shrunk to zero size. */ |
| 1098 if (!r_alloc_freeze_level) | |
| 1099 { | |
| 1100 bloc_ptr *b = &first_bloc; | |
| 1101 while (*b) | |
| 1102 if (!(*b)->variable) | |
| 1103 free_bloc (*b); | |
| 1104 else | |
| 1105 b = &(*b)->next; | |
| 1106 } | |
| 1107 } | |
| 1108 | |
| 1109 | |
| 1110 /* The hook `malloc' uses for the function which gets more space | |
| 1111 from the system. */ | |
| 1112 #ifndef DOUG_LEA_MALLOC | |
| 1113 extern POINTER (*__morecore) (ptrdiff_t size); | |
| 1114 #endif | |
| 1115 | |
| 1116 /* Initialize various things for memory allocation. */ | |
| 1117 | |
| 1118 void | |
| 1119 init_ralloc (void) | |
| 1120 { | |
| 1121 if (r_alloc_initialized) | |
| 1122 return; | |
| 1123 | |
| 1124 r_alloc_initialized = 1; | |
| 1125 real_morecore = (POINTER (*) (ptrdiff_t)) __morecore; | |
| 1126 __morecore = | |
| 1799 | 1127 #ifdef TYPEOF |
| 1128 (TYPEOF (__morecore)) | |
| 428 | 1129 #endif |
| 1130 r_alloc_sbrk; | |
| 1131 | |
| 1132 first_heap = last_heap = &heap_base; | |
| 1133 first_heap->next = first_heap->prev = NIL_HEAP; | |
| 1134 first_heap->start = first_heap->bloc_start | |
| 1135 = virtual_break_value = break_value = (*real_morecore) (0); | |
|
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
1136 assert (break_value != NIL); |
| 428 | 1137 |
| 1138 page_size = PAGE; | |
| 1139 extra_bytes = ROUNDUP (50000); | |
| 1140 | |
| 1141 #ifdef DOUG_LEA_MALLOC | |
| 1142 mallopt (M_TOP_PAD, 64 * 4096); | |
| 1143 #else | |
| 1144 #if 0 /* Hasn't been synched yet */ | |
| 1145 /* Give GNU malloc's morecore some hysteresis | |
| 1146 so that we move all the relocatable blocks much less often. */ | |
| 1147 __malloc_extra_blocks = 64; | |
| 1148 #endif | |
| 1149 #endif | |
| 1150 | |
| 1151 first_heap->end = (POINTER) ROUNDUP (first_heap->start); | |
| 1152 | |
| 1153 /* The extra call to real_morecore guarantees that the end of the | |
| 1154 address space is a multiple of page_size, even if page_size is | |
| 1155 not really the page size of the system running the binary in | |
| 1156 which page_size is stored. This allows a binary to be built on a | |
| 1157 system with one page size and run on a system with a smaller page | |
| 1158 size. */ | |
| 1159 (*real_morecore) (first_heap->end - first_heap->start); | |
| 1160 | |
| 1161 /* Clear the rest of the last page; this memory is in our address space | |
| 1162 even though it is after the sbrk value. */ | |
| 1163 /* Doubly true, with the additional call that explicitly adds the | |
| 1164 rest of that page to the address space. */ | |
| 1165 memset (first_heap->start, 0, first_heap->end - first_heap->start); | |
| 1166 virtual_break_value = break_value = first_heap->bloc_start = first_heap->end; | |
| 1167 use_relocatable_buffers = 1; | |
| 1168 } | |
| 1169 | |
| 1170 #if defined (emacs) && defined (DOUG_LEA_MALLOC) | |
| 1171 | |
| 1172 /* Reinitialize the morecore hook variables after restarting a dumped | |
| 1173 Emacs. This is needed when using Doug Lea's malloc from GNU libc. */ | |
| 1174 void r_alloc_reinit (void); | |
| 1175 void | |
| 1176 r_alloc_reinit (void) | |
| 1177 { | |
| 1178 /* Only do this if the hook has been reset, so that we don't get an | |
| 1179 infinite loop, in case Emacs was linked statically. */ | |
| 1180 if ( (POINTER (*) (ptrdiff_t)) __morecore != r_alloc_sbrk) | |
| 1181 { | |
| 1182 real_morecore = (POINTER (*) (ptrdiff_t)) __morecore; | |
| 1183 __morecore = | |
| 1799 | 1184 #ifdef TYPEOF |
| 1185 (TYPEOF (__morecore)) | |
| 428 | 1186 #endif |
| 1187 r_alloc_sbrk; | |
| 1188 } | |
| 1189 } | |
| 1190 #if 0 | |
| 1191 #ifdef DEBUG | |
| 1192 | |
| 1193 void | |
| 1194 r_alloc_check (void) | |
| 1195 { | |
| 1196 int found = 0; | |
| 1197 heap_ptr h, ph = 0; | |
| 1198 bloc_ptr b, pb = 0; | |
| 1199 | |
| 1200 if (!r_alloc_initialized) | |
| 1201 return; | |
| 1202 | |
| 1203 assert (first_heap); | |
| 1204 assert (last_heap->end <= (POINTER) sbrk (0)); | |
| 1205 assert ((POINTER) first_heap < first_heap->start); | |
| 1206 assert (first_heap->start <= virtual_break_value); | |
| 1207 assert (virtual_break_value <= first_heap->end); | |
| 1208 | |
| 1209 for (h = first_heap; h; h = h->next) | |
| 1210 { | |
| 1211 assert (h->prev == ph); | |
| 1212 assert ((POINTER) ROUNDUP (h->end) == h->end); | |
| 1213 #if 0 /* ??? The code in ralloc.c does not really try to ensure | |
| 1214 the heap start has any sort of alignment. | |
| 1215 Perhaps it should. */ | |
| 1216 assert ((POINTER) MEM_ROUNDUP (h->start) == h->start); | |
| 1217 #endif | |
| 1218 assert ((POINTER) MEM_ROUNDUP (h->bloc_start) == h->bloc_start); | |
| 1219 assert (h->start <= h->bloc_start && h->bloc_start <= h->end); | |
| 1220 | |
| 1221 if (ph) | |
| 1222 { | |
| 1223 assert (ph->end < h->start); | |
| 1224 assert (h->start <= (POINTER)h && (POINTER)(h+1) <= h->bloc_start); | |
| 1225 } | |
| 1226 | |
| 1227 if (h->bloc_start <= break_value && break_value <= h->end) | |
| 1228 found = 1; | |
| 1229 | |
| 1230 ph = h; | |
| 1231 } | |
| 1232 | |
| 1233 assert (found); | |
| 1234 assert (last_heap == ph); | |
| 1235 | |
| 1236 for (b = first_bloc; b; b = b->next) | |
| 1237 { | |
| 1238 assert (b->prev == pb); | |
| 1239 assert ((POINTER) MEM_ROUNDUP (b->data) == b->data); | |
| 440 | 1240 assert ((size_t) MEM_ROUNDUP (b->size) == b->size); |
| 428 | 1241 |
| 1242 ph = 0; | |
| 1243 for (h = first_heap; h; h = h->next) | |
| 1244 { | |
| 1245 if (h->bloc_start <= b->data && b->data + b->size <= h->end) | |
| 1246 break; | |
| 1247 ph = h; | |
| 1248 } | |
| 1249 | |
| 1250 assert (h); | |
| 1251 | |
| 1252 if (pb && pb->data + pb->size != b->data) | |
| 1253 { | |
| 1254 assert (ph && b->data == h->bloc_start); | |
| 1255 while (ph) | |
| 1256 { | |
| 1257 if (ph->bloc_start <= pb->data | |
| 1258 && pb->data + pb->size <= ph->end) | |
| 1259 { | |
| 1260 assert (pb->data + pb->size + b->size > ph->end); | |
| 1261 break; | |
| 1262 } | |
| 1263 else | |
| 1264 { | |
| 1265 assert (ph->bloc_start + b->size > ph->end); | |
| 1266 } | |
| 1267 ph = ph->prev; | |
| 1268 } | |
| 1269 } | |
| 1270 pb = b; | |
| 1271 } | |
| 1272 | |
| 1273 assert (last_bloc == pb); | |
| 1274 | |
| 1275 if (last_bloc) | |
| 1276 assert (last_bloc->data + last_bloc->size == break_value); | |
| 1277 else | |
| 1278 assert (first_heap->bloc_start == break_value); | |
| 1279 } | |
| 1280 #endif /* DEBUG */ | |
| 1281 #endif /* 0 */ | |
| 1282 | |
| 1283 #endif | |
| 1284 | |
| 1285 #else /* HAVE_MMAP */ | |
| 1286 | |
| 1287 /* | |
| 1288 A relocating allocator built using the mmap(2) facility available | |
| 1289 in some OSes. Based on another version written by Paul Flinders, | |
| 1290 from which code (and comments) are snarfed. | |
| 1291 | |
| 1292 The OS should support mmap() with MAP_ANONYMOUS attribute, or have | |
| 1293 /dev/zero. It should support private memory mapping. | |
| 1294 | |
| 1295 Paul Flinders wrote a version which works well for systems that | |
| 1296 allow callers to specify (virtual) addresses to mmap(). | |
| 1297 Unfortunately, such a scheme doesn't work for certain systems like | |
| 1298 HP-UX that have a system-wide virtual->real address map, and | |
| 1299 consequently impose restrictions on the virtual address values | |
| 1300 permitted. | |
| 1301 | |
| 1302 NB: The mapping scheme in HP-UX is motivated by the inverted page | |
| 1303 table design in some HP processors. | |
| 1304 | |
| 1305 This alternate implementation allows for the addresses to be | |
| 1306 optionally chosen by the system. Fortunately, buffer allocation | |
| 1307 doesn't insist upon contiguous memory which Flinders' scheme | |
| 1308 provides, and this one doesn't. | |
| 1309 | |
| 1310 We don't really provide for hysteresis here, but add some metering | |
| 1311 to monitor how poorly the allocator actually works. See the | |
| 1312 documentation for `mmap-hysteresis'. | |
| 1313 | |
| 1314 This implementation actually cycles through the blocks allocated | |
| 1315 via mmap() and only sends it to free() if it wasn't one of them. | |
| 1316 Unfortunately, this is O(n) in the number of mmapped blocks. (Not | |
| 1317 really, as we have a hash table which tries to reduce the cost.) | |
| 1318 Also, this dereferences the pointer passed, so it would cause a | |
| 1319 segfault if garbage was passed to it. */ | |
| 1320 | |
| 1321 #include <fcntl.h> | |
| 1322 #include <sys/mman.h> | |
| 1323 #include <stdio.h> | |
| 1324 | |
| 1325 typedef void *VM_ADDR; /* VM addresses */ | |
| 442 | 1326 static const VM_ADDR VM_FAILURE_ADDR = (VM_ADDR) -1; /* mmap returns this when it fails. */ |
| 428 | 1327 |
| 1328 /* Configuration for relocating allocator. */ | |
| 1329 | |
| 1330 /* #define MMAP_GENERATE_ADDRESSES */ | |
| 1331 /* Define this if you want Emacs to manage the address table. | |
| 1332 It is not recommended unless you have major problems with the | |
| 1333 default scheme, which allows the OS to pick addresses. */ | |
| 1334 | |
| 1335 /* USELESS_LOWER_ADDRESS_BITS defines the number of bits which can be | |
| 1336 discarded while computing the hash, as they're always zero. The | |
| 1337 default is appropriate for a page size of 4096 bytes. */ | |
| 1338 | |
| 1339 #define USELESS_LOWER_ADDRESS_BITS 12 | |
| 1340 | |
| 1341 | |
| 1342 /* Size of hash table for inverted VM_ADDR->MMAP_HANDLE lookup */ | |
| 1343 | |
| 1344 #define MHASH_PRIME 89 | |
| 1345 | |
| 1346 | |
| 1347 /* Whether we want to enable metering of some ralloc performance. | |
| 1348 This incurs a constant penalty for each mmap operation. */ | |
| 1349 | |
| 1350 #define MMAP_METERING | |
| 1351 | |
| 1352 | |
| 1353 /* Rename the following to protect against a some smartness elsewhere. | |
| 1354 We need access to the allocator used for non-mmap allocation | |
| 1355 elsewhere, in case we get passed a handle that we didn't allocate | |
| 1356 ourselves. Currently, this default allocator is also used to | |
| 1357 maintain local structures for relocatable blocks. */ | |
| 1358 | |
| 1359 #define UNDERLYING_MALLOC malloc | |
| 1360 #define UNDERLYING_FREE free | |
| 1361 #define UNDERLYING_REALLOC realloc | |
| 1362 | |
| 1363 /* MAP_ADDRCHOICE_FLAG is set to MAP_FIXED if MMAP_GENERATE_ADDRESSES | |
| 1364 is defined, and MAP_VARIABLE otherwise. Some losing systems don't | |
| 1365 define the _FIXED/_VARIABLE flags, in which case it is set to 0 */ | |
| 1366 | |
| 1367 #ifdef MMAP_GENERATE_ADDRESSES | |
| 1368 # ifdef MAP_FIXED | |
| 1369 # define MAP_ADDRCHOICE_FLAG MAP_FIXED | |
| 1370 # endif | |
| 1371 #else /* !MMAP_GENERATE_ADDRESSES */ | |
| 1372 # ifdef MAP_VARIABLE | |
| 1373 # define MAP_ADDRCHOICE_FLAG MAP_VARIABLE | |
| 1374 # endif | |
| 1375 #endif /* MMAP_GENERATE_ADDRESSES */ | |
| 1376 | |
| 1377 /* Default case. */ | |
| 1378 #ifndef MAP_ADDRCHOICE_FLAG | |
| 1379 # define MAP_ADDRCHOICE_FLAG 0 | |
| 1380 #endif /* MAP_ADDRCHOICE_FLAG */ | |
| 1381 | |
| 1382 #ifdef MAP_ANONYMOUS | |
| 1383 # define MAP_FLAGS (MAP_PRIVATE | MAP_ADDRCHOICE_FLAG | MAP_ANONYMOUS) | |
| 1384 #else | |
| 1385 # define MAP_FLAGS (MAP_PRIVATE | MAP_ADDRCHOICE_FLAG) | |
| 1386 #endif /* MAP_ANONYMOUS */ | |
| 1387 | |
| 1388 | |
| 1389 /* (ptf): A flag to indicate whether we have initialized ralloc yet. For | |
| 1390 Emacs's sake, please do not make this local to malloc_init; on some | |
| 1391 machines, the dumping procedure makes all static variables | |
| 1392 read-only. On these machines, the word static is #defined to be | |
| 1393 the empty string, meaning that r_alloc_initialized becomes an | |
| 1394 automatic variable, and loses its value each time Emacs is started up. | |
| 1395 | |
| 1396 If we're using mmap this flag has three possible values | |
| 1397 0 - initial value | |
| 1398 1 - Normal value when running temacs. In this case buffers | |
| 1399 are allocated using malloc so that any data that they | |
| 1400 contain becomes part of the undumped executable. | |
| 1401 2 - Normal value when running emacs */ | |
| 1402 static int r_alloc_initialized = 0; | |
| 1403 | |
| 1404 /* (ptf): Macros for rounding. Note that rounding to any value is possible | |
| 1405 by changing the definition of PAGE. */ | |
| 1406 #define PAGE (getpagesize ()) | |
| 1407 #define PAGES_FOR(size) (((unsigned long int) (size) + page_size - 1)/page_size) | |
| 1408 #define ROUNDUP(size) ((unsigned long int)PAGES_FOR(size)*page_size) | |
| 1409 | |
| 1410 | |
| 1411 /* DEV_ZERO_FD is -1 normally, but for systems without MAP_ANONYMOUS | |
| 1412 points to a file descriptor opened on /dev/zero */ | |
| 1413 | |
| 1414 static int DEV_ZERO_FD = -1; | |
| 1415 | |
| 1416 | |
| 1417 /* We actually need a data structure that can be usefully structured | |
| 1418 based on the VM address, and allows an ~O(1) lookup on an arbitrary | |
| 1419 address, i.e. a hash table. Maybe the XEmacs hash table can be | |
| 1420 coaxed enough. At the moment, we use lookup on a hash table to | |
| 1421 decide whether to do an O(n) search on the malloced block list. | |
| 1422 Addresses are hashed to a bucket modulo MHASH_PRIME. */ | |
| 1423 | |
| 1424 | |
| 1425 /* We settle for a standard doubly-linked-list. The dynarr type isn't | |
| 1426 very amenable to deletion of items in the middle, so we conjure up | |
| 1427 yet another stupid datastructure. The structure is maintained as a | |
| 1428 ring, and the singleton ring has the sole element as its left and | |
| 1429 right neighbours. */ | |
| 1430 | |
| 1431 static void init_MHASH_table (void); /* Forward reference */ | |
| 1432 | |
| 1433 typedef struct alloc_dll | |
| 1434 { | |
| 1435 size_t size; /* #bytes currently in use */ | |
| 1436 size_t space_for; /* #bytes we really have */ | |
| 1437 POINTER* aliased_address; /* Address of aliased variable, to tweak if relocating */ | |
| 1438 VM_ADDR vm_addr; /* VM address returned by mmap */ | |
| 1439 struct alloc_dll *left; /* Left link in circular doubly linked list */ | |
| 1440 struct alloc_dll *right; | |
| 1441 } *MMAP_HANDLE; | |
| 1442 | |
| 1443 static MMAP_HANDLE mmap_start = 0; /* Head of linked list */ | |
| 1444 static size_t page_size = 0; /* Size of VM pages */ | |
| 458 | 1445 static Fixnum mmap_hysteresis; /* Logically a "size_t" */ |
| 428 | 1446 |
| 1447 /* Get a new handle for a fresh block. */ | |
| 1448 static MMAP_HANDLE | |
| 1449 new_mmap_handle (size_t nsiz) | |
| 1450 { | |
| 1451 MMAP_HANDLE h = (MMAP_HANDLE) UNDERLYING_MALLOC( sizeof (struct alloc_dll)); | |
| 1452 if ( h == 0) return 0; | |
| 1453 h->size = nsiz; | |
| 1454 if (mmap_start == 0) | |
| 1455 { | |
| 1456 init_MHASH_table (); | |
| 1457 mmap_start = h; mmap_start->left = h; mmap_start->right = h; | |
| 1458 } | |
| 1459 { | |
| 1460 MMAP_HANDLE prev = mmap_start->left; | |
| 1461 MMAP_HANDLE nex = mmap_start; | |
| 1462 | |
| 1463 /* Four pointers need fixing. */ | |
| 1464 h->right = nex; | |
| 1465 h->left = prev; | |
| 1466 prev->right = h; | |
| 1467 nex->left = h; | |
| 1468 } | |
| 1469 return h; | |
| 1470 } | |
| 1471 | |
| 1472 /* Find a handle given the aliased address using linear search. */ | |
| 1473 static MMAP_HANDLE | |
| 1474 find_mmap_handle_lsearch (POINTER *alias) | |
| 1475 { | |
| 1476 MMAP_HANDLE h = mmap_start; | |
| 1477 if (h == 0) return 0; | |
| 1478 do { | |
| 1479 if (h->aliased_address == alias && *alias == h->vm_addr) | |
| 1480 return h; | |
| 1481 h = h->right; | |
| 1482 } while( h != mmap_start ); | |
| 1483 return 0; /* Bogus alias passed. */ | |
| 1484 } | |
| 1485 | |
| 1486 /* Free a handle. */ | |
| 1487 static void | |
| 1488 free_mmap_handle (MMAP_HANDLE h) | |
| 1489 { | |
| 1490 MMAP_HANDLE prev = h->left; | |
| 1491 MMAP_HANDLE nex = h->right; | |
| 1492 if (prev == h || nex == h) /* In fact, this should be && */ | |
| 1493 { /* We're the singleton dll */ | |
| 1494 UNDERLYING_FREE( h ); /* Free the sole item */ | |
| 1495 mmap_start = 0; return; | |
| 1496 } | |
| 1497 else if (h == mmap_start) | |
| 1498 { | |
| 1499 mmap_start = nex; /* Make sure mmap_start isn't bogus. */ | |
| 1500 } | |
| 1501 prev->right = nex; | |
| 1502 nex->left = prev; | |
| 1503 UNDERLYING_FREE( h ); | |
| 1504 } | |
| 1505 | |
| 1506 /* A simple hash table to speed up the inverted lookup of | |
| 1507 VM_ADDR->MMAP_HANDLE. We maintain the number of hits for a | |
| 1508 particular bucket. We invalidate a hash table entry during block | |
| 1509 deletion if the hash has cached the deleted block's address. */ | |
| 1510 | |
| 1511 /* Simple hash check. */ | |
| 1512 struct { | |
| 1513 int n_hits; /* How many addresses map to this? */ | |
| 1514 MMAP_HANDLE handle; /* What is the current handle? */ | |
| 1515 VM_ADDR addr; /* What is its VM address? */ | |
| 1516 } MHASH_HITS[ MHASH_PRIME ]; | |
| 1517 | |
| 1518 static void | |
| 1519 init_MHASH_table (void) | |
| 1520 { | |
| 1521 int i = 0; | |
| 1522 for (; i < MHASH_PRIME; i++) | |
| 1523 { | |
| 1524 MHASH_HITS[i].n_hits = 0; | |
| 1525 MHASH_HITS[i].addr = 0; | |
| 1526 MHASH_HITS[i].handle = 0; | |
| 1527 } | |
| 1528 } | |
| 1529 | |
| 1530 /* Compute the hash value for an address. */ | |
| 1531 static int | |
| 1532 MHASH (VM_ADDR addr) | |
| 1533 { | |
| 1534 #if (LONGBITS == 64) | |
| 1535 unsigned long int addr_shift = (unsigned long int)(addr) >> USELESS_LOWER_ADDRESS_BITS; | |
| 1536 #else | |
| 1537 unsigned int addr_shift = (unsigned int)(addr) >> USELESS_LOWER_ADDRESS_BITS; | |
| 1538 #endif | |
| 1539 int hval = addr_shift % MHASH_PRIME; /* We could have addresses which are -ve | |
| 1540 when converted to signed ints */ | |
| 1541 return ((hval >= 0) ? hval : MHASH_PRIME + hval); | |
| 1542 } | |
| 1543 | |
| 1544 /* Add a VM address with its corresponding handle to the table. */ | |
| 1545 static void | |
| 1546 MHASH_ADD (VM_ADDR addr, MMAP_HANDLE h) | |
| 1547 { | |
| 1548 int kVal = MHASH( addr ); | |
| 1549 if (MHASH_HITS[kVal].n_hits++ == 0) | |
| 1550 { /* Only overwrite the table if there were no hits so far. */ | |
| 1551 MHASH_HITS[kVal].addr = addr; | |
| 1552 MHASH_HITS[kVal].handle = h; | |
| 1553 } | |
| 1554 } | |
| 1555 | |
| 1556 /* Delete a VM address entry from the hash table. */ | |
| 1557 static void | |
| 1558 MHASH_DEL (VM_ADDR addr) | |
| 1559 { | |
| 1560 int kVal = MHASH( addr ); | |
| 1561 MHASH_HITS[kVal].n_hits--; | |
| 1562 if (addr == MHASH_HITS[kVal].addr) | |
| 1563 { | |
| 1564 MHASH_HITS[kVal].addr = 0; /* Invalidate cache. */ | |
| 1565 MHASH_HITS[kVal].handle = 0; | |
| 1566 } | |
| 1567 } | |
| 1568 | |
| 1569 /* End of hash buckets */ | |
| 1570 | |
| 1571 /* Metering malloc performance. */ | |
| 1572 #ifdef MMAP_METERING | |
| 1573 /* If we're metering, we introduce some extra symbols to aid the noble | |
| 1574 cause of bloating XEmacs core size. */ | |
| 1575 | |
| 1576 static Lisp_Object Qmmap_times_mapped; | |
| 1577 static Lisp_Object Qmmap_pages_mapped; | |
| 1578 static Lisp_Object Qmmap_times_unmapped; | |
| 1579 static Lisp_Object Qmmap_times_remapped; | |
| 1580 static Lisp_Object Qmmap_didnt_copy; | |
| 1581 static Lisp_Object Qmmap_pages_copied; | |
| 1582 static Lisp_Object Qmmap_average_bumpval; | |
| 1583 static Lisp_Object Qmmap_wastage; | |
| 1584 static Lisp_Object Qmmap_live_pages; | |
| 1585 static Lisp_Object Qmmap_addr_looked_up; | |
| 1586 static Lisp_Object Qmmap_hash_worked; | |
| 1587 static Lisp_Object Qmmap_addrlist_size; | |
| 1588 | |
| 1589 #define M_Map 0 /* How many times allocated? */ | |
| 1590 #define M_Pages_Map 1 /* How many pages allocated? */ | |
| 1591 #define M_Unmap 2 /* How many times freed? */ | |
| 1592 #define M_Remap 3 /* How many times increased in size? */ | |
| 1593 #define M_Didnt_Copy 4 /* How many times didn't need to copy? */ | |
| 1594 #define M_Copy_Pages 5 /* Total # pages copied */ | |
| 1595 #define M_Average_Bumpval 6 /* Average bump value */ | |
| 1596 #define M_Wastage 7 /* Remaining (unused space) */ | |
| 1597 #define M_Live_Pages 8 /* #live pages */ | |
| 1598 #define M_Address_Lookup 9 /* How many times did we need to check if an addr is in the block? */ | |
| 1599 #define M_Hash_Worked 10 /* How many times did the simple hash check work? */ | |
| 1600 #define M_Addrlist_Size 11 /* What is the size of the XEmacs memory map? */ | |
| 1601 | |
| 1602 #define N_Meterables 12 /* Total number of meterables */ | |
| 1603 #define MEMMETER(x) {x;} | |
| 1604 #define MVAL(x) (meter[x]) | |
| 1605 #define MLVAL(x) (make_int (meter[x])) | |
| 1606 static int meter[N_Meterables]; | |
| 1607 | |
| 1608 DEFUN ("mmap-allocator-status", Fmmap_allocator_status, 0, 0, 0, /* | |
| 1609 Return some information about mmap-based allocator. | |
| 1610 | |
| 1611 mmap-times-mapped: number of times r_alloc was called. | |
| 1612 mmap-pages-mapped: number of pages mapped by r_alloc calls only. | |
| 1613 mmap-times-unmapped: number of times r_free was called. | |
| 1614 mmap-times-remapped: number of times r_re_alloc was called. | |
| 1615 mmap-didnt-copy: number of times re-alloc did NOT have to move the block. | |
| 1616 mmap-pages-copied: total number of pages copied. | |
| 1617 mmap-average-bumpval: average increase in size demanded to re-alloc. | |
| 1618 mmap-wastage: total number of bytes allocated, but not currently in use. | |
| 1619 mmap-live-pages: total number of pages live. | |
| 1620 mmap-addr-looked-up: total number of times needed to check if addr is in block. | |
| 1621 mmap-hash-worked: total number of times the simple hash check worked. | |
| 1622 mmap-addrlist-size: number of entries in address picking list. | |
| 1623 */ | |
| 1624 ()) | |
| 1625 { | |
| 1626 Lisp_Object result = Qnil; | |
| 1627 | |
| 1628 result = cons3 (Qmmap_addrlist_size, MLVAL (M_Addrlist_Size), result); | |
| 1629 result = cons3 (Qmmap_hash_worked, MLVAL (M_Hash_Worked), result); | |
| 1630 result = cons3 (Qmmap_addr_looked_up, MLVAL (M_Address_Lookup), result); | |
| 1631 result = cons3 (Qmmap_live_pages, MLVAL (M_Live_Pages), result); | |
| 1632 result = cons3 (Qmmap_wastage, MLVAL (M_Wastage), result); | |
| 1633 result = cons3 (Qmmap_average_bumpval,MLVAL (M_Average_Bumpval), result); | |
| 1634 result = cons3 (Qmmap_pages_copied, MLVAL (M_Copy_Pages), result); | |
| 1635 result = cons3 (Qmmap_didnt_copy, MLVAL (M_Didnt_Copy), result); | |
| 1636 result = cons3 (Qmmap_times_remapped, MLVAL (M_Remap), result); | |
| 1637 result = cons3 (Qmmap_times_unmapped, MLVAL (M_Unmap), result); | |
| 1638 result = cons3 (Qmmap_pages_mapped, MLVAL (M_Pages_Map), result); | |
| 1639 result = cons3 (Qmmap_times_mapped, MLVAL (M_Map), result); | |
| 1640 | |
| 1641 return result; | |
| 1642 } | |
| 1643 | |
| 1644 #else /* !MMAP_METERING */ | |
| 1645 | |
| 1646 #define MEMMETER(x) | |
| 1647 #define MVAL(x) | |
| 1648 | |
| 1649 #endif /* MMAP_METERING */ | |
| 1650 | |
| 1651 static MMAP_HANDLE | |
| 1652 find_mmap_handle (POINTER *alias) | |
| 1653 { | |
| 1654 int kval = MHASH( *alias ); | |
| 1655 MEMMETER( MVAL(M_Address_Lookup)++ ) | |
| 1656 switch( MHASH_HITS[kval].n_hits) | |
| 1657 { | |
| 1658 case 0: | |
| 1659 MEMMETER( MVAL( M_Hash_Worked )++ ) | |
| 1660 return 0; | |
| 1661 | |
| 1662 case 1: | |
| 1663 if (*alias == MHASH_HITS[kval].addr) | |
| 1664 { | |
| 1665 MEMMETER( MVAL( M_Hash_Worked) ++ ); | |
| 1666 return MHASH_HITS[kval].handle; | |
| 1667 } | |
| 1668 /* FALL THROUGH */ | |
| 1669 default: | |
| 1670 return find_mmap_handle_lsearch( alias ); | |
| 1671 } /* switch */ | |
| 1672 } | |
| 1673 | |
| 1674 /* | |
| 1675 Some kernels don't like being asked to pick addresses for mapping | |
| 1676 themselves---IRIX is known to become extremely slow if mmap is | |
| 1677 passed a ZERO as the first argument. In such cases, we use an | |
| 1678 address map which is managed local to the XEmacs process. The | |
| 1679 address map maintains an ordered linked list of (address, size, | |
| 1680 occupancy) triples ordered by the absolute address. Initially, a | |
| 1681 large address area is marked as being empty. The address picking | |
| 1682 scheme takes bites off the first block which is still empty and | |
| 1683 large enough. If mmap with the specified address fails, it is | |
| 1684 marked unavailable and not attempted thereafter. The scheme will | |
| 1685 keep fragmenting the large empty block until it finds an address | |
| 1686 which can be successfully mmapped, or until there are no free | |
| 1687 blocks of the given size left. | |
| 1688 | |
| 1689 Note that this scheme, given its first-fit strategy, is prone to | |
| 1690 fragmentation of the first part of memory earmarked for this | |
| 1691 purpose. [ACP Vol I]. We can't use the workaround of using a | |
| 1692 randomized first fit because we don't want to presume too much | |
| 1693 about the memory map. Instead, we try to coalesce empty or | |
| 1694 unavailable blocks at any available opportunity. */ | |
| 1695 | |
| 1696 /* Initialization procedure for address picking scheme */ | |
| 1697 static void Addr_Block_initialize(void); | |
| 1698 | |
| 1699 /* Get a suitable VM_ADDR via mmap */ | |
| 440 | 1700 static VM_ADDR New_Addr_Block (size_t sz); |
| 428 | 1701 |
| 1702 /* Free a VM_ADDR allocated via New_Addr_Block */ | |
| 440 | 1703 static void Free_Addr_Block (VM_ADDR addr, size_t sz); |
| 428 | 1704 |
| 1705 #ifdef MMAP_GENERATE_ADDRESSES | |
| 1706 /* Implementation of the three calls for address picking when XEmacs is incharge */ | |
| 1707 | |
| 1708 /* The enum denotes the status of the following block. */ | |
| 1709 typedef enum { empty = 0, occupied, unavailable } addr_status; | |
| 1710 | |
| 1711 typedef struct addr_chain | |
| 1712 { | |
| 1713 POINTER addr; | |
| 440 | 1714 size_t sz; |
| 428 | 1715 addr_status flag; |
| 1716 struct addr_chain *next; | |
| 1717 } ADDRESS_BLOCK, *ADDRESS_CHAIN; | |
| 1718 /* NB: empty and unavailable blocks are concatenated. */ | |
| 1719 | |
| 1720 static ADDRESS_CHAIN addr_chain = 0; | |
| 1721 /* Start off the address block chain with a humongous address block | |
| 1722 which is empty to start with. Note that addr_chain is invariant | |
| 1723 WRT the addition/deletion of address blocks because of the assert | |
| 1724 in Coalesce() and the strict ordering of blocks by their address | |
| 1725 */ | |
| 440 | 1726 static void |
| 1727 Addr_Block_initialize (void) | |
| 428 | 1728 { |
| 1729 MEMMETER( MVAL( M_Addrlist_Size )++) | |
| 1730 addr_chain = (ADDRESS_CHAIN) UNDERLYING_MALLOC( sizeof( ADDRESS_BLOCK )); | |
| 1731 addr_chain->next = 0; /* Last block in chain */ | |
| 1732 addr_chain->sz = 0x0c000000; /* Size */ | |
| 442 | 1733 addr_chain->addr = (POINTER) (0x04000000); |
| 428 | 1734 addr_chain->flag = empty; |
| 1735 } | |
| 1736 | |
| 1737 /* Coalesce address blocks if they are contiguous. Only empty and | |
| 1738 unavailable slots are coalesced. */ | |
| 440 | 1739 static void |
| 1740 Coalesce_Addr_Blocks (void) | |
| 428 | 1741 { |
| 1742 ADDRESS_CHAIN p; | |
| 1743 for (p = addr_chain; p; p = p->next) | |
| 1744 { | |
| 1745 while (p->next && p->flag == p->next->flag) | |
| 1746 { | |
| 1747 ADDRESS_CHAIN np; | |
| 1748 np = p->next; | |
| 1749 | |
| 1750 if (p->flag == occupied) break; /* No cigar */ | |
| 1751 | |
| 1752 /* Check if the addresses are contiguous. */ | |
| 1753 if (p->addr + p->sz != np->addr) break; | |
| 1754 | |
| 1755 MEMMETER( MVAL( M_Addrlist_Size )--) | |
| 1756 /* We can coalesce these two. */ | |
| 1757 p->sz += np->sz; | |
| 1758 p->next = np->next; | |
| 1759 assert( np != addr_chain ); /* We're not freeing the head of the list. */ | |
| 1760 UNDERLYING_FREE( np ); | |
| 1761 } | |
| 1762 } /* for all p */ | |
| 1763 } | |
| 1764 | |
| 1765 /* Get an empty address block of specified size. */ | |
| 440 | 1766 static VM_ADDR |
| 1767 New_Addr_Block (size_t sz) | |
| 428 | 1768 { |
| 1769 ADDRESS_CHAIN p = addr_chain; | |
| 1770 VM_ADDR new_addr = VM_FAILURE_ADDR; | |
| 1771 for (; p; p = p->next) | |
| 1772 { | |
| 1773 if (p->flag == empty && p->sz > sz) | |
| 1774 { | |
| 1775 /* Create a new entry following p which is empty. */ | |
| 1776 ADDRESS_CHAIN remainder = (ADDRESS_CHAIN) UNDERLYING_MALLOC( sizeof( ADDRESS_BLOCK ) ); | |
| 1777 remainder->next = p->next; | |
| 1778 remainder->flag = empty; | |
| 1779 remainder->addr = p->addr + sz; | |
| 1780 remainder->sz = p->sz - sz; | |
| 1781 | |
| 1782 MEMMETER( MVAL( M_Addrlist_Size )++) | |
| 1783 | |
| 1784 /* Now make p become an occupied block with the appropriate size */ | |
| 1785 p->next = remainder; | |
| 1786 p->sz = sz; | |
| 1787 new_addr = mmap( (VM_ADDR) p->addr, p->sz, PROT_READ|PROT_WRITE, | |
| 1788 MAP_FLAGS, DEV_ZERO_FD, 0 ); | |
| 1789 if (new_addr == VM_FAILURE_ADDR) | |
| 1790 { | |
| 1791 p->flag = unavailable; | |
| 1792 continue; | |
| 1793 } | |
| 1794 p->flag = occupied; | |
| 1795 break; | |
| 1796 } | |
| 1797 } | |
| 1798 Coalesce_Addr_Blocks(); | |
| 1799 return new_addr; | |
| 1800 } | |
| 1801 | |
| 1802 /* Free an address block. We mark the block as being empty, and attempt to | |
| 1803 do any coalescing that may have resulted from this. */ | |
| 440 | 1804 static void |
| 1805 Free_Addr_Block (VM_ADDR addr, size_t sz) | |
| 428 | 1806 { |
| 1807 ADDRESS_CHAIN p = addr_chain; | |
| 1808 for (; p; p = p->next ) | |
| 1809 { | |
| 1810 if (p->addr == addr) | |
| 1811 { | |
|
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
1812 assert (p->sz == sz); /* ACK! Shouldn't happen at all. */ |
| 428 | 1813 munmap( (VM_ADDR) p->addr, p->sz ); |
| 1814 p->flag = empty; | |
| 1815 break; | |
| 1816 } | |
| 1817 } | |
|
5050
6f2158fa75ed
Fix quick-build, use asserts() in place of ABORT()
Ben Wing <ben@xemacs.org>
parents:
3263
diff
changeset
|
1818 assert (p); /* Can't happen... we've got a block to free which is not in |
| 428 | 1819 the address list. */ |
| 1820 Coalesce_Addr_Blocks(); | |
| 1821 } | |
| 1822 #else /* !MMAP_GENERATE_ADDRESSES */ | |
| 1823 /* This is an alternate (simpler) implementation in cases where the | |
| 1824 address is picked by the kernel. */ | |
| 1825 | |
| 440 | 1826 static void |
| 1827 Addr_Block_initialize (void) | |
| 428 | 1828 { |
| 1829 /* Nothing. */ | |
| 1830 } | |
| 1831 | |
| 440 | 1832 static VM_ADDR |
| 1833 New_Addr_Block (size_t sz) | |
| 428 | 1834 { |
| 1835 return mmap (0, sz, PROT_READ|PROT_WRITE, MAP_FLAGS, | |
| 1836 DEV_ZERO_FD, 0 ); | |
| 1837 } | |
| 1838 | |
| 440 | 1839 static void |
| 1840 Free_Addr_Block (VM_ADDR addr, size_t sz) | |
| 428 | 1841 { |
| 1842 munmap ((caddr_t) addr, sz ); | |
| 1843 } | |
| 1844 | |
| 1845 #endif /* MMAP_GENERATE_ADDRESSES */ | |
| 1846 | |
| 1847 | |
| 1848 /* IMPLEMENTATION OF EXPORTED RELOCATOR INTERFACE */ | |
| 1849 | |
| 1850 /* | |
| 440 | 1851 r_alloc (POINTER, SIZE): Allocate a relocatable area with the start |
| 428 | 1852 address aliased to the first parameter. |
| 1853 */ | |
| 1854 | |
| 440 | 1855 POINTER r_alloc (POINTER *ptr, size_t size); |
| 428 | 1856 POINTER |
| 440 | 1857 r_alloc (POINTER *ptr, size_t size) |
| 428 | 1858 { |
| 1859 MMAP_HANDLE mh; | |
| 1860 | |
| 1333 | 1861 REGEX_MALLOC_CHECK (); |
| 1862 | |
| 428 | 1863 switch(r_alloc_initialized) |
| 1864 { | |
| 1865 case 0: | |
| 2500 | 1866 ABORT(); |
| 428 | 1867 case 1: |
| 1868 *ptr = (POINTER) UNDERLYING_MALLOC(size); | |
| 1869 break; | |
| 1870 default: | |
| 1871 mh = new_mmap_handle( size ); | |
| 1872 if (mh) | |
| 1873 { | |
| 440 | 1874 size_t hysteresis = (mmap_hysteresis > 0 ? mmap_hysteresis : 0); |
| 1875 size_t mmapped_size = ROUNDUP( size + hysteresis ); | |
| 428 | 1876 MEMMETER( MVAL(M_Map)++ ) |
| 1877 MEMMETER( MVAL(M_Pages_Map) += (mmapped_size/page_size) ) | |
| 1878 MEMMETER( MVAL(M_Wastage) += mmapped_size - size ) | |
| 1879 MEMMETER( MVAL(M_Live_Pages) += (mmapped_size/page_size) ) | |
| 1880 mh->vm_addr = New_Addr_Block( mmapped_size ); | |
| 1881 if (mh->vm_addr == VM_FAILURE_ADDR) { | |
| 1882 free_mmap_handle( mh ); /* Free the loser */ | |
| 1883 *ptr = 0; | |
| 1884 return 0; /* ralloc failed due to mmap() failure. */ | |
| 1885 } | |
| 1886 MHASH_ADD( mh->vm_addr, mh ); | |
| 1887 mh->space_for = mmapped_size; | |
| 1888 mh->aliased_address = ptr; | |
| 1889 *ptr = (POINTER) mh->vm_addr; | |
| 1890 } | |
| 1891 else | |
| 1892 *ptr = 0; /* Malloc of block failed */ | |
| 1893 break; | |
| 1894 } | |
| 1895 return *ptr; | |
| 1896 } | |
| 1897 | |
| 1898 /* Free a bloc of relocatable storage whose data is pointed to by PTR. | |
| 1899 Store 0 in *PTR to show there's no block allocated. */ | |
| 1900 | |
| 1901 void r_alloc_free (POINTER *ptr); | |
| 1902 void | |
| 1903 r_alloc_free (POINTER *ptr) | |
| 1904 { | |
| 1333 | 1905 REGEX_MALLOC_CHECK (); |
| 1906 | |
| 428 | 1907 switch( r_alloc_initialized) { |
| 1908 case 0: | |
| 2500 | 1909 ABORT(); |
| 428 | 1910 |
| 1911 case 1: | |
| 1912 UNDERLYING_FREE( *ptr ); /* Certain this is from the heap. */ | |
| 1913 break; | |
| 1914 | |
| 1915 default: | |
| 1916 { | |
| 1917 MMAP_HANDLE dead_handle = find_mmap_handle( ptr ); | |
| 1918 /* Check if we've got it. */ | |
| 1919 if (dead_handle == 0) /* Didn't find it in the list of mmap handles */ | |
| 1920 { | |
| 1921 UNDERLYING_FREE( *ptr ); | |
| 1922 } | |
| 1923 else | |
| 1924 { | |
| 1925 MEMMETER( MVAL( M_Wastage ) -= (dead_handle->space_for - dead_handle->size) ) | |
| 1926 MEMMETER( MVAL( M_Live_Pages ) -= (dead_handle->space_for / page_size )) | |
| 1927 MEMMETER(MVAL(M_Unmap)++) | |
| 1928 MHASH_DEL( dead_handle->vm_addr ); | |
| 1929 Free_Addr_Block( dead_handle->vm_addr, dead_handle->space_for ); | |
| 1930 free_mmap_handle (dead_handle); | |
| 1931 } | |
| 1932 } | |
| 1933 break; | |
| 1934 } /* r_alloc_initialized */ | |
| 1935 *ptr = 0; /* Zap the pointer's contents. */ | |
| 1936 } | |
| 1937 | |
| 1938 /* Given a pointer at address PTR to relocatable data, resize it to SIZE. | |
| 1939 | |
| 1940 Change *PTR to reflect the new bloc, and return this value. | |
| 1941 | |
| 1942 If more memory cannot be allocated, then leave *PTR unchanged, and | |
| 1943 return zero. */ | |
| 1944 | |
| 440 | 1945 POINTER r_re_alloc (POINTER *ptr, size_t sz); |
| 428 | 1946 POINTER |
| 440 | 1947 r_re_alloc (POINTER *ptr, size_t sz) |
| 428 | 1948 { |
| 1333 | 1949 REGEX_MALLOC_CHECK (); |
| 1950 | |
| 428 | 1951 if (r_alloc_initialized == 0) |
| 1952 { | |
| 2500 | 1953 ABORT (); |
| 428 | 1954 return 0; /* suppress compiler warning */ |
| 1955 } | |
| 1956 else if (r_alloc_initialized == 1) | |
| 1957 { | |
| 1958 POINTER tmp = (POINTER) realloc(*ptr, sz); | |
| 1959 if (tmp) | |
| 1960 *ptr = tmp; | |
| 1961 return tmp; | |
| 1962 } | |
| 1963 else | |
| 1964 { | |
| 440 | 1965 size_t hysteresis = (mmap_hysteresis > 0 ? mmap_hysteresis : 0); |
| 1966 size_t actual_sz = ROUNDUP( sz + hysteresis ); | |
| 428 | 1967 MMAP_HANDLE h = find_mmap_handle( ptr ); |
| 1968 VM_ADDR new_vm_addr; | |
| 1969 | |
| 1970 if ( h == 0 ) /* Was allocated using malloc. */ | |
| 1971 { | |
| 1972 POINTER tmp = (POINTER) UNDERLYING_REALLOC(*ptr, sz); | |
| 1973 if (tmp) | |
| 1974 *ptr = tmp; | |
| 1975 return tmp; | |
| 1976 } | |
| 1977 | |
| 1978 MEMMETER( | |
| 1979 MVAL(M_Average_Bumpval) = | |
| 1980 (((double) MVAL(M_Remap) * MVAL(M_Average_Bumpval)) + (sz - h->size)) | |
| 1981 / (double) (MVAL(M_Remap) + 1)) | |
| 1982 MEMMETER(MVAL(M_Remap)++) | |
| 1983 if (h->space_for > sz) /* We've got some more room */ | |
| 1984 { /* Also, if a shrinkage was asked for. */ | |
| 1985 MEMMETER( MVAL(M_Didnt_Copy)++ ) | |
| 1986 MEMMETER( MVAL(M_Wastage) -= (sz - h->size)) | |
| 1987 /* We're pretty dumb at handling shrinkage. We should check for | |
| 1988 a larger gap than the standard hysteresis allowable, and if so, | |
| 1989 shrink the number of pages. Right now, we simply reset the size | |
| 1990 component and return. */ | |
| 1991 h->size = sz; | |
| 1992 return *ptr; | |
| 1993 } | |
| 1994 | |
| 1995 new_vm_addr = New_Addr_Block( actual_sz ); | |
| 1996 if (new_vm_addr == VM_FAILURE_ADDR) | |
| 1997 {/* Failed to realloc. */ | |
| 1998 /* *ptr = 0; */ | |
| 1999 return 0; | |
| 2000 } | |
| 2001 | |
| 2002 MHASH_ADD( new_vm_addr, h ); | |
| 2003 /* We got a block OK: now we should move the old contents to the | |
| 2004 new address. We use the old size of this block. */ | |
| 2005 memmove(new_vm_addr, h->vm_addr, h->size); | |
| 2006 MHASH_DEL( h->vm_addr ); | |
| 2007 Free_Addr_Block( h->vm_addr, h->space_for ); /* Unmap old area. */ | |
| 2008 | |
| 2009 MEMMETER( MVAL( M_Copy_Pages ) += (h->space_for/page_size) ) | |
| 2010 MEMMETER( MVAL( M_Live_Pages ) -= (h->space_for / page_size)) | |
| 2011 MEMMETER( MVAL( M_Live_Pages ) += (actual_sz / page_size)) | |
| 2012 MEMMETER( MVAL( M_Wastage ) -= (h->space_for - h->size)) | |
| 2013 MEMMETER( MVAL( M_Wastage ) += (actual_sz - sz) ) | |
| 2014 | |
| 2015 /* Update block datastructure. */ | |
| 2016 h->space_for = actual_sz; /* New total space */ | |
| 2017 h->size = sz; /* New (requested) size */ | |
| 2018 h->vm_addr = new_vm_addr; /* New VM start address */ | |
| 2019 h->aliased_address = ptr; /* Change alias to reflect block relocation. */ | |
| 2020 *ptr = (POINTER) h->vm_addr; | |
| 2021 return *ptr; | |
| 2022 } | |
| 2023 } | |
| 2024 | |
| 2025 | |
| 2026 /* Initialize various things for memory allocation. | |
| 2027 */ | |
| 2028 void | |
| 2029 init_ralloc (void) | |
| 2030 { | |
| 2031 int i = 0; | |
| 2032 if (r_alloc_initialized > 1) | |
| 2033 return; /* used to return 1 */ | |
| 2034 | |
| 909 | 2035 #ifdef PDUMP |
| 2036 /* Under pdump, we need to activate ralloc on the first go. */ | |
| 2037 ++r_alloc_initialized; | |
| 2038 #endif | |
| 428 | 2039 if (++r_alloc_initialized == 1) |
| 2040 return; /* used to return 1 */ | |
| 2041 | |
| 2042 Addr_Block_initialize(); /* Initialize the address picker, if required. */ | |
| 2043 page_size = PAGE; | |
| 2044 assert( page_size > 0 ); /* getpagesize() bogosity check. */ | |
| 2045 | |
| 2046 #ifndef MAP_ANONYMOUS | |
| 2047 DEV_ZERO_FD = open( "/dev/zero", O_RDWR ); | |
| 2048 if (DEV_ZERO_FD < 0) | |
| 2049 /* Failed. Perhaps we should abort here? */ | |
| 2050 return; /* used to return 0 */ | |
| 2051 #endif | |
| 2052 | |
| 2053 #ifdef MMAP_METERING | |
| 2054 for(i = 0; i < N_Meterables; i++ ) | |
| 2055 { | |
| 2056 meter[i] = 0; | |
| 2057 } | |
| 2058 #endif /* MMAP_METERING */ | |
| 2059 } | |
| 2060 | |
| 2061 void | |
| 2062 syms_of_ralloc (void) | |
| 2063 { | |
| 2064 #ifdef MMAP_METERING | |
| 563 | 2065 DEFSYMBOL (Qmmap_times_mapped); |
| 2066 DEFSYMBOL (Qmmap_pages_mapped); | |
| 2067 DEFSYMBOL (Qmmap_times_unmapped); | |
| 2068 DEFSYMBOL (Qmmap_times_remapped); | |
| 2069 DEFSYMBOL (Qmmap_didnt_copy); | |
| 2070 DEFSYMBOL (Qmmap_pages_copied); | |
| 2071 DEFSYMBOL (Qmmap_average_bumpval); | |
| 2072 DEFSYMBOL (Qmmap_wastage); | |
| 2073 DEFSYMBOL (Qmmap_live_pages); | |
| 2074 DEFSYMBOL (Qmmap_addr_looked_up); | |
| 2075 DEFSYMBOL (Qmmap_hash_worked); | |
| 2076 DEFSYMBOL (Qmmap_addrlist_size); | |
| 428 | 2077 DEFSUBR (Fmmap_allocator_status); |
| 2078 #endif /* MMAP_METERING */ | |
| 2079 } | |
| 2080 | |
| 2081 void | |
| 2082 vars_of_ralloc (void) | |
| 2083 { | |
| 2084 DEFVAR_INT ("mmap-hysteresis", &mmap_hysteresis /* | |
| 2085 Extra room left at the end of an allocated arena, | |
| 2086 so that a re-alloc requesting extra space smaller than this | |
| 2087 does not actually cause a new arena to be allocated. | |
| 2088 | |
| 2089 A negative value is considered equal to zero. This is the | |
| 2090 minimum amount of space guaranteed to be left at the end of | |
| 2091 the arena. Because allocation happens in multiples of the OS | |
| 2092 page size, it is possible for more space to be left unused. | |
| 2093 */ ); | |
| 2094 mmap_hysteresis = 0; | |
| 2095 } | |
| 2096 | |
| 2097 #endif /* HAVE_MMAP */ |
