0
|
1 /* Manipulation of keymaps
|
|
2 Copyright (C) 1985, 1991-1995 Free Software Foundation, Inc.
|
|
3 Copyright (C) 1995 Board of Trustees, University of Illinois.
|
|
4 Copyright (C) 1995 Sun Microsystems, Inc.
|
|
5 Totally redesigned by jwz in 1991.
|
|
6
|
|
7 This file is part of XEmacs.
|
|
8
|
|
9 XEmacs is free software; you can redistribute it and/or modify it
|
|
10 under the terms of the GNU General Public License as published by the
|
|
11 Free Software Foundation; either version 2, or (at your option) any
|
|
12 later version.
|
|
13
|
|
14 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
17 for more details.
|
|
18
|
|
19 You should have received a copy of the GNU General Public License
|
|
20 along with XEmacs; see the file COPYING. If not, write to
|
|
21 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
22 Boston, MA 02111-1307, USA. */
|
|
23
|
70
|
24 /* Synched up with: Mule 2.0. Not synched with FSF. Substantially
|
|
25 different from FSF. */
|
|
26
|
0
|
27
|
|
28 #include <config.h>
|
|
29 #include "lisp.h"
|
|
30
|
|
31 #include "buffer.h"
|
|
32 #include "bytecode.h"
|
|
33 #include "console.h"
|
|
34 #include "elhash.h"
|
|
35 #include "events.h"
|
|
36 #include "frame.h"
|
|
37 #include "insdel.h"
|
|
38 #include "keymap.h"
|
|
39 #include "window.h"
|
412
|
40
|
|
41 #ifdef WINDOWSNT
|
|
42 /* Hmm, under unix we want X modifiers, under NT we want X modifiers if
|
|
43 we are running X and Windows modifiers otherwise.
|
|
44 gak. This is a kludge until we support multiple native GUIs!
|
|
45 */
|
|
46 #undef MOD_ALT
|
|
47 #undef MOD_CONTROL
|
|
48 #undef MOD_SHIFT
|
|
49 #endif
|
|
50
|
157
|
51 #include "events-mod.h"
|
100
|
52
|
0
|
53
|
245
|
54 /* A keymap contains six slots:
|
0
|
55
|
|
56 parents Ordered list of keymaps to search after
|
|
57 this one if no match is found.
|
|
58 Keymaps can thus be arranged in a hierarchy.
|
|
59
|
|
60 table A hash table, hashing keysyms to their bindings.
|
70
|
61 It will be one of the following:
|
|
62
|
|
63 -- a symbol, e.g. 'home
|
|
64 -- a character, representing something printable
|
|
65 (not ?\C-c meaning C-c, for instance)
|
|
66 -- an integer representing a modifier combination
|
0
|
67
|
|
68 inverse_table A hash table, hashing bindings to the list of keysyms
|
|
69 in this keymap which are bound to them. This is to make
|
|
70 the Fwhere_is_internal() function be fast. It needs to be
|
|
71 fast because we want to be able to call it in realtime to
|
|
72 update the keyboard-equivalents on the pulldown menus.
|
|
73 Values of the table are either atoms (keysyms)
|
|
74 or a dotted list of keysyms.
|
|
75
|
|
76 sub_maps_cache An alist; for each entry in this keymap whose binding is
|
|
77 a keymap (that is, Fkeymapp()) this alist associates that
|
|
78 keysym with that binding. This is used to optimize both
|
|
79 Fwhere_is_internal() and Faccessible_keymaps(). This slot
|
|
80 gets set to the symbol `t' every time a change is made to
|
|
81 this keymap, causing it to be recomputed when next needed.
|
|
82
|
|
83 prompt See `set-keymap-prompt'.
|
|
84
|
|
85 default_binding See `set-keymap-default-binding'.
|
|
86
|
|
87 Sequences of keys are stored in the obvious way: if the sequence of keys
|
|
88 "abc" was bound to some command `foo', the hierarchy would look like
|
|
89
|
|
90 keymap-1: associates "a" with keymap-2
|
|
91 keymap-2: associates "b" with keymap-3
|
|
92 keymap-3: associates "c" with foo
|
|
93
|
|
94 However, bucky bits ("modifiers" to the X-minded) are represented in the
|
|
95 keymap hierarchy as well. (This lets us use EQable objects as hash keys.)
|
|
96 Each combination of modifiers (e.g. control-hyper) gets its own submap
|
|
97 off of the main map. The hash key for a modifier combination is
|
70
|
98 an integer, computed by MAKE_MODIFIER_HASH_KEY().
|
185
|
99
|
0
|
100 If the key `C-a' was bound to some command, the hierarchy would look like
|
|
101
|
412
|
102 keymap-1: associates the integer MOD_CONTROL with keymap-2
|
0
|
103 keymap-2: associates "a" with the command
|
|
104
|
|
105 Similarly, if the key `C-H-a' was bound to some command, the hierarchy
|
|
106 would look like
|
|
107
|
412
|
108 keymap-1: associates the integer (MOD_CONTROL | MOD_HYPER)
|
0
|
109 with keymap-2
|
|
110 keymap-2: associates "a" with the command
|
|
111
|
|
112 Note that a special exception is made for the meta modifier, in order
|
|
113 to deal with ESC/meta lossage. Any key combination containing the
|
|
114 meta modifier is first indexed off of the main map into the meta
|
412
|
115 submap (with hash key MOD_META) and then indexed off of the
|
0
|
116 meta submap with the meta modifier removed from the key combination.
|
|
117 For example, when associating a command with C-M-H-a, we'd have
|
|
118
|
412
|
119 keymap-1: associates the integer MOD_META with keymap-2
|
|
120 keymap-2: associates the integer (MOD_CONTROL | MOD_HYPER)
|
0
|
121 with keymap-3
|
|
122 keymap-3: associates "a" with the command
|
|
123
|
|
124 Note that keymap-2 might have normal bindings in it; these would be
|
|
125 for key combinations containing only the meta modifier, such as
|
|
126 M-y or meta-backspace.
|
|
127
|
|
128 If the command that "a" was bound to in keymap-3 was itself a keymap,
|
|
129 then that would make the key "C-M-H-a" be a prefix character.
|
|
130
|
|
131 Note that this new model of keymaps takes much of the magic away from
|
|
132 the Escape key: the value of the variable `esc-map' is no longer indexed
|
|
133 in the `global-map' under the ESC key. It's indexed under the integer
|
412
|
134 MOD_META. This is not user-visible, however; none of the "bucky"
|
0
|
135 maps are.
|
|
136
|
|
137 There is a hack in Flookup_key() that makes (lookup-key global-map "\^[")
|
|
138 and (define-key some-random-map "\^[" my-esc-map) work as before, for
|
|
139 compatibility.
|
|
140
|
|
141 Since keymaps are opaque, the only way to extract information from them
|
|
142 is with the functions lookup-key, key-binding, local-key-binding, and
|
|
143 global-key-binding, which work just as before, and the new function
|
412
|
144 map-keymap, which is roughly analagous to maphash.
|
0
|
145
|
|
146 Note that map-keymap perpetuates the illusion that the "bucky" submaps
|
|
147 don't exist: if you map over a keymap with bucky submaps, it will also
|
|
148 map over those submaps. It does not, however, map over other random
|
|
149 submaps of the keymap, just the bucky ones.
|
|
150
|
|
151 One implication of this is that when you map over `global-map', you will
|
|
152 also map over `esc-map'. It is merely for compatibility that the esc-map
|
|
153 is accessible at all; I think that's a bad thing, since it blurs the
|
|
154 distinction between ESC and "meta" even more. "M-x" is no more a two-
|
|
155 key sequence than "C-x" is.
|
|
156
|
|
157 */
|
|
158
|
412
|
159 typedef struct Lisp_Keymap
|
0
|
160 {
|
|
161 struct lcrecord_header header;
|
412
|
162 Lisp_Object parents; /* Keymaps to be searched after this one
|
|
163 * An ordered list */
|
0
|
164 Lisp_Object prompt; /* Qnil or a string to print in the minibuffer
|
412
|
165 * when reading from this keymap */
|
|
166
|
0
|
167 Lisp_Object table; /* The contents of this keymap */
|
|
168 Lisp_Object inverse_table; /* The inverse mapping of the above */
|
412
|
169
|
0
|
170 Lisp_Object default_binding; /* Use this if no other binding is found
|
412
|
171 * (this overrides parent maps and the
|
|
172 * normal global-map lookup). */
|
|
173
|
|
174
|
0
|
175 Lisp_Object sub_maps_cache; /* Cache of directly inferior keymaps;
|
|
176 This holds an alist, of the key and the
|
|
177 maps, or the modifier bit and the map.
|
|
178 If this is the symbol t, then the cache
|
412
|
179 needs to be recomputed.
|
|
180 */
|
|
181 int fullness; /* How many entries there are in this table.
|
|
182 This should be the same as the fullness
|
|
183 of the `table', but hash.c is broken. */
|
0
|
184 Lisp_Object name; /* Just for debugging convenience */
|
412
|
185 } Lisp_Keymap;
|
0
|
186
|
70
|
187 #define MAKE_MODIFIER_HASH_KEY(modifier) make_int (modifier)
|
|
188 #define MODIFIER_HASH_KEY_BITS(x) (INTP (x) ? XINT (x) : 0)
|
0
|
189
|
|
190
|
|
191
|
|
192 /* Actually allocate storage for these variables */
|
|
193
|
412
|
194 static Lisp_Object Vcurrent_global_map; /* Always a keymap */
|
0
|
195
|
|
196 static Lisp_Object Vmouse_grabbed_buffer;
|
|
197
|
|
198 /* Alist of minor mode variables and keymaps. */
|
|
199 static Lisp_Object Qminor_mode_map_alist;
|
|
200
|
|
201 static Lisp_Object Voverriding_local_map;
|
|
202
|
|
203 static Lisp_Object Vkey_translation_map;
|
|
204
|
284
|
205 static Lisp_Object Vvertical_divider_map;
|
|
206
|
0
|
207 /* This is incremented whenever a change is made to a keymap. This is
|
|
208 so that things which care (such as the menubar code) can recompute
|
|
209 privately-cached data when the user has changed keybindings.
|
|
210 */
|
|
211 int keymap_tick;
|
|
212
|
|
213 /* Prefixing a key with this character is the same as sending a meta bit. */
|
|
214 Lisp_Object Vmeta_prefix_char;
|
|
215
|
|
216 Lisp_Object Qkeymapp;
|
|
217 Lisp_Object Vsingle_space_string;
|
|
218 Lisp_Object Qsuppress_keymap;
|
|
219 Lisp_Object Qmodeline_map;
|
|
220 Lisp_Object Qtoolbar_map;
|
|
221
|
272
|
222 EXFUN (Fkeymap_fullness, 1);
|
|
223 EXFUN (Fset_keymap_name, 2);
|
|
224 EXFUN (Fsingle_key_description, 1);
|
|
225
|
219
|
226 static void describe_command (Lisp_Object definition, Lisp_Object buffer);
|
0
|
227 static void describe_map (Lisp_Object keymap, Lisp_Object elt_prefix,
|
219
|
228 void (*elt_describer) (Lisp_Object, Lisp_Object),
|
185
|
229 int partial,
|
|
230 Lisp_Object shadow,
|
219
|
231 int mice_only_p,
|
|
232 Lisp_Object buffer);
|
272
|
233
|
0
|
234 Lisp_Object Qcontrol, Qctrl, Qmeta, Qsuper, Qhyper, Qalt, Qshift;
|
272
|
235 Lisp_Object Qbutton0, Qbutton1, Qbutton2, Qbutton3;
|
|
236 Lisp_Object Qbutton4, Qbutton5, Qbutton6, Qbutton7;
|
|
237 Lisp_Object Qbutton0up, Qbutton1up, Qbutton2up, Qbutton3up;
|
|
238 Lisp_Object Qbutton4up, Qbutton5up, Qbutton6up, Qbutton7up;
|
|
239
|
0
|
240 Lisp_Object Qmenu_selection;
|
98
|
241 /* Emacs compatibility */
|
265
|
242 Lisp_Object Qdown_mouse_1, Qdown_mouse_2, Qdown_mouse_3, Qdown_mouse_4,
|
|
243 Qdown_mouse_5;
|
|
244 Lisp_Object Qmouse_1, Qmouse_2, Qmouse_3, Qmouse_4, Qmouse_5;
|
0
|
245
|
|
246 /* Kludge kludge kludge */
|
|
247 Lisp_Object QLFD, QTAB, QRET, QESC, QDEL, QSPC, QBS;
|
|
248
|
|
249
|
|
250 /************************************************************************/
|
|
251 /* The keymap Lisp object */
|
|
252 /************************************************************************/
|
|
253
|
|
254 static Lisp_Object
|
424
|
255 mark_keymap (Lisp_Object obj)
|
0
|
256 {
|
380
|
257 Lisp_Keymap *keymap = XKEYMAP (obj);
|
424
|
258 mark_object (keymap->parents);
|
|
259 mark_object (keymap->prompt);
|
|
260 mark_object (keymap->inverse_table);
|
|
261 mark_object (keymap->sub_maps_cache);
|
|
262 mark_object (keymap->default_binding);
|
|
263 mark_object (keymap->name);
|
173
|
264 return keymap->table;
|
0
|
265 }
|
185
|
266
|
0
|
267 static void
|
|
268 print_keymap (Lisp_Object obj, Lisp_Object printcharfun, int escapeflag)
|
|
269 {
|
|
270 /* This function can GC */
|
380
|
271 Lisp_Keymap *keymap = XKEYMAP (obj);
|
0
|
272 char buf[200];
|
412
|
273 int size = XINT (Fkeymap_fullness (obj));
|
0
|
274 if (print_readably)
|
|
275 error ("printing unreadable object #<keymap 0x%x>", keymap->header.uid);
|
|
276 write_c_string ("#<keymap ", printcharfun);
|
|
277 if (!NILP (keymap->name))
|
412
|
278 print_internal (keymap->name, printcharfun, 1);
|
|
279 /* #### Yuck! This is no way to form plural! --hniksic */
|
|
280 sprintf (buf, "%s%d entr%s 0x%x>",
|
424
|
281 (NILP (keymap->name) ? "" : " "),
|
412
|
282 size,
|
|
283 ((size == 1) ? "y" : "ies"),
|
|
284 keymap->header.uid);
|
0
|
285 write_c_string (buf, printcharfun);
|
|
286 }
|
|
287
|
420
|
288 static const struct lrecord_description keymap_description[] = {
|
|
289 { XD_LISP_OBJECT, offsetof(Lisp_Keymap, parents), 6 },
|
|
290 { XD_LISP_OBJECT, offsetof(Lisp_Keymap, name), 1 },
|
|
291 { XD_END }
|
|
292 };
|
|
293
|
272
|
294 /* No need for keymap_equal #### Why not? */
|
|
295 DEFINE_LRECORD_IMPLEMENTATION ("keymap", keymap,
|
|
296 mark_keymap, print_keymap, 0, 0, 0,
|
420
|
297 keymap_description,
|
380
|
298 Lisp_Keymap);
|
0
|
299
|
|
300 /************************************************************************/
|
|
301 /* Traversing keymaps and their parents */
|
|
302 /************************************************************************/
|
|
303
|
|
304 static Lisp_Object
|
|
305 traverse_keymaps (Lisp_Object start_keymap, Lisp_Object start_parents,
|
|
306 Lisp_Object (*mapper) (Lisp_Object keymap, void *mapper_arg),
|
|
307 void *mapper_arg)
|
|
308 {
|
|
309 /* This function can GC */
|
|
310 Lisp_Object keymap;
|
|
311 Lisp_Object tail = start_parents;
|
|
312 Lisp_Object malloc_sucks[10];
|
|
313 Lisp_Object malloc_bites = Qnil;
|
|
314 int stack_depth = 0;
|
|
315 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
|
|
316 GCPRO4 (*malloc_sucks, malloc_bites, start_keymap, tail);
|
|
317 gcpro1.nvars = 0;
|
|
318
|
|
319 start_keymap = get_keymap (start_keymap, 1, 1);
|
|
320 keymap = start_keymap;
|
|
321 /* Hack special-case parents at top-level */
|
412
|
322 tail = ((!NILP (tail)) ? tail : XKEYMAP (keymap)->parents);
|
0
|
323
|
|
324 for (;;)
|
|
325 {
|
|
326 Lisp_Object result;
|
|
327
|
|
328 QUIT;
|
412
|
329 result = ((mapper) (keymap, mapper_arg));
|
0
|
330 if (!NILP (result))
|
|
331 {
|
|
332 while (CONSP (malloc_bites))
|
|
333 {
|
412
|
334 struct Lisp_Cons *victim = XCONS (malloc_bites);
|
0
|
335 malloc_bites = victim->cdr;
|
|
336 free_cons (victim);
|
|
337 }
|
|
338 UNGCPRO;
|
173
|
339 return result;
|
0
|
340 }
|
|
341 if (NILP (tail))
|
|
342 {
|
|
343 if (stack_depth == 0)
|
|
344 {
|
|
345 UNGCPRO;
|
173
|
346 return Qnil; /* Nothing found */
|
0
|
347 }
|
|
348 stack_depth--;
|
|
349 if (CONSP (malloc_bites))
|
|
350 {
|
412
|
351 struct Lisp_Cons *victim = XCONS (malloc_bites);
|
0
|
352 tail = victim->car;
|
|
353 malloc_bites = victim->cdr;
|
|
354 free_cons (victim);
|
|
355 }
|
|
356 else
|
|
357 {
|
|
358 tail = malloc_sucks[stack_depth];
|
|
359 gcpro1.nvars = stack_depth;
|
|
360 }
|
|
361 keymap = XCAR (tail);
|
|
362 tail = XCDR (tail);
|
|
363 }
|
|
364 else
|
|
365 {
|
|
366 Lisp_Object parents;
|
|
367
|
|
368 keymap = XCAR (tail);
|
|
369 tail = XCDR (tail);
|
|
370 parents = XKEYMAP (keymap)->parents;
|
|
371 if (!CONSP (parents))
|
|
372 ;
|
|
373 else if (NILP (tail))
|
|
374 /* Tail-recurse */
|
|
375 tail = parents;
|
|
376 else
|
|
377 {
|
|
378 if (CONSP (malloc_bites))
|
|
379 malloc_bites = noseeum_cons (tail, malloc_bites);
|
|
380 else if (stack_depth < countof (malloc_sucks))
|
|
381 {
|
|
382 malloc_sucks[stack_depth++] = tail;
|
|
383 gcpro1.nvars = stack_depth;
|
|
384 }
|
|
385 else
|
|
386 {
|
|
387 /* *&@##[*&^$ C. @#[$*&@# Unix. Losers all. */
|
|
388 int i;
|
|
389 for (i = 0, malloc_bites = Qnil;
|
|
390 i < countof (malloc_sucks);
|
|
391 i++)
|
|
392 malloc_bites = noseeum_cons (malloc_sucks[i],
|
|
393 malloc_bites);
|
|
394 gcpro1.nvars = 0;
|
|
395 }
|
|
396 tail = parents;
|
|
397 }
|
|
398 }
|
|
399 keymap = get_keymap (keymap, 1, 1);
|
|
400 if (EQ (keymap, start_keymap))
|
|
401 {
|
|
402 signal_simple_error ("Cyclic keymap indirection",
|
|
403 start_keymap);
|
|
404 }
|
|
405 }
|
|
406 }
|
|
407
|
|
408
|
|
409 /************************************************************************/
|
|
410 /* Some low-level functions */
|
|
411 /************************************************************************/
|
|
412
|
412
|
413 static unsigned int
|
0
|
414 bucky_sym_to_bucky_bit (Lisp_Object sym)
|
|
415 {
|
412
|
416 if (EQ (sym, Qcontrol)) return MOD_CONTROL;
|
|
417 if (EQ (sym, Qmeta)) return MOD_META;
|
|
418 if (EQ (sym, Qsuper)) return MOD_SUPER;
|
|
419 if (EQ (sym, Qhyper)) return MOD_HYPER;
|
|
420 if (EQ (sym, Qalt)) return MOD_ALT;
|
|
421 if (EQ (sym, Qsymbol)) return MOD_ALT; /* #### - reverse compat */
|
|
422 if (EQ (sym, Qshift)) return MOD_SHIFT;
|
185
|
423
|
|
424 return 0;
|
0
|
425 }
|
|
426
|
|
427 static Lisp_Object
|
412
|
428 control_meta_superify (Lisp_Object frob, unsigned int modifiers)
|
0
|
429 {
|
|
430 if (modifiers == 0)
|
|
431 return frob;
|
|
432 frob = Fcons (frob, Qnil);
|
412
|
433 if (modifiers & MOD_SHIFT) frob = Fcons (Qshift, frob);
|
|
434 if (modifiers & MOD_ALT) frob = Fcons (Qalt, frob);
|
|
435 if (modifiers & MOD_HYPER) frob = Fcons (Qhyper, frob);
|
|
436 if (modifiers & MOD_SUPER) frob = Fcons (Qsuper, frob);
|
|
437 if (modifiers & MOD_CONTROL) frob = Fcons (Qcontrol, frob);
|
|
438 if (modifiers & MOD_META) frob = Fcons (Qmeta, frob);
|
173
|
439 return frob;
|
0
|
440 }
|
|
441
|
|
442 static Lisp_Object
|
412
|
443 make_key_description (CONST struct key_data *key, int prettify)
|
0
|
444 {
|
|
445 Lisp_Object keysym = key->keysym;
|
412
|
446 unsigned int modifiers = key->modifiers;
|
0
|
447
|
70
|
448 if (prettify && CHARP (keysym))
|
0
|
449 {
|
|
450 /* This is a little slow, but (control a) is prettier than (control 65).
|
|
451 It's now ok to do this for digit-chars too, since we've fixed the
|
|
452 bug where \9 read as the integer 9 instead of as the symbol with
|
|
453 "9" as its name.
|
|
454 */
|
|
455 /* !!#### I'm not sure how correct this is. */
|
|
456 Bufbyte str [1 + MAX_EMCHAR_LEN];
|
|
457 Bytecount count = set_charptr_emchar (str, XCHAR (keysym));
|
|
458 str[count] = 0;
|
|
459 keysym = intern ((char *) str);
|
|
460 }
|
173
|
461 return control_meta_superify (keysym, modifiers);
|
0
|
462 }
|
|
463
|
|
464
|
|
465 /************************************************************************/
|
|
466 /* Low-level keymap-store functions */
|
|
467 /************************************************************************/
|
|
468
|
|
469 static Lisp_Object
|
|
470 raw_lookup_key (Lisp_Object keymap,
|
412
|
471 CONST struct key_data *raw_keys, int raw_keys_count,
|
0
|
472 int keys_so_far, int accept_default);
|
|
473
|
|
474 /* Relies on caller to gc-protect args */
|
|
475 static Lisp_Object
|
|
476 keymap_lookup_directly (Lisp_Object keymap,
|
412
|
477 Lisp_Object keysym, unsigned int modifiers)
|
0
|
478 {
|
380
|
479 Lisp_Keymap *k;
|
0
|
480
|
412
|
481 if ((modifiers & ~(MOD_CONTROL | MOD_META | MOD_SUPER | MOD_HYPER
|
|
482 | MOD_ALT | MOD_SHIFT)) != 0)
|
0
|
483 abort ();
|
|
484
|
|
485 k = XKEYMAP (keymap);
|
|
486
|
|
487 /* If the keysym is a one-character symbol, use the char code instead. */
|
|
488 if (SYMBOLP (keysym) && string_char_length (XSYMBOL (keysym)->name) == 1)
|
|
489 {
|
|
490 Lisp_Object i_fart_on_gcc =
|
|
491 make_char (string_char (XSYMBOL (keysym)->name, 0));
|
|
492 keysym = i_fart_on_gcc;
|
|
493 }
|
|
494
|
412
|
495 if (modifiers & MOD_META) /* Utterly hateful ESC lossage */
|
2
|
496 {
|
412
|
497 Lisp_Object submap = Fgethash (MAKE_MODIFIER_HASH_KEY (MOD_META),
|
2
|
498 k->table, Qnil);
|
|
499 if (NILP (submap))
|
173
|
500 return Qnil;
|
2
|
501 k = XKEYMAP (submap);
|
412
|
502 modifiers &= ~MOD_META;
|
2
|
503 }
|
0
|
504
|
|
505 if (modifiers != 0)
|
2
|
506 {
|
|
507 Lisp_Object submap = Fgethash (MAKE_MODIFIER_HASH_KEY (modifiers),
|
|
508 k->table, Qnil);
|
|
509 if (NILP (submap))
|
173
|
510 return Qnil;
|
2
|
511 k = XKEYMAP (submap);
|
|
512 }
|
173
|
513 return Fgethash (keysym, k->table, Qnil);
|
0
|
514 }
|
|
515
|
|
516 static void
|
|
517 keymap_store_inverse_internal (Lisp_Object inverse_table,
|
|
518 Lisp_Object keysym,
|
|
519 Lisp_Object value)
|
|
520 {
|
|
521 Lisp_Object keys = Fgethash (value, inverse_table, Qunbound);
|
|
522
|
|
523 if (UNBOUNDP (keys))
|
|
524 {
|
|
525 keys = keysym;
|
|
526 /* Don't cons this unless necessary */
|
|
527 /* keys = Fcons (keysym, Qnil); */
|
|
528 Fputhash (value, keys, inverse_table);
|
|
529 }
|
|
530 else if (!CONSP (keys))
|
|
531 {
|
|
532 /* Now it's necessary to cons */
|
|
533 keys = Fcons (keys, keysym);
|
|
534 Fputhash (value, keys, inverse_table);
|
|
535 }
|
|
536 else
|
|
537 {
|
380
|
538 while (CONSP (XCDR (keys)))
|
0
|
539 keys = XCDR (keys);
|
|
540 XCDR (keys) = Fcons (XCDR (keys), keysym);
|
|
541 /* No need to call puthash because we've destructively
|
|
542 modified the list tail in place */
|
|
543 }
|
|
544 }
|
|
545
|
|
546
|
|
547 static void
|
|
548 keymap_delete_inverse_internal (Lisp_Object inverse_table,
|
185
|
549 Lisp_Object keysym,
|
0
|
550 Lisp_Object value)
|
|
551 {
|
|
552 Lisp_Object keys = Fgethash (value, inverse_table, Qunbound);
|
|
553 Lisp_Object new_keys = keys;
|
|
554 Lisp_Object tail;
|
|
555 Lisp_Object *prev;
|
|
556
|
|
557 if (UNBOUNDP (keys))
|
|
558 abort ();
|
|
559
|
|
560 for (prev = &new_keys, tail = new_keys;
|
|
561 ;
|
|
562 prev = &(XCDR (tail)), tail = XCDR (tail))
|
|
563 {
|
|
564 if (EQ (tail, keysym))
|
|
565 {
|
|
566 *prev = Qnil;
|
|
567 break;
|
|
568 }
|
|
569 else if (EQ (keysym, XCAR (tail)))
|
|
570 {
|
|
571 *prev = XCDR (tail);
|
|
572 break;
|
|
573 }
|
|
574 }
|
|
575
|
|
576 if (NILP (new_keys))
|
|
577 Fremhash (value, inverse_table);
|
|
578 else if (!EQ (keys, new_keys))
|
|
579 /* Removed the first elt */
|
|
580 Fputhash (value, new_keys, inverse_table);
|
|
581 /* else the list's tail has been modified, so we don't need to
|
|
582 touch the hash table again (the pointer in there is ok).
|
|
583 */
|
|
584 }
|
|
585
|
|
586
|
|
587 static void
|
380
|
588 keymap_store_internal (Lisp_Object keysym, Lisp_Keymap *keymap,
|
412
|
589 Lisp_Object value)
|
0
|
590 {
|
412
|
591 Lisp_Object prev_value = Fgethash (keysym, keymap->table, Qnil);
|
|
592
|
|
593 if (EQ (prev_value, value))
|
0
|
594 return;
|
412
|
595 if (!NILP (prev_value))
|
185
|
596 keymap_delete_inverse_internal (keymap->inverse_table,
|
412
|
597 keysym, prev_value);
|
|
598 if (NILP (value))
|
0
|
599 {
|
412
|
600 keymap->fullness--;
|
|
601 if (keymap->fullness < 0) abort ();
|
0
|
602 Fremhash (keysym, keymap->table);
|
|
603 }
|
|
604 else
|
|
605 {
|
412
|
606 if (NILP (prev_value))
|
|
607 keymap->fullness++;
|
|
608 Fputhash (keysym, value, keymap->table);
|
185
|
609 keymap_store_inverse_internal (keymap->inverse_table,
|
412
|
610 keysym, value);
|
0
|
611 }
|
|
612 keymap_tick++;
|
|
613 }
|
|
614
|
|
615
|
|
616 static Lisp_Object
|
412
|
617 create_bucky_submap (Lisp_Keymap *k, unsigned int modifiers,
|
0
|
618 Lisp_Object parent_for_debugging_info)
|
|
619 {
|
|
620 Lisp_Object submap = Fmake_sparse_keymap (Qnil);
|
|
621 /* User won't see this, but it is nice for debugging Emacs */
|
|
622 XKEYMAP (submap)->name
|
|
623 = control_meta_superify (parent_for_debugging_info, modifiers);
|
|
624 /* Invalidate cache */
|
|
625 k->sub_maps_cache = Qt;
|
|
626 keymap_store_internal (MAKE_MODIFIER_HASH_KEY (modifiers), k, submap);
|
173
|
627 return submap;
|
0
|
628 }
|
|
629
|
|
630
|
|
631 /* Relies on caller to gc-protect keymap, keysym, value */
|
|
632 static void
|
412
|
633 keymap_store (Lisp_Object keymap, CONST struct key_data *key,
|
0
|
634 Lisp_Object value)
|
|
635 {
|
|
636 Lisp_Object keysym = key->keysym;
|
412
|
637 unsigned int modifiers = key->modifiers;
|
|
638 Lisp_Keymap *k;
|
|
639
|
|
640 if ((modifiers & ~(MOD_CONTROL | MOD_META | MOD_SUPER | MOD_HYPER
|
|
641 | MOD_ALT | MOD_SHIFT)) != 0)
|
|
642 abort ();
|
|
643
|
|
644 k = XKEYMAP (keymap);
|
0
|
645
|
|
646 /* If the keysym is a one-character symbol, use the char code instead. */
|
|
647 if (SYMBOLP (keysym) && string_char_length (XSYMBOL (keysym)->name) == 1)
|
|
648 {
|
412
|
649 Lisp_Object run_the_gcc_developers_over_with_a_steamroller =
|
|
650 make_char (string_char (XSYMBOL (keysym)->name, 0));
|
|
651 keysym = run_the_gcc_developers_over_with_a_steamroller;
|
|
652 }
|
|
653
|
|
654 if (modifiers & MOD_META) /* Utterly hateful ESC lossage */
|
|
655 {
|
|
656 Lisp_Object submap = Fgethash (MAKE_MODIFIER_HASH_KEY (MOD_META),
|
0
|
657 k->table, Qnil);
|
|
658 if (NILP (submap))
|
412
|
659 submap = create_bucky_submap (k, MOD_META, keymap);
|
0
|
660 k = XKEYMAP (submap);
|
412
|
661 modifiers &= ~MOD_META;
|
0
|
662 }
|
|
663
|
|
664 if (modifiers != 0)
|
|
665 {
|
|
666 Lisp_Object submap = Fgethash (MAKE_MODIFIER_HASH_KEY (modifiers),
|
|
667 k->table, Qnil);
|
|
668 if (NILP (submap))
|
|
669 submap = create_bucky_submap (k, modifiers, keymap);
|
|
670 k = XKEYMAP (submap);
|
|
671 }
|
|
672 k->sub_maps_cache = Qt; /* Invalidate cache */
|
|
673 keymap_store_internal (keysym, k, value);
|
|
674 }
|
|
675
|
|
676
|
|
677 /************************************************************************/
|
|
678 /* Listing the submaps of a keymap */
|
|
679 /************************************************************************/
|
|
680
|
|
681 struct keymap_submaps_closure
|
|
682 {
|
|
683 Lisp_Object *result_locative;
|
|
684 };
|
|
685
|
241
|
686 static int
|
380
|
687 keymap_submaps_mapper_0 (Lisp_Object key, Lisp_Object value,
|
0
|
688 void *keymap_submaps_closure)
|
|
689 {
|
|
690 /* This function can GC */
|
|
691 /* Perform any autoloads, etc */
|
380
|
692 Fkeymapp (value);
|
241
|
693 return 0;
|
0
|
694 }
|
|
695
|
241
|
696 static int
|
380
|
697 keymap_submaps_mapper (Lisp_Object key, Lisp_Object value,
|
0
|
698 void *keymap_submaps_closure)
|
|
699 {
|
|
700 /* This function can GC */
|
|
701 Lisp_Object *result_locative;
|
185
|
702 struct keymap_submaps_closure *cl =
|
|
703 (struct keymap_submaps_closure *) keymap_submaps_closure;
|
0
|
704 result_locative = cl->result_locative;
|
|
705
|
380
|
706 if (!NILP (Fkeymapp (value)))
|
|
707 *result_locative = Fcons (Fcons (key, value), *result_locative);
|
241
|
708 return 0;
|
0
|
709 }
|
|
710
|
185
|
711 static int map_keymap_sort_predicate (Lisp_Object obj1, Lisp_Object obj2,
|
0
|
712 Lisp_Object pred);
|
|
713
|
|
714 static Lisp_Object
|
|
715 keymap_submaps (Lisp_Object keymap)
|
|
716 {
|
|
717 /* This function can GC */
|
380
|
718 Lisp_Keymap *k = XKEYMAP (keymap);
|
0
|
719
|
|
720 if (EQ (k->sub_maps_cache, Qt)) /* Unknown */
|
|
721 {
|
|
722 Lisp_Object result = Qnil;
|
|
723 struct gcpro gcpro1, gcpro2;
|
|
724 struct keymap_submaps_closure keymap_submaps_closure;
|
|
725
|
|
726 GCPRO2 (keymap, result);
|
|
727 keymap_submaps_closure.result_locative = &result;
|
|
728 /* Do this first pass to touch (and load) any autoloaded maps */
|
|
729 elisp_maphash (keymap_submaps_mapper_0, k->table,
|
|
730 &keymap_submaps_closure);
|
|
731 result = Qnil;
|
|
732 elisp_maphash (keymap_submaps_mapper, k->table,
|
|
733 &keymap_submaps_closure);
|
|
734 /* keep it sorted so that the result of accessible-keymaps is ordered */
|
185
|
735 k->sub_maps_cache = list_sort (result,
|
0
|
736 Qnil,
|
|
737 map_keymap_sort_predicate);
|
|
738 UNGCPRO;
|
|
739 }
|
173
|
740 return k->sub_maps_cache;
|
0
|
741 }
|
|
742
|
|
743
|
|
744 /************************************************************************/
|
|
745 /* Basic operations on keymaps */
|
|
746 /************************************************************************/
|
|
747
|
|
748 static Lisp_Object
|
380
|
749 make_keymap (size_t size)
|
0
|
750 {
|
272
|
751 Lisp_Object result;
|
398
|
752 Lisp_Keymap *keymap = alloc_lcrecord_type (Lisp_Keymap, &lrecord_keymap);
|
0
|
753
|
|
754 XSETKEYMAP (result, keymap);
|
|
755
|
380
|
756 keymap->parents = Qnil;
|
|
757 keymap->prompt = Qnil;
|
|
758 keymap->table = Qnil;
|
|
759 keymap->inverse_table = Qnil;
|
0
|
760 keymap->default_binding = Qnil;
|
380
|
761 keymap->sub_maps_cache = Qnil; /* No possible submaps */
|
412
|
762 keymap->fullness = 0;
|
380
|
763 keymap->name = Qnil;
|
|
764
|
0
|
765 if (size != 0) /* hack for copy-keymap */
|
|
766 {
|
380
|
767 keymap->table =
|
|
768 make_lisp_hash_table (size, HASH_TABLE_NON_WEAK, HASH_TABLE_EQ);
|
0
|
769 /* Inverse table is often less dense because of duplicate key-bindings.
|
|
770 If not, it will grow anyway. */
|
380
|
771 keymap->inverse_table =
|
|
772 make_lisp_hash_table (size * 3 / 4, HASH_TABLE_NON_WEAK, HASH_TABLE_EQ);
|
0
|
773 }
|
173
|
774 return result;
|
0
|
775 }
|
|
776
|
20
|
777 DEFUN ("make-keymap", Fmake_keymap, 0, 1, 0, /*
|
0
|
778 Construct and return a new keymap object.
|
185
|
779 All entries in it are nil, meaning "command undefined".
|
0
|
780
|
|
781 Optional argument NAME specifies a name to assign to the keymap,
|
|
782 as in `set-keymap-name'. This name is only a debugging convenience;
|
|
783 it is not used except when printing the keymap.
|
20
|
784 */
|
|
785 (name))
|
0
|
786 {
|
|
787 Lisp_Object keymap = make_keymap (60);
|
|
788 if (!NILP (name))
|
|
789 Fset_keymap_name (keymap, name);
|
|
790 return keymap;
|
|
791 }
|
|
792
|
20
|
793 DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, 0, 1, 0, /*
|
0
|
794 Construct and return a new keymap object.
|
185
|
795 All entries in it are nil, meaning "command undefined". The only
|
0
|
796 difference between this function and make-keymap is that this function
|
185
|
797 returns a "smaller" keymap (one that is expected to contain fewer
|
0
|
798 entries). As keymaps dynamically resize, the distinction is not great.
|
|
799
|
|
800 Optional argument NAME specifies a name to assign to the keymap,
|
|
801 as in `set-keymap-name'. This name is only a debugging convenience;
|
|
802 it is not used except when printing the keymap.
|
20
|
803 */
|
|
804 (name))
|
0
|
805 {
|
|
806 Lisp_Object keymap = make_keymap (8);
|
|
807 if (!NILP (name))
|
|
808 Fset_keymap_name (keymap, name);
|
|
809 return keymap;
|
|
810 }
|
|
811
|
20
|
812 DEFUN ("keymap-parents", Fkeymap_parents, 1, 1, 0, /*
|
272
|
813 Return the `parent' keymaps of KEYMAP, or nil.
|
0
|
814 The parents of a keymap are searched for keybindings when a key sequence
|
|
815 isn't bound in this one. `(current-global-map)' is the default parent
|
|
816 of all keymaps.
|
20
|
817 */
|
|
818 (keymap))
|
0
|
819 {
|
|
820 keymap = get_keymap (keymap, 1, 1);
|
173
|
821 return Fcopy_sequence (XKEYMAP (keymap)->parents);
|
0
|
822 }
|
|
823
|
185
|
824
|
|
825
|
0
|
826 static Lisp_Object
|
|
827 traverse_keymaps_noop (Lisp_Object keymap, void *arg)
|
|
828 {
|
173
|
829 return Qnil;
|
0
|
830 }
|
|
831
|
20
|
832 DEFUN ("set-keymap-parents", Fset_keymap_parents, 2, 2, 0, /*
|
272
|
833 Set the `parent' keymaps of KEYMAP to PARENTS.
|
0
|
834 The parents of a keymap are searched for keybindings when a key sequence
|
|
835 isn't bound in this one. `(current-global-map)' is the default parent
|
|
836 of all keymaps.
|
20
|
837 */
|
|
838 (keymap, parents))
|
0
|
839 {
|
|
840 /* This function can GC */
|
|
841 Lisp_Object k;
|
|
842 struct gcpro gcpro1, gcpro2;
|
|
843
|
|
844 GCPRO2 (keymap, parents);
|
|
845 keymap = get_keymap (keymap, 1, 1);
|
|
846
|
|
847 if (KEYMAPP (parents)) /* backwards-compatibility */
|
|
848 parents = list1 (parents);
|
|
849 if (!NILP (parents))
|
|
850 {
|
|
851 Lisp_Object tail = parents;
|
|
852 while (!NILP (tail))
|
|
853 {
|
|
854 QUIT;
|
|
855 CHECK_CONS (tail);
|
|
856 k = XCAR (tail);
|
|
857 /* Require that it be an actual keymap object, rather than a symbol
|
|
858 with a (crockish) symbol-function which is a keymap */
|
|
859 CHECK_KEYMAP (k); /* get_keymap (k, 1, 1); */
|
|
860 tail = XCDR (tail);
|
|
861 }
|
|
862 }
|
|
863
|
|
864 /* Check for circularities */
|
|
865 traverse_keymaps (keymap, parents, traverse_keymaps_noop, 0);
|
|
866 keymap_tick++;
|
|
867 XKEYMAP (keymap)->parents = Fcopy_sequence (parents);
|
|
868 UNGCPRO;
|
173
|
869 return parents;
|
0
|
870 }
|
|
871
|
20
|
872 DEFUN ("set-keymap-name", Fset_keymap_name, 2, 2, 0, /*
|
0
|
873 Set the `name' of the KEYMAP to NEW-NAME.
|
|
874 The name is only a debugging convenience; it is not used except
|
|
875 when printing the keymap.
|
20
|
876 */
|
|
877 (keymap, new_name))
|
0
|
878 {
|
|
879 keymap = get_keymap (keymap, 1, 1);
|
|
880
|
|
881 XKEYMAP (keymap)->name = new_name;
|
173
|
882 return new_name;
|
0
|
883 }
|
|
884
|
20
|
885 DEFUN ("keymap-name", Fkeymap_name, 1, 1, 0, /*
|
0
|
886 Return the `name' of KEYMAP.
|
|
887 The name is only a debugging convenience; it is not used except
|
|
888 when printing the keymap.
|
20
|
889 */
|
|
890 (keymap))
|
0
|
891 {
|
|
892 keymap = get_keymap (keymap, 1, 1);
|
|
893
|
173
|
894 return XKEYMAP (keymap)->name;
|
0
|
895 }
|
|
896
|
20
|
897 DEFUN ("set-keymap-prompt", Fset_keymap_prompt, 2, 2, 0, /*
|
272
|
898 Set the `prompt' of KEYMAP to string NEW-PROMPT, or `nil'
|
0
|
899 if no prompt is desired. The prompt is shown in the echo-area
|
|
900 when reading a key-sequence to be looked-up in this keymap.
|
20
|
901 */
|
|
902 (keymap, new_prompt))
|
0
|
903 {
|
|
904 keymap = get_keymap (keymap, 1, 1);
|
185
|
905
|
0
|
906 if (!NILP (new_prompt))
|
|
907 CHECK_STRING (new_prompt);
|
|
908
|
|
909 XKEYMAP (keymap)->prompt = new_prompt;
|
173
|
910 return new_prompt;
|
0
|
911 }
|
|
912
|
|
913 static Lisp_Object
|
|
914 keymap_prompt_mapper (Lisp_Object keymap, void *arg)
|
|
915 {
|
173
|
916 return XKEYMAP (keymap)->prompt;
|
0
|
917 }
|
|
918
|
|
919
|
20
|
920 DEFUN ("keymap-prompt", Fkeymap_prompt, 1, 2, 0, /*
|
272
|
921 Return the `prompt' of KEYMAP.
|
0
|
922 If non-nil, the prompt is shown in the echo-area
|
|
923 when reading a key-sequence to be looked-up in this keymap.
|
20
|
924 */
|
|
925 (keymap, use_inherited))
|
0
|
926 {
|
|
927 /* This function can GC */
|
|
928 Lisp_Object prompt;
|
|
929
|
|
930 keymap = get_keymap (keymap, 1, 1);
|
|
931 prompt = XKEYMAP (keymap)->prompt;
|
|
932 if (!NILP (prompt) || NILP (use_inherited))
|
173
|
933 return prompt;
|
0
|
934 else
|
173
|
935 return traverse_keymaps (keymap, Qnil, keymap_prompt_mapper, 0);
|
0
|
936 }
|
|
937
|
20
|
938 DEFUN ("set-keymap-default-binding", Fset_keymap_default_binding, 2, 2, 0, /*
|
0
|
939 Sets the default binding of KEYMAP to COMMAND, or `nil'
|
|
940 if no default is desired. The default-binding is returned when
|
|
941 no other binding for a key-sequence is found in the keymap.
|
|
942 If a keymap has a non-nil default-binding, neither the keymap's
|
|
943 parents nor the current global map are searched for key bindings.
|
20
|
944 */
|
|
945 (keymap, command))
|
0
|
946 {
|
|
947 /* This function can GC */
|
|
948 keymap = get_keymap (keymap, 1, 1);
|
185
|
949
|
0
|
950 XKEYMAP (keymap)->default_binding = command;
|
173
|
951 return command;
|
0
|
952 }
|
|
953
|
20
|
954 DEFUN ("keymap-default-binding", Fkeymap_default_binding, 1, 1, 0, /*
|
0
|
955 Return the default binding of KEYMAP, or `nil' if it has none.
|
|
956 The default-binding is returned when no other binding for a key-sequence
|
|
957 is found in the keymap.
|
|
958 If a keymap has a non-nil default-binding, neither the keymap's
|
|
959 parents nor the current global map are searched for key bindings.
|
20
|
960 */
|
|
961 (keymap))
|
0
|
962 {
|
|
963 /* This function can GC */
|
|
964 keymap = get_keymap (keymap, 1, 1);
|
173
|
965 return XKEYMAP (keymap)->default_binding;
|
0
|
966 }
|
|
967
|
20
|
968 DEFUN ("keymapp", Fkeymapp, 1, 1, 0, /*
|
0
|
969 Return t if ARG is a keymap object.
|
|
970 The keymap may be autoloaded first if necessary.
|
20
|
971 */
|
|
972 (object))
|
0
|
973 {
|
|
974 /* This function can GC */
|
185
|
975 return KEYMAPP (get_keymap (object, 0, 0)) ? Qt : Qnil;
|
0
|
976 }
|
|
977
|
|
978 /* Check that OBJECT is a keymap (after dereferencing through any
|
|
979 symbols). If it is, return it.
|
|
980
|
|
981 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
|
|
982 is an autoload form, do the autoload and try again.
|
185
|
983 If AUTOLOAD is nonzero, callers must assume GC is possible.
|
0
|
984
|
|
985 ERRORP controls how we respond if OBJECT isn't a keymap.
|
185
|
986 If ERRORP is non-zero, signal an error; otherwise, just return Qnil.
|
|
987
|
|
988 Note that most of the time, we don't want to pursue autoloads.
|
|
989 Functions like Faccessible_keymaps which scan entire keymap trees
|
|
990 shouldn't load every autoloaded keymap. I'm not sure about this,
|
|
991 but it seems to me that only read_key_sequence, Flookup_key, and
|
|
992 Fdefine_key should cause keymaps to be autoloaded. */
|
|
993
|
0
|
994 Lisp_Object
|
|
995 get_keymap (Lisp_Object object, int errorp, int autoload)
|
|
996 {
|
|
997 /* This function can GC */
|
|
998 while (1)
|
|
999 {
|
|
1000 Lisp_Object tem = indirect_function (object, 0);
|
185
|
1001
|
0
|
1002 if (KEYMAPP (tem))
|
|
1003 return tem;
|
|
1004 /* Should we do an autoload? */
|
|
1005 else if (autoload
|
|
1006 /* (autoload "filename" doc nil keymap) */
|
|
1007 && SYMBOLP (object)
|
|
1008 && CONSP (tem)
|
|
1009 && EQ (XCAR (tem), Qautoload)
|
|
1010 && EQ (Fcar (Fcdr (Fcdr (Fcdr (Fcdr (tem))))), Qkeymap))
|
|
1011 {
|
|
1012 struct gcpro gcpro1, gcpro2;
|
|
1013 GCPRO2 (tem, object);
|
|
1014 do_autoload (tem, object);
|
|
1015 UNGCPRO;
|
|
1016 }
|
|
1017 else if (errorp)
|
|
1018 object = wrong_type_argument (Qkeymapp, object);
|
|
1019 else
|
|
1020 return Qnil;
|
|
1021 }
|
|
1022 }
|
|
1023
|
|
1024 /* Given OBJECT which was found in a slot in a keymap,
|
|
1025 trace indirect definitions to get the actual definition of that slot.
|
|
1026 An indirect definition is a list of the form
|
|
1027 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
|
|
1028 and INDEX is an ASCII code, or a cons of (KEYSYM . MODIFIERS).
|
|
1029 */
|
|
1030 static Lisp_Object
|
|
1031 get_keyelt (Lisp_Object object, int accept_default)
|
|
1032 {
|
|
1033 /* This function can GC */
|
|
1034 Lisp_Object map;
|
|
1035
|
|
1036 tail_recurse:
|
|
1037 if (!CONSP (object))
|
173
|
1038 return object;
|
0
|
1039
|
|
1040 {
|
|
1041 struct gcpro gcpro1;
|
|
1042 GCPRO1 (object);
|
|
1043 map = XCAR (object);
|
|
1044 map = get_keymap (map, 0, 1);
|
|
1045 UNGCPRO;
|
|
1046 }
|
|
1047 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
|
|
1048 if (!NILP (map))
|
|
1049 {
|
|
1050 Lisp_Object idx = Fcdr (object);
|
|
1051 struct key_data indirection;
|
|
1052 if (CHARP (idx))
|
|
1053 {
|
412
|
1054 struct Lisp_Event event;
|
0
|
1055 event.event_type = empty_event;
|
|
1056 character_to_event (XCHAR (idx), &event,
|
263
|
1057 XCONSOLE (Vselected_console), 0, 0);
|
0
|
1058 indirection = event.event.key;
|
|
1059 }
|
|
1060 else if (CONSP (idx))
|
|
1061 {
|
|
1062 if (!INTP (XCDR (idx)))
|
173
|
1063 return Qnil;
|
0
|
1064 indirection.keysym = XCAR (idx);
|
412
|
1065 indirection.modifiers = XINT (XCDR (idx));
|
0
|
1066 }
|
|
1067 else if (SYMBOLP (idx))
|
|
1068 {
|
|
1069 indirection.keysym = idx;
|
|
1070 indirection.modifiers = 0;
|
|
1071 }
|
|
1072 else
|
|
1073 {
|
|
1074 /* Random junk */
|
173
|
1075 return Qnil;
|
0
|
1076 }
|
173
|
1077 return raw_lookup_key (map, &indirection, 1, 0, accept_default);
|
0
|
1078 }
|
|
1079 else if (STRINGP (XCAR (object)))
|
|
1080 {
|
|
1081 /* If the keymap contents looks like (STRING . DEFN),
|
|
1082 use DEFN.
|
|
1083 Keymap alist elements like (CHAR MENUSTRING . DEFN)
|
|
1084 will be used by HierarKey menus. */
|
|
1085 object = XCDR (object);
|
|
1086 goto tail_recurse;
|
|
1087 }
|
|
1088 else
|
|
1089 {
|
|
1090 /* Anything else is really the value. */
|
173
|
1091 return object;
|
0
|
1092 }
|
|
1093 }
|
|
1094
|
|
1095 static Lisp_Object
|
412
|
1096 keymap_lookup_1 (Lisp_Object keymap, CONST struct key_data *key,
|
0
|
1097 int accept_default)
|
|
1098 {
|
|
1099 /* This function can GC */
|
173
|
1100 return get_keyelt (keymap_lookup_directly (keymap,
|
|
1101 key->keysym, key->modifiers),
|
|
1102 accept_default);
|
0
|
1103 }
|
|
1104
|
|
1105
|
|
1106 /************************************************************************/
|
|
1107 /* Copying keymaps */
|
|
1108 /************************************************************************/
|
|
1109
|
|
1110 struct copy_keymap_inverse_closure
|
|
1111 {
|
|
1112 Lisp_Object inverse_table;
|
|
1113 };
|
|
1114
|
241
|
1115 static int
|
380
|
1116 copy_keymap_inverse_mapper (Lisp_Object key, Lisp_Object value,
|
0
|
1117 void *copy_keymap_inverse_closure)
|
|
1118 {
|
185
|
1119 struct copy_keymap_inverse_closure *closure =
|
|
1120 (struct copy_keymap_inverse_closure *) copy_keymap_inverse_closure;
|
0
|
1121
|
|
1122 /* copy-sequence deals with dotted lists. */
|
380
|
1123 if (CONSP (value))
|
|
1124 value = Fcopy_list (value);
|
|
1125 Fputhash (key, value, closure->inverse_table);
|
241
|
1126
|
|
1127 return 0;
|
0
|
1128 }
|
|
1129
|
|
1130
|
|
1131 static Lisp_Object
|
380
|
1132 copy_keymap_internal (Lisp_Keymap *keymap)
|
0
|
1133 {
|
|
1134 Lisp_Object nkm = make_keymap (0);
|
380
|
1135 Lisp_Keymap *new_keymap = XKEYMAP (nkm);
|
0
|
1136 struct copy_keymap_inverse_closure copy_keymap_inverse_closure;
|
|
1137 copy_keymap_inverse_closure.inverse_table = keymap->inverse_table;
|
|
1138
|
380
|
1139 new_keymap->parents = Fcopy_sequence (keymap->parents);
|
412
|
1140 new_keymap->fullness = keymap->fullness;
|
0
|
1141 new_keymap->sub_maps_cache = Qnil; /* No submaps */
|
380
|
1142 new_keymap->table = Fcopy_hash_table (keymap->table);
|
|
1143 new_keymap->inverse_table = Fcopy_hash_table (keymap->inverse_table);
|
422
|
1144 new_keymap->default_binding = keymap->default_binding;
|
0
|
1145 /* After copying the inverse map, we need to copy the conses which
|
|
1146 are its values, lest they be shared by the copy, and mangled.
|
|
1147 */
|
|
1148 elisp_maphash (copy_keymap_inverse_mapper, keymap->inverse_table,
|
|
1149 ©_keymap_inverse_closure);
|
|
1150 return nkm;
|
|
1151 }
|
|
1152
|
|
1153
|
|
1154 static Lisp_Object copy_keymap (Lisp_Object keymap);
|
|
1155
|
|
1156 struct copy_keymap_closure
|
|
1157 {
|
380
|
1158 Lisp_Keymap *self;
|
0
|
1159 };
|
|
1160
|
241
|
1161 static int
|
380
|
1162 copy_keymap_mapper (Lisp_Object key, Lisp_Object value,
|
0
|
1163 void *copy_keymap_closure)
|
|
1164 {
|
|
1165 /* This function can GC */
|
185
|
1166 struct copy_keymap_closure *closure =
|
|
1167 (struct copy_keymap_closure *) copy_keymap_closure;
|
0
|
1168
|
|
1169 /* When we encounter a keymap which is indirected through a
|
|
1170 symbol, we need to copy the sub-map. In v18, the form
|
|
1171 (lookup-key (copy-keymap global-map) "\C-x")
|
|
1172 returned a new keymap, not the symbol 'Control-X-prefix.
|
|
1173 */
|
380
|
1174 value = get_keymap (value, 0, 1); /* #### autoload GC-safe here? */
|
|
1175 if (KEYMAPP (value))
|
0
|
1176 keymap_store_internal (key, closure->self,
|
380
|
1177 copy_keymap (value));
|
241
|
1178 return 0;
|
0
|
1179 }
|
|
1180
|
|
1181 static Lisp_Object
|
|
1182 copy_keymap (Lisp_Object keymap)
|
|
1183 {
|
|
1184 /* This function can GC */
|
|
1185 struct copy_keymap_closure copy_keymap_closure;
|
|
1186
|
|
1187 keymap = copy_keymap_internal (XKEYMAP (keymap));
|
|
1188 copy_keymap_closure.self = XKEYMAP (keymap);
|
|
1189 elisp_maphash (copy_keymap_mapper,
|
|
1190 XKEYMAP (keymap)->table,
|
|
1191 ©_keymap_closure);
|
|
1192 return keymap;
|
|
1193 }
|
|
1194
|
20
|
1195 DEFUN ("copy-keymap", Fcopy_keymap, 1, 1, 0, /*
|
0
|
1196 Return a copy of the keymap KEYMAP.
|
|
1197 The copy starts out with the same definitions of KEYMAP,
|
|
1198 but changing either the copy or KEYMAP does not affect the other.
|
|
1199 Any key definitions that are subkeymaps are recursively copied.
|
20
|
1200 */
|
|
1201 (keymap))
|
0
|
1202 {
|
|
1203 /* This function can GC */
|
|
1204 keymap = get_keymap (keymap, 1, 1);
|
|
1205 return copy_keymap (keymap);
|
|
1206 }
|
|
1207
|
|
1208
|
|
1209 static int
|
|
1210 keymap_fullness (Lisp_Object keymap)
|
|
1211 {
|
|
1212 /* This function can GC */
|
|
1213 int fullness;
|
|
1214 Lisp_Object sub_maps;
|
|
1215 struct gcpro gcpro1, gcpro2;
|
|
1216
|
|
1217 keymap = get_keymap (keymap, 1, 1);
|
412
|
1218 fullness = XKEYMAP (keymap)->fullness;
|
|
1219 sub_maps = keymap_submaps (keymap);
|
0
|
1220 GCPRO2 (keymap, sub_maps);
|
412
|
1221 for (; !NILP (sub_maps); sub_maps = XCDR (sub_maps))
|
0
|
1222 {
|
|
1223 if (MODIFIER_HASH_KEY_BITS (XCAR (XCAR (sub_maps))) != 0)
|
|
1224 {
|
412
|
1225 Lisp_Object sub_map = XCDR (XCAR (sub_maps));
|
|
1226 fullness--; /* don't count bucky maps */
|
|
1227 fullness += keymap_fullness (sub_map);
|
0
|
1228 }
|
|
1229 }
|
|
1230 UNGCPRO;
|
173
|
1231 return fullness;
|
0
|
1232 }
|
|
1233
|
20
|
1234 DEFUN ("keymap-fullness", Fkeymap_fullness, 1, 1, 0, /*
|
0
|
1235 Return the number of bindings in the keymap.
|
20
|
1236 */
|
|
1237 (keymap))
|
0
|
1238 {
|
|
1239 /* This function can GC */
|
173
|
1240 return make_int (keymap_fullness (get_keymap (keymap, 1, 1)));
|
0
|
1241 }
|
|
1242
|
|
1243
|
|
1244 /************************************************************************/
|
|
1245 /* Defining keys in keymaps */
|
|
1246 /************************************************************************/
|
|
1247
|
70
|
1248 /* Given a keysym (should be a symbol, int, char), make sure it's valid
|
|
1249 and perform any necessary canonicalization. */
|
|
1250
|
0
|
1251 static void
|
70
|
1252 define_key_check_and_coerce_keysym (Lisp_Object spec,
|
|
1253 Lisp_Object *keysym,
|
412
|
1254 unsigned int modifiers)
|
0
|
1255 {
|
|
1256 /* Now, check and massage the trailing keysym specifier. */
|
8
|
1257 if (SYMBOLP (*keysym))
|
0
|
1258 {
|
70
|
1259 if (string_char_length (XSYMBOL (*keysym)->name) == 1)
|
0
|
1260 {
|
70
|
1261 Lisp_Object ream_gcc_up_the_ass =
|
|
1262 make_char (string_char (XSYMBOL (*keysym)->name, 0));
|
|
1263 *keysym = ream_gcc_up_the_ass;
|
0
|
1264 goto fixnum_keysym;
|
|
1265 }
|
|
1266 }
|
70
|
1267 else if (CHAR_OR_CHAR_INTP (*keysym))
|
0
|
1268 {
|
70
|
1269 CHECK_CHAR_COERCE_INT (*keysym);
|
0
|
1270 fixnum_keysym:
|
70
|
1271 if (XCHAR (*keysym) < ' '
|
|
1272 /* || (XCHAR (*keysym) >= 128 && XCHAR (*keysym) < 160) */)
|
|
1273 /* yuck! Can't make the above restriction; too many compatibility
|
|
1274 problems ... */
|
|
1275 signal_simple_error ("keysym char must be printable", *keysym);
|
0
|
1276 /* #### This bites! I want to be able to write (control shift a) */
|
412
|
1277 if (modifiers & MOD_SHIFT)
|
70
|
1278 signal_simple_error
|
380
|
1279 ("The `shift' modifier may not be applied to ASCII keysyms",
|
70
|
1280 spec);
|
0
|
1281 }
|
|
1282 else
|
|
1283 {
|
412
|
1284 signal_simple_error ("Unknown keysym specifier",
|
|
1285 *keysym);
|
8
|
1286 }
|
|
1287
|
|
1288 if (SYMBOLP (*keysym))
|
|
1289 {
|
412
|
1290 char *name = (char *)
|
|
1291 string_data (XSYMBOL (*keysym)->name);
|
8
|
1292
|
70
|
1293 /* FSFmacs uses symbols with the printed representation of keysyms in
|
|
1294 their names, like 'M-x, and we use the syntax '(meta x). So, to avoid
|
|
1295 confusion, notice the M-x syntax and signal an error - because
|
|
1296 otherwise it would be interpreted as a regular keysym, and would even
|
|
1297 show up in the list-buffers output, causing confusion to the naive.
|
|
1298
|
|
1299 We can get away with this because none of the X keysym names contain
|
|
1300 a hyphen (some contain underscore, however).
|
|
1301
|
|
1302 It might be useful to reject keysyms which are not x-valid-keysym-
|
|
1303 name-p, but that would interfere with various tricks we do to
|
|
1304 sanitize the Sun keyboards, and would make it trickier to
|
|
1305 conditionalize a .emacs file for multiple X servers.
|
|
1306 */
|
|
1307 if (((int) strlen (name) >= 2 && name[1] == '-')
|
|
1308 #if 1
|
|
1309 ||
|
|
1310 /* Ok, this is a bit more dubious - prevent people from doing things
|
|
1311 like (global-set-key 'RET 'something) because that will have the
|
|
1312 same problem as above. (Gag!) Maybe we should just silently
|
|
1313 accept these as aliases for the "real" names?
|
|
1314 */
|
185
|
1315 (string_length (XSYMBOL (*keysym)->name) <= 3 &&
|
70
|
1316 (!strcmp (name, "LFD") ||
|
|
1317 !strcmp (name, "TAB") ||
|
|
1318 !strcmp (name, "RET") ||
|
|
1319 !strcmp (name, "ESC") ||
|
|
1320 !strcmp (name, "DEL") ||
|
|
1321 !strcmp (name, "SPC") ||
|
|
1322 !strcmp (name, "BS")))
|
|
1323 #endif /* unused */
|
|
1324 )
|
|
1325 signal_simple_error
|
|
1326 ("Invalid (FSF Emacs) key format (see doc of define-key)",
|
|
1327 *keysym);
|
|
1328
|
|
1329 /* #### Ok, this is a bit more dubious - make people not lose if they
|
|
1330 do things like (global-set-key 'RET 'something) because that would
|
|
1331 otherwise have the same problem as above. (Gag!) We silently
|
|
1332 accept these as aliases for the "real" names.
|
|
1333 */
|
74
|
1334 else if (!strncmp(name, "kp_", 3)) {
|
|
1335 /* Likewise, the obsolete keysym binding of kp_.* should not lose. */
|
|
1336 char temp[50];
|
|
1337
|
|
1338 strncpy(temp, name, sizeof (temp));
|
|
1339 temp[sizeof (temp) - 1] = '\0';
|
|
1340 temp[2] = '-';
|
76
|
1341 *keysym = Fintern_soft(make_string((Bufbyte *)temp,
|
|
1342 strlen(temp)),
|
|
1343 Qnil);
|
74
|
1344 } else if (EQ (*keysym, QLFD))
|
70
|
1345 *keysym = QKlinefeed;
|
|
1346 else if (EQ (*keysym, QTAB))
|
|
1347 *keysym = QKtab;
|
|
1348 else if (EQ (*keysym, QRET))
|
|
1349 *keysym = QKreturn;
|
|
1350 else if (EQ (*keysym, QESC))
|
|
1351 *keysym = QKescape;
|
|
1352 else if (EQ (*keysym, QDEL))
|
|
1353 *keysym = QKdelete;
|
424
|
1354 else if (EQ (*keysym, QSPC))
|
|
1355 *keysym = QKspace;
|
70
|
1356 else if (EQ (*keysym, QBS))
|
|
1357 *keysym = QKbackspace;
|
98
|
1358 /* Emacs compatibility */
|
|
1359 else if (EQ(*keysym, Qdown_mouse_1))
|
|
1360 *keysym = Qbutton1;
|
|
1361 else if (EQ(*keysym, Qdown_mouse_2))
|
|
1362 *keysym = Qbutton2;
|
|
1363 else if (EQ(*keysym, Qdown_mouse_3))
|
|
1364 *keysym = Qbutton3;
|
265
|
1365 else if (EQ(*keysym, Qdown_mouse_4))
|
|
1366 *keysym = Qbutton4;
|
|
1367 else if (EQ(*keysym, Qdown_mouse_5))
|
|
1368 *keysym = Qbutton5;
|
98
|
1369 else if (EQ(*keysym, Qmouse_1))
|
|
1370 *keysym = Qbutton1up;
|
|
1371 else if (EQ(*keysym, Qmouse_2))
|
|
1372 *keysym = Qbutton2up;
|
|
1373 else if (EQ(*keysym, Qmouse_3))
|
|
1374 *keysym = Qbutton3up;
|
265
|
1375 else if (EQ(*keysym, Qmouse_4))
|
|
1376 *keysym = Qbutton4up;
|
|
1377 else if (EQ(*keysym, Qmouse_5))
|
|
1378 *keysym = Qbutton5up;
|
0
|
1379 }
|
|
1380 }
|
|
1381
|
70
|
1382
|
0
|
1383 /* Given any kind of key-specifier, return a keysym and modifier mask.
|
70
|
1384 Proper canonicalization is performed:
|
|
1385
|
|
1386 -- integers are converted into the equivalent characters.
|
|
1387 -- one-character strings are converted into the equivalent characters.
|
0
|
1388 */
|
70
|
1389
|
0
|
1390 static void
|
|
1391 define_key_parser (Lisp_Object spec, struct key_data *returned_value)
|
|
1392 {
|
70
|
1393 if (CHAR_OR_CHAR_INTP (spec))
|
0
|
1394 {
|
412
|
1395 struct Lisp_Event event;
|
0
|
1396 event.event_type = empty_event;
|
70
|
1397 character_to_event (XCHAR_OR_CHAR_INT (spec), &event,
|
263
|
1398 XCONSOLE (Vselected_console), 0, 0);
|
185
|
1399 returned_value->keysym = event.event.key.keysym;
|
0
|
1400 returned_value->modifiers = event.event.key.modifiers;
|
|
1401 }
|
|
1402 else if (EVENTP (spec))
|
|
1403 {
|
|
1404 switch (XEVENT (spec)->event_type)
|
|
1405 {
|
|
1406 case key_press_event:
|
|
1407 {
|
185
|
1408 returned_value->keysym = XEVENT (spec)->event.key.keysym;
|
0
|
1409 returned_value->modifiers = XEVENT (spec)->event.key.modifiers;
|
|
1410 break;
|
|
1411 }
|
|
1412 case button_press_event:
|
|
1413 case button_release_event:
|
|
1414 {
|
|
1415 int down = (XEVENT (spec)->event_type == button_press_event);
|
|
1416 switch (XEVENT (spec)->event.button.button)
|
|
1417 {
|
|
1418 case 1:
|
|
1419 returned_value->keysym = (down ? Qbutton1 : Qbutton1up); break;
|
|
1420 case 2:
|
|
1421 returned_value->keysym = (down ? Qbutton2 : Qbutton2up); break;
|
|
1422 case 3:
|
|
1423 returned_value->keysym = (down ? Qbutton3 : Qbutton3up); break;
|
|
1424 case 4:
|
|
1425 returned_value->keysym = (down ? Qbutton4 : Qbutton4up); break;
|
|
1426 case 5:
|
|
1427 returned_value->keysym = (down ? Qbutton5 : Qbutton5up); break;
|
|
1428 case 6:
|
|
1429 returned_value->keysym = (down ? Qbutton6 : Qbutton6up); break;
|
|
1430 case 7:
|
|
1431 returned_value->keysym = (down ? Qbutton7 : Qbutton7up); break;
|
|
1432 default:
|
185
|
1433 returned_value->keysym = (down ? Qbutton0 : Qbutton0up); break;
|
0
|
1434 }
|
|
1435 returned_value->modifiers = XEVENT (spec)->event.button.modifiers;
|
|
1436 break;
|
|
1437 }
|
|
1438 default:
|
|
1439 signal_error (Qwrong_type_argument,
|
|
1440 list2 (build_translated_string
|
|
1441 ("unable to bind this type of event"),
|
|
1442 spec));
|
|
1443 }
|
|
1444 }
|
|
1445 else if (SYMBOLP (spec))
|
|
1446 {
|
|
1447 /* Be nice, allow = to mean (=) */
|
|
1448 if (bucky_sym_to_bucky_bit (spec) != 0)
|
|
1449 signal_simple_error ("Key is a modifier name", spec);
|
70
|
1450 define_key_check_and_coerce_keysym (spec, &spec, 0);
|
0
|
1451 returned_value->keysym = spec;
|
|
1452 returned_value->modifiers = 0;
|
|
1453 }
|
|
1454 else if (CONSP (spec))
|
|
1455 {
|
412
|
1456 unsigned int modifiers = 0;
|
0
|
1457 Lisp_Object keysym = Qnil;
|
|
1458 Lisp_Object rest = spec;
|
|
1459
|
|
1460 /* First, parse out the leading modifier symbols. */
|
|
1461 while (CONSP (rest))
|
|
1462 {
|
412
|
1463 unsigned int modifier;
|
0
|
1464
|
|
1465 keysym = XCAR (rest);
|
|
1466 modifier = bucky_sym_to_bucky_bit (keysym);
|
|
1467 modifiers |= modifier;
|
|
1468 if (!NILP (XCDR (rest)))
|
|
1469 {
|
|
1470 if (! modifier)
|
380
|
1471 signal_simple_error ("Unknown modifier", keysym);
|
0
|
1472 }
|
|
1473 else
|
|
1474 {
|
|
1475 if (modifier)
|
380
|
1476 signal_simple_error ("Nothing but modifiers here",
|
0
|
1477 spec);
|
|
1478 }
|
|
1479 rest = XCDR (rest);
|
|
1480 QUIT;
|
|
1481 }
|
|
1482 if (!NILP (rest))
|
380
|
1483 signal_simple_error ("List must be nil-terminated", spec);
|
0
|
1484
|
70
|
1485 define_key_check_and_coerce_keysym (spec, &keysym, modifiers);
|
0
|
1486 returned_value->keysym = keysym;
|
|
1487 returned_value->modifiers = modifiers;
|
|
1488 }
|
|
1489 else
|
|
1490 {
|
380
|
1491 signal_simple_error ("Unknown key-sequence specifier",
|
0
|
1492 spec);
|
|
1493 }
|
|
1494 }
|
|
1495
|
|
1496 /* Used by character-to-event */
|
|
1497 void
|
|
1498 key_desc_list_to_event (Lisp_Object list, Lisp_Object event,
|
|
1499 int allow_menu_events)
|
|
1500 {
|
|
1501 struct key_data raw_key;
|
|
1502
|
|
1503 if (allow_menu_events &&
|
|
1504 CONSP (list) &&
|
|
1505 /* #### where the hell does this come from? */
|
|
1506 EQ (XCAR (list), Qmenu_selection))
|
|
1507 {
|
|
1508 Lisp_Object fn, arg;
|
|
1509 if (! NILP (Fcdr (Fcdr (list))))
|
380
|
1510 signal_simple_error ("Invalid menu event desc", list);
|
0
|
1511 arg = Fcar (Fcdr (list));
|
|
1512 if (SYMBOLP (arg))
|
|
1513 fn = Qcall_interactively;
|
|
1514 else
|
|
1515 fn = Qeval;
|
|
1516 XSETFRAME (XEVENT (event)->channel, selected_frame ());
|
|
1517 XEVENT (event)->event_type = misc_user_event;
|
|
1518 XEVENT (event)->event.eval.function = fn;
|
|
1519 XEVENT (event)->event.eval.object = arg;
|
|
1520 return;
|
|
1521 }
|
|
1522
|
|
1523 define_key_parser (list, &raw_key);
|
|
1524
|
|
1525 if (EQ (raw_key.keysym, Qbutton0) || EQ (raw_key.keysym, Qbutton0up) ||
|
|
1526 EQ (raw_key.keysym, Qbutton1) || EQ (raw_key.keysym, Qbutton1up) ||
|
|
1527 EQ (raw_key.keysym, Qbutton2) || EQ (raw_key.keysym, Qbutton2up) ||
|
|
1528 EQ (raw_key.keysym, Qbutton3) || EQ (raw_key.keysym, Qbutton3up) ||
|
|
1529 EQ (raw_key.keysym, Qbutton4) || EQ (raw_key.keysym, Qbutton4up) ||
|
|
1530 EQ (raw_key.keysym, Qbutton5) || EQ (raw_key.keysym, Qbutton5up) ||
|
|
1531 EQ (raw_key.keysym, Qbutton6) || EQ (raw_key.keysym, Qbutton6up) ||
|
282
|
1532 EQ (raw_key.keysym, Qbutton7) || EQ (raw_key.keysym, Qbutton7up))
|
0
|
1533 error ("Mouse-clicks can't appear in saved keyboard macros.");
|
|
1534
|
|
1535 XEVENT (event)->channel = Vselected_console;
|
|
1536 XEVENT (event)->event_type = key_press_event;
|
|
1537 XEVENT (event)->event.key.keysym = raw_key.keysym;
|
|
1538 XEVENT (event)->event.key.modifiers = raw_key.modifiers;
|
|
1539 }
|
|
1540
|
|
1541
|
|
1542 int
|
412
|
1543 event_matches_key_specifier_p (struct Lisp_Event *event,
|
|
1544 Lisp_Object key_specifier)
|
0
|
1545 {
|
371
|
1546 Lisp_Object event2;
|
0
|
1547 int retval;
|
|
1548 struct gcpro gcpro1;
|
|
1549
|
|
1550 if (event->event_type != key_press_event || NILP (key_specifier) ||
|
70
|
1551 (INTP (key_specifier) && !CHAR_INTP (key_specifier)))
|
0
|
1552 return 0;
|
|
1553
|
|
1554 /* if the specifier is an integer such as 27, then it should match
|
|
1555 both of the events 'escape' and 'control ['. Calling
|
|
1556 Fcharacter_to_event() will only match 'escape'. */
|
70
|
1557 if (CHAR_OR_CHAR_INTP (key_specifier))
|
|
1558 return (XCHAR_OR_CHAR_INT (key_specifier)
|
|
1559 == event_to_character (event, 0, 0, 0));
|
0
|
1560
|
|
1561 /* Otherwise, we cannot call event_to_character() because we may
|
|
1562 be dealing with non-ASCII keystrokes. In any case, if I ask
|
|
1563 for 'control [' then I should get exactly that, and not
|
|
1564 'escape'.
|
|
1565
|
|
1566 However, we have to behave differently on TTY's, where 'control ['
|
|
1567 is silently converted into 'escape' by the keyboard driver.
|
|
1568 In this case, ASCII is the only thing we know about, so we have
|
|
1569 to compare the ASCII values. */
|
|
1570
|
|
1571 GCPRO1 (event2);
|
189
|
1572 event2 = Fmake_event (Qnil, Qnil);
|
0
|
1573 Fcharacter_to_event (key_specifier, event2, Qnil, Qnil);
|
|
1574 if (XEVENT (event2)->event_type != key_press_event)
|
|
1575 retval = 0;
|
|
1576 else if (CONSOLE_TTY_P (XCONSOLE (EVENT_CHANNEL (event))))
|
|
1577 {
|
|
1578 int ch1, ch2;
|
|
1579
|
|
1580 ch1 = event_to_character (event, 0, 0, 0);
|
|
1581 ch2 = event_to_character (XEVENT (event2), 0, 0, 0);
|
|
1582 retval = (ch1 >= 0 && ch2 >= 0 && ch1 == ch2);
|
|
1583 }
|
|
1584 else if (EQ (event->event.key.keysym, XEVENT (event2)->event.key.keysym) &&
|
|
1585 event->event.key.modifiers == XEVENT (event2)->event.key.modifiers)
|
|
1586 retval = 1;
|
|
1587 else
|
|
1588 retval = 0;
|
|
1589 Fdeallocate_event (event2);
|
|
1590 UNGCPRO;
|
|
1591 return retval;
|
|
1592 }
|
|
1593
|
|
1594 static int
|
412
|
1595 meta_prefix_char_p (CONST struct key_data *key)
|
0
|
1596 {
|
412
|
1597 struct Lisp_Event event;
|
0
|
1598
|
|
1599 event.event_type = key_press_event;
|
|
1600 event.channel = Vselected_console;
|
|
1601 event.event.key.keysym = key->keysym;
|
|
1602 event.event.key.modifiers = key->modifiers;
|
|
1603 return event_matches_key_specifier_p (&event, Vmeta_prefix_char);
|
|
1604 }
|
|
1605
|
20
|
1606 DEFUN ("event-matches-key-specifier-p", Fevent_matches_key_specifier_p, 2, 2, 0, /*
|
0
|
1607 Return non-nil if EVENT matches KEY-SPECIFIER.
|
|
1608 This can be useful, e.g., to determine if the user pressed `help-char' or
|
|
1609 `quit-char'.
|
20
|
1610 */
|
|
1611 (event, key_specifier))
|
0
|
1612 {
|
|
1613 CHECK_LIVE_EVENT (event);
|
|
1614 return (event_matches_key_specifier_p (XEVENT (event), key_specifier)
|
|
1615 ? Qt : Qnil);
|
|
1616 }
|
|
1617
|
380
|
1618 #define MACROLET(k,m) do { \
|
|
1619 returned_value->keysym = (k); \
|
|
1620 returned_value->modifiers = (m); \
|
|
1621 RETURN_SANS_WARNINGS; \
|
|
1622 } while (0)
|
|
1623
|
0
|
1624 /* ASCII grunge.
|
185
|
1625 Given a keysym, return another keysym/modifier pair which could be
|
|
1626 considered the same key in an ASCII world. Backspace returns ^H, for
|
0
|
1627 example.
|
|
1628 */
|
|
1629 static void
|
|
1630 define_key_alternate_name (struct key_data *key,
|
|
1631 struct key_data *returned_value)
|
|
1632 {
|
|
1633 Lisp_Object keysym = key->keysym;
|
412
|
1634 unsigned int modifiers = key->modifiers;
|
|
1635 unsigned int modifiers_sans_control = (modifiers & (~MOD_CONTROL));
|
|
1636 unsigned int modifiers_sans_meta = (modifiers & (~MOD_META));
|
0
|
1637 returned_value->keysym = Qnil; /* By default, no "alternate" key */
|
|
1638 returned_value->modifiers = 0;
|
412
|
1639 if (modifiers_sans_meta == MOD_CONTROL)
|
0
|
1640 {
|
|
1641 if EQ (keysym, QKspace)
|
|
1642 MACROLET (make_char ('@'), modifiers);
|
|
1643 else if (!CHARP (keysym))
|
|
1644 return;
|
|
1645 else switch (XCHAR (keysym))
|
|
1646 {
|
|
1647 case '@': /* c-@ => c-space */
|
|
1648 MACROLET (QKspace, modifiers);
|
|
1649 case 'h': /* c-h => backspace */
|
|
1650 MACROLET (QKbackspace, modifiers_sans_control);
|
|
1651 case 'i': /* c-i => tab */
|
|
1652 MACROLET (QKtab, modifiers_sans_control);
|
|
1653 case 'j': /* c-j => linefeed */
|
|
1654 MACROLET (QKlinefeed, modifiers_sans_control);
|
|
1655 case 'm': /* c-m => return */
|
|
1656 MACROLET (QKreturn, modifiers_sans_control);
|
|
1657 case '[': /* c-[ => escape */
|
|
1658 MACROLET (QKescape, modifiers_sans_control);
|
|
1659 default:
|
|
1660 return;
|
|
1661 }
|
|
1662 }
|
|
1663 else if (modifiers_sans_meta != 0)
|
|
1664 return;
|
|
1665 else if (EQ (keysym, QKbackspace)) /* backspace => c-h */
|
412
|
1666 MACROLET (make_char ('h'), (modifiers | MOD_CONTROL));
|
0
|
1667 else if (EQ (keysym, QKtab)) /* tab => c-i */
|
412
|
1668 MACROLET (make_char ('i'), (modifiers | MOD_CONTROL));
|
0
|
1669 else if (EQ (keysym, QKlinefeed)) /* linefeed => c-j */
|
412
|
1670 MACROLET (make_char ('j'), (modifiers | MOD_CONTROL));
|
0
|
1671 else if (EQ (keysym, QKreturn)) /* return => c-m */
|
412
|
1672 MACROLET (make_char ('m'), (modifiers | MOD_CONTROL));
|
0
|
1673 else if (EQ (keysym, QKescape)) /* escape => c-[ */
|
412
|
1674 MACROLET (make_char ('['), (modifiers | MOD_CONTROL));
|
0
|
1675 else
|
|
1676 return;
|
|
1677 #undef MACROLET
|
|
1678 }
|
|
1679
|
|
1680
|
|
1681 static void
|
|
1682 ensure_meta_prefix_char_keymapp (Lisp_Object keys, int indx,
|
|
1683 Lisp_Object keymap)
|
|
1684 {
|
|
1685 /* This function can GC */
|
|
1686 Lisp_Object new_keys;
|
|
1687 int i;
|
|
1688 Lisp_Object mpc_binding;
|
|
1689 struct key_data meta_key;
|
|
1690
|
|
1691 if (NILP (Vmeta_prefix_char) ||
|
70
|
1692 (INTP (Vmeta_prefix_char) && !CHAR_INTP (Vmeta_prefix_char)))
|
0
|
1693 return;
|
|
1694
|
|
1695 define_key_parser (Vmeta_prefix_char, &meta_key);
|
|
1696 mpc_binding = keymap_lookup_1 (keymap, &meta_key, 0);
|
|
1697 if (NILP (mpc_binding) || !NILP (Fkeymapp (mpc_binding)))
|
|
1698 return;
|
|
1699
|
|
1700 if (indx == 0)
|
|
1701 new_keys = keys;
|
|
1702 else if (STRINGP (keys))
|
|
1703 new_keys = Fsubstring (keys, Qzero, make_int (indx));
|
|
1704 else if (VECTORP (keys))
|
|
1705 {
|
|
1706 new_keys = make_vector (indx, Qnil);
|
|
1707 for (i = 0; i < indx; i++)
|
173
|
1708 XVECTOR_DATA (new_keys) [i] = XVECTOR_DATA (keys) [i];
|
0
|
1709 }
|
|
1710 else
|
|
1711 abort ();
|
267
|
1712
|
0
|
1713 if (EQ (keys, new_keys))
|
267
|
1714 error_with_frob (mpc_binding,
|
|
1715 "can't bind %s: %s has a non-keymap binding",
|
|
1716 (char *) XSTRING_DATA (Fkey_description (keys)),
|
|
1717 (char *) XSTRING_DATA (Fsingle_key_description
|
|
1718 (Vmeta_prefix_char)));
|
0
|
1719 else
|
267
|
1720 error_with_frob (mpc_binding,
|
|
1721 "can't bind %s: %s %s has a non-keymap binding",
|
|
1722 (char *) XSTRING_DATA (Fkey_description (keys)),
|
|
1723 (char *) XSTRING_DATA (Fkey_description (new_keys)),
|
|
1724 (char *) XSTRING_DATA (Fsingle_key_description
|
|
1725 (Vmeta_prefix_char)));
|
0
|
1726 }
|
|
1727
|
20
|
1728 DEFUN ("define-key", Fdefine_key, 3, 3, 0, /*
|
0
|
1729 Define key sequence KEYS, in KEYMAP, as DEF.
|
|
1730 KEYMAP is a keymap object.
|
|
1731 KEYS is the sequence of keystrokes to bind, described below.
|
|
1732 DEF is anything that can be a key's definition:
|
|
1733 nil (means key is undefined in this keymap);
|
|
1734 a command (a Lisp function suitable for interactive calling);
|
|
1735 a string or key sequence vector (treated as a keyboard macro);
|
|
1736 a keymap (to define a prefix key);
|
|
1737 a symbol; when the key is looked up, the symbol will stand for its
|
|
1738 function definition, that should at that time be one of the above,
|
|
1739 or another symbol whose function definition is used, and so on.
|
|
1740 a cons (STRING . DEFN), meaning that DEFN is the definition
|
|
1741 (DEFN should be a valid definition in its own right);
|
|
1742 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.
|
|
1743
|
|
1744 Contrary to popular belief, the world is not ASCII. When running under a
|
|
1745 window manager, XEmacs can tell the difference between, for example, the
|
|
1746 keystrokes control-h, control-shift-h, and backspace. You can, in fact,
|
|
1747 bind different commands to each of these.
|
|
1748
|
|
1749 A `key sequence' is a set of keystrokes. A `keystroke' is a keysym and some
|
|
1750 set of modifiers (such as control and meta). A `keysym' is what is printed
|
|
1751 on the keys on your keyboard.
|
|
1752
|
|
1753 A keysym may be represented by a symbol, or (if and only if it is equivalent
|
|
1754 to an ASCII character in the range 32 - 255) by a character or its equivalent
|
|
1755 ASCII code. The `A' key may be represented by the symbol `A', the character
|
|
1756 `?A', or by the number 65. The `break' key may be represented only by the
|
|
1757 symbol `break'.
|
|
1758
|
|
1759 A keystroke may be represented by a list: the last element of the list
|
|
1760 is the key (a symbol, character, or number, as above) and the
|
|
1761 preceding elements are the symbolic names of modifier keys (control,
|
|
1762 meta, super, hyper, alt, and shift). Thus, the sequence control-b is
|
|
1763 represented by the forms `(control b)', `(control ?b)', and `(control
|
|
1764 98)'. A keystroke may also be represented by an event object, as
|
|
1765 returned by the `next-command-event' and `read-key-sequence'
|
|
1766 functions.
|
|
1767
|
|
1768 Note that in this context, the keystroke `control-b' is *not* represented
|
|
1769 by the number 2 (the ASCII code for ^B) or the character `?\^B'. See below.
|
|
1770
|
|
1771 The `shift' modifier is somewhat of a special case. You should not (and
|
|
1772 cannot) use `(meta shift a)' to mean `(meta A)', since for characters that
|
|
1773 have ASCII equivalents, the state of the shift key is implicit in the
|
|
1774 keysym (a vs. A). You also cannot say `(shift =)' to mean `+', as that
|
|
1775 sort of thing varies from keyboard to keyboard. The shift modifier is for
|
|
1776 use only with characters that do not have a second keysym on the same key,
|
|
1777 such as `backspace' and `tab'.
|
|
1778
|
|
1779 A key sequence is a vector of keystrokes. As a degenerate case, elements
|
|
1780 of this vector may also be keysyms if they have no modifiers. That is,
|
|
1781 the `A' keystroke is represented by all of these forms:
|
|
1782 A ?A 65 (A) (?A) (65)
|
|
1783 [A] [?A] [65] [(A)] [(?A)] [(65)]
|
185
|
1784
|
0
|
1785 the `control-a' keystroke is represented by these forms:
|
|
1786 (control A) (control ?A) (control 65)
|
|
1787 [(control A)] [(control ?A)] [(control 65)]
|
|
1788 the key sequence `control-c control-a' is represented by these forms:
|
|
1789 [(control c) (control a)] [(control ?c) (control ?a)]
|
|
1790 [(control 99) (control 65)] etc.
|
|
1791
|
|
1792 Mouse button clicks work just like keypresses: (control button1) means
|
|
1793 pressing the left mouse button while holding down the control key.
|
|
1794 \[(control c) (shift button3)] means control-c, hold shift, click right.
|
|
1795
|
|
1796 Commands may be bound to the mouse-button up-stroke rather than the down-
|
|
1797 stroke as well. `button1' means the down-stroke, and `button1up' means the
|
|
1798 up-stroke. Different commands may be bound to the up and down strokes,
|
|
1799 though that is probably not what you want, so be careful.
|
|
1800
|
|
1801 For backward compatibility, a key sequence may also be represented by a
|
|
1802 string. In this case, it represents the key sequence(s) that would
|
|
1803 produce that sequence of ASCII characters in a purely ASCII world. For
|
185
|
1804 example, a string containing the ASCII backspace character, "\\^H", would
|
0
|
1805 represent two key sequences: `(control h)' and `backspace'. Binding a
|
|
1806 command to this will actually bind both of those key sequences. Likewise
|
|
1807 for the following pairs:
|
|
1808
|
|
1809 control h backspace
|
|
1810 control i tab
|
|
1811 control m return
|
|
1812 control j linefeed
|
|
1813 control [ escape
|
|
1814 control @ control space
|
|
1815
|
|
1816 After binding a command to two key sequences with a form like
|
|
1817
|
185
|
1818 (define-key global-map "\\^X\\^I" \'command-1)
|
0
|
1819
|
|
1820 it is possible to redefine only one of those sequences like so:
|
|
1821
|
|
1822 (define-key global-map [(control x) (control i)] \'command-2)
|
|
1823 (define-key global-map [(control x) tab] \'command-3)
|
|
1824
|
|
1825 Of course, all of this applies only when running under a window system. If
|
|
1826 you're talking to XEmacs through a TTY connection, you don't get any of
|
|
1827 these features.
|
20
|
1828 */
|
|
1829 (keymap, keys, def))
|
0
|
1830 {
|
|
1831 /* This function can GC */
|
|
1832 int idx;
|
|
1833 int metized = 0;
|
173
|
1834 int len;
|
0
|
1835 int ascii_hack;
|
|
1836 struct gcpro gcpro1, gcpro2, gcpro3;
|
|
1837
|
|
1838 if (VECTORP (keys))
|
173
|
1839 len = XVECTOR_LENGTH (keys);
|
0
|
1840 else if (STRINGP (keys))
|
272
|
1841 len = XSTRING_CHAR_LENGTH (keys);
|
70
|
1842 else if (CHAR_OR_CHAR_INTP (keys) || SYMBOLP (keys) || CONSP (keys))
|
0
|
1843 {
|
|
1844 if (!CONSP (keys)) keys = list1 (keys);
|
173
|
1845 len = 1;
|
0
|
1846 keys = make_vector (1, keys); /* this is kinda sleazy. */
|
|
1847 }
|
|
1848 else
|
|
1849 {
|
|
1850 keys = wrong_type_argument (Qsequencep, keys);
|
173
|
1851 len = XINT (Flength (keys));
|
0
|
1852 }
|
173
|
1853 if (len == 0)
|
|
1854 return Qnil;
|
0
|
1855
|
|
1856 GCPRO3 (keymap, keys, def);
|
|
1857
|
|
1858 /* ASCII grunge.
|
|
1859 When the user defines a key which, in a strictly ASCII world, would be
|
|
1860 produced by two different keys (^J and linefeed, or ^H and backspace,
|
|
1861 for example) then the binding will be made for both keysyms.
|
|
1862
|
|
1863 This is done if the user binds a command to a string, as in
|
|
1864 (define-key map "\^H" 'something), but not when using one of the new
|
|
1865 syntaxes, like (define-key map '(control h) 'something).
|
|
1866 */
|
|
1867 ascii_hack = (STRINGP (keys));
|
|
1868
|
|
1869 keymap = get_keymap (keymap, 1, 1);
|
|
1870
|
|
1871 idx = 0;
|
|
1872 while (1)
|
|
1873 {
|
|
1874 Lisp_Object c;
|
|
1875 struct key_data raw_key1;
|
|
1876 struct key_data raw_key2;
|
|
1877
|
|
1878 if (STRINGP (keys))
|
|
1879 c = make_char (string_char (XSTRING (keys), idx));
|
|
1880 else
|
173
|
1881 c = XVECTOR_DATA (keys) [idx];
|
0
|
1882
|
|
1883 define_key_parser (c, &raw_key1);
|
|
1884
|
|
1885 if (!metized && ascii_hack && meta_prefix_char_p (&raw_key1))
|
|
1886 {
|
173
|
1887 if (idx == (len - 1))
|
0
|
1888 {
|
|
1889 /* This is a hack to prevent a binding for the meta-prefix-char
|
|
1890 from being made in a map which already has a non-empty "meta"
|
|
1891 submap. That is, we can't let both "escape" and "meta" have
|
|
1892 a binding in the same keymap. This implies that the idiom
|
|
1893 (define-key my-map "\e" my-escape-map)
|
|
1894 (define-key my-escape-map "a" 'my-command)
|
|
1895 no longer works. That's ok. Instead the luser should do
|
|
1896 (define-key my-map "\ea" 'my-command)
|
|
1897 or, more correctly
|
|
1898 (define-key my-map "\M-a" 'my-command)
|
|
1899 and then perhaps
|
|
1900 (defvar my-escape-map (lookup-key my-map "\e"))
|
|
1901 if the luser really wants the map in a variable.
|
|
1902 */
|
412
|
1903 Lisp_Object mmap;
|
0
|
1904 struct gcpro ngcpro1;
|
|
1905
|
|
1906 NGCPRO1 (c);
|
412
|
1907 mmap = Fgethash (MAKE_MODIFIER_HASH_KEY (MOD_META),
|
|
1908 XKEYMAP (keymap)->table, Qnil);
|
|
1909 if (!NILP (mmap)
|
|
1910 && keymap_fullness (mmap) != 0)
|
|
1911 {
|
|
1912 Lisp_Object desc
|
|
1913 = Fsingle_key_description (Vmeta_prefix_char);
|
|
1914 signal_simple_error_2
|
|
1915 ("Map contains meta-bindings, can't bind", desc, keymap);
|
|
1916 }
|
0
|
1917 NUNGCPRO;
|
|
1918 }
|
|
1919 else
|
|
1920 {
|
|
1921 metized = 1;
|
|
1922 idx++;
|
|
1923 continue;
|
|
1924 }
|
|
1925 }
|
|
1926
|
|
1927 if (ascii_hack)
|
|
1928 define_key_alternate_name (&raw_key1, &raw_key2);
|
|
1929 else
|
|
1930 {
|
|
1931 raw_key2.keysym = Qnil;
|
|
1932 raw_key2.modifiers = 0;
|
|
1933 }
|
185
|
1934
|
0
|
1935 if (metized)
|
|
1936 {
|
412
|
1937 raw_key1.modifiers |= MOD_META;
|
|
1938 raw_key2.modifiers |= MOD_META;
|
0
|
1939 metized = 0;
|
|
1940 }
|
|
1941
|
|
1942 /* This crap is to make sure that someone doesn't bind something like
|
|
1943 "C-x M-a" while "C-x ESC" has a non-keymap binding. */
|
412
|
1944 if (raw_key1.modifiers & MOD_META)
|
0
|
1945 ensure_meta_prefix_char_keymapp (keys, idx, keymap);
|
|
1946
|
173
|
1947 if (++idx == len)
|
0
|
1948 {
|
|
1949 keymap_store (keymap, &raw_key1, def);
|
|
1950 if (ascii_hack && !NILP (raw_key2.keysym))
|
|
1951 keymap_store (keymap, &raw_key2, def);
|
|
1952 UNGCPRO;
|
|
1953 return def;
|
|
1954 }
|
185
|
1955
|
0
|
1956 {
|
|
1957 Lisp_Object cmd;
|
|
1958 struct gcpro ngcpro1;
|
|
1959 NGCPRO1 (c);
|
|
1960
|
|
1961 cmd = keymap_lookup_1 (keymap, &raw_key1, 0);
|
|
1962 if (NILP (cmd))
|
|
1963 {
|
|
1964 cmd = Fmake_sparse_keymap (Qnil);
|
|
1965 XKEYMAP (cmd)->name /* for debugging */
|
|
1966 = list2 (make_key_description (&raw_key1, 1), keymap);
|
|
1967 keymap_store (keymap, &raw_key1, cmd);
|
|
1968 }
|
|
1969 if (NILP (Fkeymapp (cmd)))
|
380
|
1970 signal_simple_error_2 ("Invalid prefix keys in sequence",
|
0
|
1971 c, keys);
|
|
1972
|
|
1973 if (ascii_hack && !NILP (raw_key2.keysym) &&
|
|
1974 NILP (keymap_lookup_1 (keymap, &raw_key2, 0)))
|
|
1975 keymap_store (keymap, &raw_key2, cmd);
|
|
1976
|
|
1977 keymap = get_keymap (cmd, 1, 1);
|
|
1978 NUNGCPRO;
|
|
1979 }
|
|
1980 }
|
|
1981 }
|
|
1982
|
|
1983
|
|
1984 /************************************************************************/
|
|
1985 /* Looking up keys in keymaps */
|
|
1986 /************************************************************************/
|
|
1987
|
185
|
1988 /* We need a very fast (i.e., non-consing) version of lookup-key in order
|
2
|
1989 to make where-is-internal really fly. */
|
0
|
1990
|
|
1991 struct raw_lookup_key_mapper_closure
|
2
|
1992 {
|
|
1993 int remaining;
|
412
|
1994 CONST struct key_data *raw_keys;
|
2
|
1995 int raw_keys_count;
|
|
1996 int keys_so_far;
|
|
1997 int accept_default;
|
|
1998 };
|
0
|
1999
|
|
2000 static Lisp_Object raw_lookup_key_mapper (Lisp_Object k, void *);
|
|
2001
|
|
2002 /* Caller should gc-protect args (keymaps may autoload) */
|
|
2003 static Lisp_Object
|
|
2004 raw_lookup_key (Lisp_Object keymap,
|
412
|
2005 CONST struct key_data *raw_keys, int raw_keys_count,
|
0
|
2006 int keys_so_far, int accept_default)
|
|
2007 {
|
|
2008 /* This function can GC */
|
|
2009 struct raw_lookup_key_mapper_closure c;
|
|
2010 c.remaining = raw_keys_count - 1;
|
|
2011 c.raw_keys = raw_keys;
|
|
2012 c.raw_keys_count = raw_keys_count;
|
|
2013 c.keys_so_far = keys_so_far;
|
|
2014 c.accept_default = accept_default;
|
|
2015
|
173
|
2016 return traverse_keymaps (keymap, Qnil, raw_lookup_key_mapper, &c);
|
0
|
2017 }
|
|
2018
|
|
2019 static Lisp_Object
|
|
2020 raw_lookup_key_mapper (Lisp_Object k, void *arg)
|
|
2021 {
|
|
2022 /* This function can GC */
|
185
|
2023 struct raw_lookup_key_mapper_closure *c =
|
|
2024 (struct raw_lookup_key_mapper_closure *) arg;
|
0
|
2025 int accept_default = c->accept_default;
|
|
2026 int remaining = c->remaining;
|
|
2027 int keys_so_far = c->keys_so_far;
|
412
|
2028 CONST struct key_data *raw_keys = c->raw_keys;
|
0
|
2029 Lisp_Object cmd;
|
185
|
2030
|
0
|
2031 if (! meta_prefix_char_p (&(raw_keys[0])))
|
|
2032 {
|
|
2033 /* Normal case: every case except the meta-hack (see below). */
|
|
2034 cmd = keymap_lookup_1 (k, &(raw_keys[0]), accept_default);
|
185
|
2035
|
0
|
2036 if (remaining == 0)
|
|
2037 /* Return whatever we found if we're out of keys */
|
|
2038 ;
|
|
2039 else if (NILP (cmd))
|
|
2040 /* Found nothing (though perhaps parent map may have binding) */
|
|
2041 ;
|
|
2042 else if (NILP (Fkeymapp (cmd)))
|
|
2043 /* Didn't find a keymap, and we have more keys.
|
|
2044 * Return a fixnum to indicate that keys were too long.
|
|
2045 */
|
|
2046 cmd = make_int (keys_so_far + 1);
|
|
2047 else
|
185
|
2048 cmd = raw_lookup_key (cmd, raw_keys + 1, remaining,
|
0
|
2049 keys_so_far + 1, accept_default);
|
|
2050 }
|
|
2051 else
|
|
2052 {
|
|
2053 /* This is a hack so that looking up a key-sequence whose last
|
|
2054 * element is the meta-prefix-char will return the keymap that
|
|
2055 * the "meta" keys are stored in, if there is no binding for
|
|
2056 * the meta-prefix-char (and if this map has a "meta" submap).
|
380
|
2057 * If this map doesn't have a "meta" submap, then the
|
0
|
2058 * meta-prefix-char is looked up just like any other key.
|
|
2059 */
|
|
2060 if (remaining == 0)
|
|
2061 {
|
|
2062 /* First look for the prefix-char directly */
|
|
2063 cmd = keymap_lookup_1 (k, &(raw_keys[0]), accept_default);
|
|
2064 if (NILP (cmd))
|
|
2065 {
|
185
|
2066 /* Do kludgy return of the meta-map */
|
412
|
2067 cmd = Fgethash (MAKE_MODIFIER_HASH_KEY (MOD_META),
|
0
|
2068 XKEYMAP (k)->table, Qnil);
|
|
2069 }
|
|
2070 }
|
|
2071 else
|
|
2072 {
|
|
2073 /* Search for the prefix-char-prefixed sequence directly */
|
|
2074 cmd = keymap_lookup_1 (k, &(raw_keys[0]), accept_default);
|
|
2075 cmd = get_keymap (cmd, 0, 1);
|
|
2076 if (!NILP (cmd))
|
185
|
2077 cmd = raw_lookup_key (cmd, raw_keys + 1, remaining,
|
0
|
2078 keys_so_far + 1, accept_default);
|
412
|
2079 else if ((raw_keys[1].modifiers & MOD_META) == 0)
|
0
|
2080 {
|
|
2081 struct key_data metified;
|
|
2082 metified.keysym = raw_keys[1].keysym;
|
412
|
2083 metified.modifiers = raw_keys[1].modifiers | MOD_META;
|
0
|
2084
|
|
2085 /* Search for meta-next-char sequence directly */
|
|
2086 cmd = keymap_lookup_1 (k, &metified, accept_default);
|
|
2087 if (remaining == 1)
|
|
2088 ;
|
|
2089 else
|
|
2090 {
|
|
2091 cmd = get_keymap (cmd, 0, 1);
|
|
2092 if (!NILP (cmd))
|
|
2093 cmd = raw_lookup_key (cmd, raw_keys + 2, remaining - 1,
|
|
2094 keys_so_far + 2,
|
|
2095 accept_default);
|
|
2096 }
|
|
2097 }
|
|
2098 }
|
|
2099 }
|
|
2100 if (accept_default && NILP (cmd))
|
|
2101 cmd = XKEYMAP (k)->default_binding;
|
173
|
2102 return cmd;
|
0
|
2103 }
|
|
2104
|
|
2105 /* Value is number if `keys' is too long; NIL if valid but has no definition.*/
|
|
2106 /* Caller should gc-protect arguments */
|
|
2107 static Lisp_Object
|
|
2108 lookup_keys (Lisp_Object keymap, int nkeys, Lisp_Object *keys,
|
|
2109 int accept_default)
|
|
2110 {
|
|
2111 /* This function can GC */
|
|
2112 struct key_data kkk[20];
|
|
2113 struct key_data *raw_keys;
|
|
2114 int i;
|
|
2115
|
|
2116 if (nkeys == 0)
|
|
2117 return Qnil;
|
|
2118
|
412
|
2119 if (nkeys < (countof (kkk)))
|
0
|
2120 raw_keys = kkk;
|
|
2121 else
|
185
|
2122 raw_keys = alloca_array (struct key_data, nkeys);
|
0
|
2123
|
|
2124 for (i = 0; i < nkeys; i++)
|
|
2125 {
|
|
2126 define_key_parser (keys[i], &(raw_keys[i]));
|
|
2127 }
|
173
|
2128 return raw_lookup_key (keymap, raw_keys, nkeys, 0, accept_default);
|
0
|
2129 }
|
|
2130
|
|
2131 static Lisp_Object
|
|
2132 lookup_events (Lisp_Object event_head, int nmaps, Lisp_Object keymaps[],
|
|
2133 int accept_default)
|
|
2134 {
|
|
2135 /* This function can GC */
|
|
2136 struct key_data kkk[20];
|
|
2137 Lisp_Object event;
|
|
2138
|
|
2139 int nkeys;
|
|
2140 struct key_data *raw_keys;
|
|
2141 Lisp_Object tem = Qnil;
|
|
2142 struct gcpro gcpro1, gcpro2;
|
|
2143 int iii;
|
|
2144
|
|
2145 CHECK_LIVE_EVENT (event_head);
|
|
2146
|
|
2147 nkeys = event_chain_count (event_head);
|
|
2148
|
412
|
2149 if (nkeys < (countof (kkk)))
|
0
|
2150 raw_keys = kkk;
|
|
2151 else
|
185
|
2152 raw_keys = alloca_array (struct key_data, nkeys);
|
0
|
2153
|
|
2154 nkeys = 0;
|
|
2155 EVENT_CHAIN_LOOP (event, event_head)
|
|
2156 define_key_parser (event, &(raw_keys[nkeys++]));
|
|
2157 GCPRO2 (keymaps[0], event_head);
|
|
2158 gcpro1.nvars = nmaps;
|
|
2159 /* ####raw_keys[].keysym slots aren't gc-protected. We rely (but shouldn't)
|
|
2160 * on somebody else somewhere (obarray) having a pointer to all keysyms. */
|
|
2161 for (iii = 0; iii < nmaps; iii++)
|
|
2162 {
|
|
2163 tem = raw_lookup_key (keymaps[iii], raw_keys, nkeys, 0,
|
|
2164 accept_default);
|
|
2165 if (INTP (tem))
|
|
2166 {
|
|
2167 /* Too long in some local map means don't look at global map */
|
|
2168 tem = Qnil;
|
|
2169 break;
|
|
2170 }
|
|
2171 else if (!NILP (tem))
|
|
2172 break;
|
|
2173 }
|
|
2174 UNGCPRO;
|
173
|
2175 return tem;
|
0
|
2176 }
|
|
2177
|
20
|
2178 DEFUN ("lookup-key", Flookup_key, 2, 3, 0, /*
|
0
|
2179 In keymap KEYMAP, look up key-sequence KEYS. Return the definition.
|
|
2180 Nil is returned if KEYS is unbound. See documentation of `define-key'
|
|
2181 for valid key definitions and key-sequence specifications.
|
185
|
2182 A number is returned if KEYS is "too long"; that is, the leading
|
0
|
2183 characters fail to be a valid sequence of prefix characters in KEYMAP.
|
|
2184 The number is how many characters at the front of KEYS
|
|
2185 it takes to reach a non-prefix command.
|
20
|
2186 */
|
|
2187 (keymap, keys, accept_default))
|
0
|
2188 {
|
|
2189 /* This function can GC */
|
|
2190 if (VECTORP (keys))
|
272
|
2191 return lookup_keys (keymap,
|
|
2192 XVECTOR_LENGTH (keys),
|
|
2193 XVECTOR_DATA (keys),
|
|
2194 !NILP (accept_default));
|
70
|
2195 else if (SYMBOLP (keys) || CHAR_OR_CHAR_INTP (keys) || CONSP (keys))
|
272
|
2196 return lookup_keys (keymap, 1, &keys, !NILP (accept_default));
|
|
2197 else if (STRINGP (keys))
|
0
|
2198 {
|
272
|
2199 int length = XSTRING_CHAR_LENGTH (keys);
|
0
|
2200 int i;
|
185
|
2201 struct key_data *raw_keys = alloca_array (struct key_data, length);
|
0
|
2202 if (length == 0)
|
|
2203 return Qnil;
|
|
2204
|
|
2205 for (i = 0; i < length; i++)
|
|
2206 {
|
|
2207 Emchar n = string_char (XSTRING (keys), i);
|
|
2208 define_key_parser (make_char (n), &(raw_keys[i]));
|
|
2209 }
|
173
|
2210 return raw_lookup_key (keymap, raw_keys, length, 0,
|
|
2211 !NILP (accept_default));
|
0
|
2212 }
|
272
|
2213 else
|
|
2214 {
|
|
2215 keys = wrong_type_argument (Qsequencep, keys);
|
|
2216 return Flookup_key (keymap, keys, accept_default);
|
|
2217 }
|
0
|
2218 }
|
|
2219
|
|
2220 /* Given a key sequence, returns a list of keymaps to search for bindings.
|
|
2221 Does all manner of semi-hairy heuristics, like looking in the current
|
|
2222 buffer's map before looking in the global map and looking in the local
|
|
2223 map of the buffer in which the mouse was clicked in event0 is a click.
|
|
2224
|
|
2225 It would be kind of nice if this were in Lisp so that this semi-hairy
|
380
|
2226 semi-heuristic command-lookup behavior could be readily understood and
|
0
|
2227 customised. However, this needs to be pretty fast, or performance of
|
|
2228 keyboard macros goes to shit; putting this in lisp slows macros down
|
185
|
2229 2-3x. And they're already slower than v18 by 5-6x.
|
0
|
2230 */
|
|
2231
|
|
2232 struct relevant_maps
|
|
2233 {
|
|
2234 int nmaps;
|
|
2235 unsigned int max_maps;
|
|
2236 Lisp_Object *maps;
|
|
2237 struct gcpro *gcpro;
|
|
2238 };
|
|
2239
|
|
2240 static void get_relevant_extent_keymaps (Lisp_Object pos,
|
|
2241 Lisp_Object buffer_or_string,
|
|
2242 Lisp_Object glyph,
|
|
2243 struct relevant_maps *closure);
|
|
2244 static void get_relevant_minor_maps (Lisp_Object buffer,
|
|
2245 struct relevant_maps *closure);
|
|
2246
|
|
2247 static void
|
|
2248 relevant_map_push (Lisp_Object map, struct relevant_maps *closure)
|
185
|
2249 {
|
0
|
2250 unsigned int nmaps = closure->nmaps;
|
|
2251
|
|
2252 if (!KEYMAPP (map))
|
|
2253 return;
|
|
2254 closure->nmaps = nmaps + 1;
|
|
2255 if (nmaps < closure->max_maps)
|
|
2256 {
|
|
2257 closure->maps[nmaps] = map;
|
|
2258 closure->gcpro->nvars = nmaps;
|
|
2259 }
|
|
2260 }
|
|
2261
|
|
2262 static int
|
|
2263 get_relevant_keymaps (Lisp_Object keys,
|
|
2264 int max_maps, Lisp_Object maps[])
|
|
2265 {
|
|
2266 /* This function can GC */
|
|
2267 Lisp_Object terminal = Qnil;
|
|
2268 struct gcpro gcpro1;
|
|
2269 struct relevant_maps closure;
|
|
2270 struct console *con;
|
|
2271
|
|
2272 GCPRO1 (*maps);
|
|
2273 gcpro1.nvars = 0;
|
|
2274 closure.nmaps = 0;
|
|
2275 closure.max_maps = max_maps;
|
|
2276 closure.maps = maps;
|
|
2277 closure.gcpro = &gcpro1;
|
|
2278
|
|
2279 if (EVENTP (keys))
|
|
2280 terminal = event_chain_tail (keys);
|
|
2281 else if (VECTORP (keys))
|
|
2282 {
|
173
|
2283 int len = XVECTOR_LENGTH (keys);
|
0
|
2284 if (len > 0)
|
173
|
2285 terminal = XVECTOR_DATA (keys)[len - 1];
|
0
|
2286 }
|
|
2287
|
|
2288 if (EVENTP (terminal))
|
|
2289 {
|
|
2290 CHECK_LIVE_EVENT (terminal);
|
|
2291 con = event_console_or_selected (terminal);
|
|
2292 }
|
|
2293 else
|
|
2294 con = XCONSOLE (Vselected_console);
|
185
|
2295
|
0
|
2296 if (KEYMAPP (con->overriding_terminal_local_map)
|
|
2297 || KEYMAPP (Voverriding_local_map))
|
|
2298 {
|
|
2299 if (KEYMAPP (con->overriding_terminal_local_map))
|
|
2300 relevant_map_push (con->overriding_terminal_local_map, &closure);
|
|
2301 if (KEYMAPP (Voverriding_local_map))
|
|
2302 relevant_map_push (Voverriding_local_map, &closure);
|
|
2303 }
|
|
2304 else if (!EVENTP (terminal)
|
185
|
2305 || (XEVENT (terminal)->event_type != button_press_event
|
0
|
2306 && XEVENT (terminal)->event_type != button_release_event))
|
|
2307 {
|
|
2308 Lisp_Object tem;
|
|
2309 XSETBUFFER (tem, current_buffer);
|
|
2310 /* It's not a mouse event; order of keymaps searched is:
|
|
2311 o keymap of any/all extents under the mouse
|
|
2312 o minor-mode maps
|
|
2313 o local-map of current-buffer
|
|
2314 o global-map
|
|
2315 */
|
|
2316 /* The terminal element of the lookup may be nil or a keysym.
|
|
2317 In those cases we don't want to check for an extent
|
|
2318 keymap. */
|
|
2319 if (EVENTP (terminal))
|
|
2320 {
|
|
2321 get_relevant_extent_keymaps (make_int (BUF_PT (current_buffer)),
|
|
2322 tem, Qnil, &closure);
|
|
2323 }
|
|
2324 get_relevant_minor_maps (tem, &closure);
|
|
2325
|
|
2326 tem = current_buffer->keymap;
|
|
2327 if (!NILP (tem))
|
|
2328 relevant_map_push (tem, &closure);
|
|
2329 }
|
|
2330 #ifdef HAVE_WINDOW_SYSTEM
|
|
2331 else
|
|
2332 {
|
|
2333 /* It's a mouse event; order of keymaps searched is:
|
284
|
2334 o vertical-divider-map, if event is over a divider
|
0
|
2335 o local-map of mouse-grabbed-buffer
|
|
2336 o keymap of any/all extents under the mouse
|
|
2337 if the mouse is over a modeline:
|
|
2338 o modeline-map of buffer corresponding to that modeline
|
|
2339 o else, local-map of buffer under the mouse
|
|
2340 o minor-mode maps
|
|
2341 o local-map of current-buffer
|
|
2342 o global-map
|
|
2343 */
|
|
2344 Lisp_Object window = Fevent_window (terminal);
|
|
2345
|
284
|
2346 if (!NILP (Fevent_over_vertical_divider_p (terminal)))
|
|
2347 {
|
|
2348 if (KEYMAPP (Vvertical_divider_map))
|
|
2349 relevant_map_push (Vvertical_divider_map, &closure);
|
|
2350 }
|
|
2351
|
0
|
2352 if (BUFFERP (Vmouse_grabbed_buffer))
|
|
2353 {
|
|
2354 Lisp_Object map = XBUFFER (Vmouse_grabbed_buffer)->keymap;
|
|
2355
|
|
2356 get_relevant_minor_maps (Vmouse_grabbed_buffer, &closure);
|
|
2357 if (!NILP (map))
|
|
2358 relevant_map_push (map, &closure);
|
|
2359 }
|
|
2360
|
|
2361 if (!NILP (window))
|
|
2362 {
|
|
2363 Lisp_Object buffer = Fwindow_buffer (window);
|
|
2364
|
|
2365 if (!NILP (buffer))
|
|
2366 {
|
|
2367 if (!NILP (Fevent_over_modeline_p (terminal)))
|
|
2368 {
|
|
2369 Lisp_Object map = symbol_value_in_buffer (Qmodeline_map,
|
|
2370 buffer);
|
|
2371
|
|
2372 get_relevant_extent_keymaps
|
|
2373 (Fevent_modeline_position (terminal),
|
|
2374 XBUFFER (buffer)->generated_modeline_string,
|
412
|
2375 /* #### third arg should maybe be a glyph. */
|
|
2376 Qnil, &closure);
|
0
|
2377
|
|
2378 if (!UNBOUNDP (map) && !NILP (map))
|
|
2379 relevant_map_push (get_keymap (map, 1, 1), &closure);
|
|
2380 }
|
|
2381 else
|
|
2382 {
|
|
2383 get_relevant_extent_keymaps (Fevent_point (terminal), buffer,
|
|
2384 Fevent_glyph_extent (terminal),
|
|
2385 &closure);
|
|
2386 }
|
|
2387
|
|
2388 if (!EQ (buffer, Vmouse_grabbed_buffer)) /* already pushed */
|
|
2389 {
|
114
|
2390 Lisp_Object map = XBUFFER (buffer)->keymap;
|
|
2391
|
0
|
2392 get_relevant_minor_maps (buffer, &closure);
|
114
|
2393 if (!NILP(map))
|
|
2394 relevant_map_push (map, &closure);
|
0
|
2395 }
|
|
2396 }
|
|
2397 }
|
|
2398 else if (!NILP (Fevent_over_toolbar_p (terminal)))
|
|
2399 {
|
|
2400 Lisp_Object map = Fsymbol_value (Qtoolbar_map);
|
|
2401
|
|
2402 if (!UNBOUNDP (map) && !NILP (map))
|
|
2403 relevant_map_push (map, &closure);
|
|
2404 }
|
|
2405 }
|
|
2406 #endif /* HAVE_WINDOW_SYSTEM */
|
|
2407
|
|
2408 {
|
|
2409 int nmaps = closure.nmaps;
|
380
|
2410 /* Silently truncate at 100 keymaps to prevent infinite lossage */
|
0
|
2411 if (nmaps >= max_maps && max_maps > 0)
|
|
2412 maps[max_maps - 1] = Vcurrent_global_map;
|
|
2413 else
|
|
2414 maps[nmaps] = Vcurrent_global_map;
|
|
2415 UNGCPRO;
|
173
|
2416 return nmaps + 1;
|
0
|
2417 }
|
|
2418 }
|
|
2419
|
|
2420 /* Returns a set of keymaps extracted from the extents at POS in
|
|
2421 BUFFER_OR_STRING. The GLYPH arg, if specified, is one more extent
|
|
2422 to look for a keymap in, and if it has one, its keymap will be the
|
|
2423 first element in the list returned. This is so we can correctly
|
|
2424 search the keymaps associated with glyphs which may be physically
|
|
2425 disjoint from their extents: for example, if a glyph is out in the
|
380
|
2426 margin, we should still consult the keymap of that glyph's extent,
|
0
|
2427 which may not itself be under the mouse.
|
|
2428 */
|
157
|
2429
|
0
|
2430 static void
|
|
2431 get_relevant_extent_keymaps (Lisp_Object pos, Lisp_Object buffer_or_string,
|
|
2432 Lisp_Object glyph,
|
|
2433 struct relevant_maps *closure)
|
|
2434 {
|
|
2435 /* This function can GC */
|
|
2436 /* the glyph keymap, if any, comes first.
|
|
2437 (Processing it twice is no big deal: noop.) */
|
|
2438 if (!NILP (glyph))
|
|
2439 {
|
|
2440 Lisp_Object keymap = Fextent_property (glyph, Qkeymap, Qnil);
|
|
2441 if (!NILP (keymap))
|
|
2442 relevant_map_push (get_keymap (keymap, 1, 1), closure);
|
|
2443 }
|
185
|
2444
|
0
|
2445 /* Next check the extents at the text position, if any */
|
|
2446 if (!NILP (pos))
|
|
2447 {
|
|
2448 Lisp_Object extent;
|
195
|
2449 for (extent = Fextent_at (pos, buffer_or_string, Qkeymap, Qnil, Qnil);
|
0
|
2450 !NILP (extent);
|
195
|
2451 extent = Fextent_at (pos, buffer_or_string, Qkeymap, extent, Qnil))
|
0
|
2452 {
|
195
|
2453 Lisp_Object keymap = Fextent_property (extent, Qkeymap, Qnil);
|
|
2454 if (!NILP (keymap))
|
|
2455 relevant_map_push (get_keymap (keymap, 1, 1), closure);
|
|
2456 QUIT;
|
0
|
2457 }
|
|
2458 }
|
|
2459 }
|
|
2460
|
|
2461 static Lisp_Object
|
|
2462 minor_mode_keymap_predicate (Lisp_Object assoc, Lisp_Object buffer)
|
|
2463 {
|
|
2464 /* This function can GC */
|
|
2465 if (CONSP (assoc))
|
|
2466 {
|
|
2467 Lisp_Object sym = XCAR (assoc);
|
|
2468 if (SYMBOLP (sym))
|
|
2469 {
|
|
2470 Lisp_Object val = symbol_value_in_buffer (sym, buffer);
|
|
2471 if (!NILP (val) && !UNBOUNDP (val))
|
|
2472 {
|
|
2473 Lisp_Object map = get_keymap (XCDR (assoc), 0, 1);
|
173
|
2474 return map;
|
0
|
2475 }
|
|
2476 }
|
|
2477 }
|
173
|
2478 return Qnil;
|
0
|
2479 }
|
|
2480
|
|
2481 static void
|
|
2482 get_relevant_minor_maps (Lisp_Object buffer, struct relevant_maps *closure)
|
|
2483 {
|
|
2484 /* This function can GC */
|
|
2485 Lisp_Object alist;
|
|
2486
|
|
2487 /* Will you ever lose badly if you make this circular! */
|
|
2488 for (alist = symbol_value_in_buffer (Qminor_mode_map_alist, buffer);
|
|
2489 CONSP (alist);
|
|
2490 alist = XCDR (alist))
|
|
2491 {
|
|
2492 Lisp_Object m = minor_mode_keymap_predicate (XCAR (alist),
|
|
2493 buffer);
|
|
2494 if (!NILP (m)) relevant_map_push (m, closure);
|
|
2495 QUIT;
|
|
2496 }
|
|
2497 }
|
|
2498
|
|
2499 /* #### Would map-current-keymaps be a better thing?? */
|
20
|
2500 DEFUN ("current-keymaps", Fcurrent_keymaps, 0, 1, 0, /*
|
0
|
2501 Return a list of the current keymaps that will be searched for bindings.
|
|
2502 This lists keymaps such as the current local map and the minor-mode maps,
|
|
2503 but does not list the parents of those keymaps.
|
|
2504 EVENT-OR-KEYS controls which keymaps will be listed.
|
|
2505 If EVENT-OR-KEYS is a mouse event (or a vector whose last element is a
|
|
2506 mouse event), the keymaps for that mouse event will be listed (see
|
|
2507 `key-binding'). Otherwise, the keymaps for key presses will be listed.
|
20
|
2508 */
|
|
2509 (event_or_keys))
|
0
|
2510 {
|
|
2511 /* This function can GC */
|
|
2512 struct gcpro gcpro1;
|
|
2513 Lisp_Object maps[100];
|
|
2514 Lisp_Object *gubbish = maps;
|
|
2515 int nmaps;
|
|
2516
|
|
2517 GCPRO1 (event_or_keys);
|
|
2518 nmaps = get_relevant_keymaps (event_or_keys, countof (maps),
|
|
2519 gubbish);
|
|
2520 if (nmaps > countof (maps))
|
|
2521 {
|
185
|
2522 gubbish = alloca_array (Lisp_Object, nmaps);
|
0
|
2523 nmaps = get_relevant_keymaps (event_or_keys, nmaps, gubbish);
|
|
2524 }
|
|
2525 UNGCPRO;
|
173
|
2526 return Flist (nmaps, gubbish);
|
0
|
2527 }
|
|
2528
|
20
|
2529 DEFUN ("key-binding", Fkey_binding, 1, 2, 0, /*
|
0
|
2530 Return the binding for command KEYS in current keymaps.
|
|
2531 KEYS is a string, a vector of events, or a vector of key-description lists
|
|
2532 as described in the documentation for the `define-key' function.
|
|
2533 The binding is probably a symbol with a function definition; see
|
|
2534 the documentation for `lookup-key' for more information.
|
|
2535
|
|
2536 For key-presses, the order of keymaps searched is:
|
|
2537 - the `keymap' property of any extent(s) at point;
|
|
2538 - any applicable minor-mode maps;
|
|
2539 - the current-local-map of the current-buffer;
|
|
2540 - the current global map.
|
|
2541
|
|
2542 For mouse-clicks, the order of keymaps searched is:
|
|
2543 - the current-local-map of the `mouse-grabbed-buffer' if any;
|
284
|
2544 - vertical-divider-map, if the event happened over a vertical divider
|
0
|
2545 - the `keymap' property of any extent(s) at the position of the click
|
|
2546 (this includes modeline extents);
|
|
2547 - the modeline-map of the buffer corresponding to the modeline under
|
|
2548 the mouse (if the click happened over a modeline);
|
|
2549 - the value of toolbar-map in the current-buffer (if the click
|
|
2550 happened over a toolbar);
|
|
2551 - the current-local-map of the buffer under the mouse (does not
|
|
2552 apply to toolbar clicks);
|
|
2553 - any applicable minor-mode maps;
|
|
2554 - the current global map.
|
|
2555
|
|
2556 Note that if `overriding-local-map' or `overriding-terminal-local-map'
|
|
2557 is non-nil, *only* those two maps and the current global map are searched.
|
20
|
2558 */
|
|
2559 (keys, accept_default))
|
0
|
2560 {
|
|
2561 /* This function can GC */
|
|
2562 int i;
|
|
2563 Lisp_Object maps[100];
|
|
2564 int nmaps;
|
|
2565 struct gcpro gcpro1, gcpro2;
|
|
2566 GCPRO2 (keys, accept_default); /* get_relevant_keymaps may autoload */
|
|
2567
|
|
2568 nmaps = get_relevant_keymaps (keys, countof (maps), maps);
|
|
2569
|
|
2570 UNGCPRO;
|
|
2571
|
|
2572 if (EVENTP (keys)) /* unadvertised "feature" for the future */
|
173
|
2573 return lookup_events (keys, nmaps, maps, !NILP (accept_default));
|
0
|
2574
|
|
2575 for (i = 0; i < nmaps; i++)
|
|
2576 {
|
|
2577 Lisp_Object tem = Flookup_key (maps[i], keys,
|
|
2578 accept_default);
|
|
2579 if (INTP (tem))
|
|
2580 {
|
|
2581 /* Too long in some local map means don't look at global map */
|
173
|
2582 return Qnil;
|
0
|
2583 }
|
|
2584 else if (!NILP (tem))
|
173
|
2585 return tem;
|
0
|
2586 }
|
173
|
2587 return Qnil;
|
0
|
2588 }
|
|
2589
|
|
2590 static Lisp_Object
|
|
2591 process_event_binding_result (Lisp_Object result)
|
|
2592 {
|
|
2593 if (EQ (result, Qundefined))
|
|
2594 /* The suppress-keymap function binds keys to 'undefined - special-case
|
|
2595 that here, so that being bound to that has the same error-behavior as
|
|
2596 not being defined at all.
|
|
2597 */
|
|
2598 result = Qnil;
|
|
2599 if (!NILP (result))
|
|
2600 {
|
|
2601 Lisp_Object map;
|
|
2602 /* Snap out possible keymap indirections */
|
|
2603 map = get_keymap (result, 0, 1);
|
|
2604 if (!NILP (map))
|
|
2605 result = map;
|
|
2606 }
|
|
2607
|
|
2608 return result;
|
|
2609 }
|
|
2610
|
|
2611 /* Attempts to find a command corresponding to the event-sequence
|
|
2612 whose head is event0 (sequence is threaded though event_next).
|
|
2613
|
|
2614 The return value will be
|
|
2615
|
|
2616 -- nil (there is no binding; this will also be returned
|
|
2617 whenever the event chain is "too long", i.e. there
|
|
2618 is a non-nil, non-keymap binding for a prefix of
|
|
2619 the event chain)
|
|
2620 -- a keymap (part of a command has been specified)
|
|
2621 -- a command (anything that satisfies `commandp'; this includes
|
|
2622 some symbols, lists, subrs, strings, vectors, and
|
|
2623 compiled-function objects) */
|
|
2624 Lisp_Object
|
|
2625 event_binding (Lisp_Object event0, int accept_default)
|
|
2626 {
|
|
2627 /* This function can GC */
|
|
2628 Lisp_Object maps[100];
|
|
2629 int nmaps;
|
|
2630
|
|
2631 assert (EVENTP (event0));
|
|
2632
|
|
2633 nmaps = get_relevant_keymaps (event0, countof (maps), maps);
|
114
|
2634 if (nmaps > countof (maps))
|
|
2635 nmaps = countof (maps);
|
173
|
2636 return process_event_binding_result (lookup_events (event0, nmaps, maps,
|
|
2637 accept_default));
|
0
|
2638 }
|
|
2639
|
175
|
2640 /* like event_binding, but specify a keymap to search */
|
|
2641
|
|
2642 Lisp_Object
|
|
2643 event_binding_in (Lisp_Object event0, Lisp_Object keymap, int accept_default)
|
|
2644 {
|
|
2645 /* This function can GC */
|
|
2646 if (!KEYMAPP (keymap))
|
|
2647 return Qnil;
|
185
|
2648
|
|
2649 return process_event_binding_result (lookup_events (event0, 1, &keymap,
|
175
|
2650 accept_default));
|
|
2651 }
|
|
2652
|
0
|
2653 /* Attempts to find a function key mapping corresponding to the
|
|
2654 event-sequence whose head is event0 (sequence is threaded through
|
|
2655 event_next). The return value will be the same as for event_binding(). */
|
|
2656 Lisp_Object
|
|
2657 munging_key_map_event_binding (Lisp_Object event0,
|
|
2658 enum munge_me_out_the_door munge)
|
|
2659 {
|
185
|
2660 Lisp_Object keymap = (munge == MUNGE_ME_FUNCTION_KEY) ?
|
|
2661 CONSOLE_FUNCTION_KEY_MAP (event_console_or_selected (event0)) :
|
|
2662 Vkey_translation_map;
|
|
2663
|
|
2664 if (NILP (keymap))
|
0
|
2665 return Qnil;
|
|
2666
|
185
|
2667 return process_event_binding_result (lookup_events (event0, 1, &keymap, 1));
|
0
|
2668 }
|
|
2669
|
|
2670
|
|
2671 /************************************************************************/
|
|
2672 /* Setting/querying the global and local maps */
|
|
2673 /************************************************************************/
|
|
2674
|
20
|
2675 DEFUN ("use-global-map", Fuse_global_map, 1, 1, 0, /*
|
0
|
2676 Select KEYMAP as the global keymap.
|
20
|
2677 */
|
|
2678 (keymap))
|
0
|
2679 {
|
|
2680 /* This function can GC */
|
|
2681 keymap = get_keymap (keymap, 1, 1);
|
|
2682 Vcurrent_global_map = keymap;
|
|
2683 return Qnil;
|
|
2684 }
|
|
2685
|
20
|
2686 DEFUN ("use-local-map", Fuse_local_map, 1, 2, 0, /*
|
0
|
2687 Select KEYMAP as the local keymap in BUFFER.
|
|
2688 If KEYMAP is nil, that means no local keymap.
|
|
2689 If BUFFER is nil, the current buffer is assumed.
|
20
|
2690 */
|
|
2691 (keymap, buffer))
|
0
|
2692 {
|
|
2693 /* This function can GC */
|
|
2694 struct buffer *b = decode_buffer (buffer, 0);
|
|
2695 if (!NILP (keymap))
|
|
2696 keymap = get_keymap (keymap, 1, 1);
|
|
2697
|
|
2698 b->keymap = keymap;
|
|
2699
|
|
2700 return Qnil;
|
|
2701 }
|
|
2702
|
20
|
2703 DEFUN ("current-local-map", Fcurrent_local_map, 0, 1, 0, /*
|
0
|
2704 Return BUFFER's local keymap, or nil if it has none.
|
|
2705 If BUFFER is nil, the current buffer is assumed.
|
20
|
2706 */
|
|
2707 (buffer))
|
0
|
2708 {
|
|
2709 struct buffer *b = decode_buffer (buffer, 0);
|
|
2710 return b->keymap;
|
|
2711 }
|
|
2712
|
20
|
2713 DEFUN ("current-global-map", Fcurrent_global_map, 0, 0, 0, /*
|
0
|
2714 Return the current global keymap.
|
20
|
2715 */
|
|
2716 ())
|
0
|
2717 {
|
173
|
2718 return Vcurrent_global_map;
|
0
|
2719 }
|
|
2720
|
|
2721
|
|
2722 /************************************************************************/
|
|
2723 /* Mapping over keymap elements */
|
|
2724 /************************************************************************/
|
|
2725
|
|
2726 /* Since keymaps are arranged in a hierarchy, one keymap per bucky bit or
|
185
|
2727 prefix key, it's not entirely obvious what map-keymap should do, but
|
0
|
2728 what it does is: map over all keys in this map; then recursively map
|
|
2729 over all submaps of this map that are "bucky" submaps. This means that,
|
|
2730 when mapping over a keymap, it appears that "x" and "C-x" are in the
|
|
2731 same map, although "C-x" is really in the "control" submap of this one.
|
|
2732 However, since we don't recursively descend the submaps that are bound
|
|
2733 to prefix keys (like C-x, C-h, etc) the caller will have to recurse on
|
|
2734 those explicitly, if that's what they want.
|
|
2735
|
|
2736 So the end result of this is that the bucky keymaps (the ones indexed
|
|
2737 under the large integers returned from MAKE_MODIFIER_HASH_KEY()) are
|
|
2738 invisible from elisp. They're just an implementation detail that code
|
|
2739 outside of this file doesn't need to know about.
|
|
2740 */
|
|
2741
|
|
2742 struct map_keymap_unsorted_closure
|
|
2743 {
|
412
|
2744 void (*fn) (CONST struct key_data *, Lisp_Object binding, void *arg);
|
0
|
2745 void *arg;
|
412
|
2746 unsigned int modifiers;
|
0
|
2747 };
|
|
2748
|
|
2749 /* used by map_keymap() */
|
241
|
2750 static int
|
380
|
2751 map_keymap_unsorted_mapper (Lisp_Object keysym, Lisp_Object value,
|
0
|
2752 void *map_keymap_unsorted_closure)
|
|
2753 {
|
|
2754 /* This function can GC */
|
185
|
2755 struct map_keymap_unsorted_closure *closure =
|
|
2756 (struct map_keymap_unsorted_closure *) map_keymap_unsorted_closure;
|
412
|
2757 unsigned int modifiers = closure->modifiers;
|
|
2758 unsigned int mod_bit;
|
0
|
2759 mod_bit = MODIFIER_HASH_KEY_BITS (keysym);
|
|
2760 if (mod_bit != 0)
|
|
2761 {
|
|
2762 int omod = modifiers;
|
|
2763 closure->modifiers = (modifiers | mod_bit);
|
380
|
2764 value = get_keymap (value, 1, 0);
|
0
|
2765 elisp_maphash (map_keymap_unsorted_mapper,
|
380
|
2766 XKEYMAP (value)->table,
|
0
|
2767 map_keymap_unsorted_closure);
|
|
2768 closure->modifiers = omod;
|
|
2769 }
|
|
2770 else
|
|
2771 {
|
|
2772 struct key_data key;
|
|
2773 key.keysym = keysym;
|
|
2774 key.modifiers = modifiers;
|
380
|
2775 ((*closure->fn) (&key, value, closure->arg));
|
0
|
2776 }
|
241
|
2777 return 0;
|
0
|
2778 }
|
|
2779
|
|
2780
|
|
2781 struct map_keymap_sorted_closure
|
|
2782 {
|
|
2783 Lisp_Object *result_locative;
|
|
2784 };
|
|
2785
|
|
2786 /* used by map_keymap_sorted() */
|
241
|
2787 static int
|
380
|
2788 map_keymap_sorted_mapper (Lisp_Object key, Lisp_Object value,
|
0
|
2789 void *map_keymap_sorted_closure)
|
|
2790 {
|
185
|
2791 struct map_keymap_sorted_closure *cl =
|
|
2792 (struct map_keymap_sorted_closure *) map_keymap_sorted_closure;
|
0
|
2793 Lisp_Object *list = cl->result_locative;
|
380
|
2794 *list = Fcons (Fcons (key, value), *list);
|
241
|
2795 return 0;
|
0
|
2796 }
|
|
2797
|
|
2798
|
|
2799 /* used by map_keymap_sorted(), describe_map_sort_predicate(),
|
|
2800 and keymap_submaps().
|
|
2801 */
|
|
2802 static int
|
185
|
2803 map_keymap_sort_predicate (Lisp_Object obj1, Lisp_Object obj2,
|
0
|
2804 Lisp_Object pred)
|
|
2805 {
|
|
2806 /* obj1 and obj2 are conses with keysyms in their cars. Cdrs are ignored.
|
|
2807 */
|
412
|
2808 unsigned int bit1, bit2;
|
0
|
2809 int sym1_p = 0;
|
|
2810 int sym2_p = 0;
|
|
2811 obj1 = XCAR (obj1);
|
|
2812 obj2 = XCAR (obj2);
|
|
2813
|
|
2814 if (EQ (obj1, obj2))
|
|
2815 return -1;
|
|
2816 bit1 = MODIFIER_HASH_KEY_BITS (obj1);
|
|
2817 bit2 = MODIFIER_HASH_KEY_BITS (obj2);
|
185
|
2818
|
0
|
2819 /* If either is a symbol with a character-set-property, then sort it by
|
|
2820 that code instead of alphabetically.
|
|
2821 */
|
|
2822 if (! bit1 && SYMBOLP (obj1))
|
|
2823 {
|
|
2824 Lisp_Object code = Fget (obj1, Vcharacter_set_property, Qnil);
|
70
|
2825 if (CHAR_OR_CHAR_INTP (code))
|
|
2826 {
|
|
2827 obj1 = code;
|
|
2828 CHECK_CHAR_COERCE_INT (obj1);
|
|
2829 sym1_p = 1;
|
|
2830 }
|
0
|
2831 }
|
|
2832 if (! bit2 && SYMBOLP (obj2))
|
|
2833 {
|
|
2834 Lisp_Object code = Fget (obj2, Vcharacter_set_property, Qnil);
|
70
|
2835 if (CHAR_OR_CHAR_INTP (code))
|
|
2836 {
|
|
2837 obj2 = code;
|
|
2838 CHECK_CHAR_COERCE_INT (obj2);
|
|
2839 sym2_p = 1;
|
|
2840 }
|
0
|
2841 }
|
|
2842
|
|
2843 /* all symbols (non-ASCIIs) come after characters (ASCIIs) */
|
|
2844 if (XTYPE (obj1) != XTYPE (obj2))
|
173
|
2845 return SYMBOLP (obj2) ? 1 : -1;
|
0
|
2846
|
|
2847 if (! bit1 && CHARP (obj1)) /* they're both ASCII */
|
|
2848 {
|
|
2849 int o1 = XCHAR (obj1);
|
|
2850 int o2 = XCHAR (obj2);
|
|
2851 if (o1 == o2 && /* If one started out as a symbol and the */
|
|
2852 sym1_p != sym2_p) /* other didn't, the symbol comes last. */
|
173
|
2853 return sym2_p ? 1 : -1;
|
|
2854
|
|
2855 return o1 < o2 ? 1 : -1; /* else just compare them */
|
0
|
2856 }
|
|
2857
|
|
2858 /* else they're both symbols. If they're both buckys, then order them. */
|
|
2859 if (bit1 && bit2)
|
173
|
2860 return bit1 < bit2 ? 1 : -1;
|
185
|
2861
|
0
|
2862 /* if only one is a bucky, then it comes later */
|
|
2863 if (bit1 || bit2)
|
173
|
2864 return bit2 ? 1 : -1;
|
0
|
2865
|
|
2866 /* otherwise, string-sort them. */
|
|
2867 {
|
|
2868 char *s1 = (char *) string_data (XSYMBOL (obj1)->name);
|
|
2869 char *s2 = (char *) string_data (XSYMBOL (obj2)->name);
|
|
2870 #ifdef I18N2
|
173
|
2871 return 0 > strcoll (s1, s2) ? 1 : -1;
|
0
|
2872 #else
|
173
|
2873 return 0 > strcmp (s1, s2) ? 1 : -1;
|
0
|
2874 #endif
|
|
2875 }
|
|
2876 }
|
|
2877
|
|
2878
|
|
2879 /* used by map_keymap() */
|
|
2880 static void
|
|
2881 map_keymap_sorted (Lisp_Object keymap_table,
|
412
|
2882 unsigned int modifiers,
|
|
2883 void (*function) (CONST struct key_data *key,
|
185
|
2884 Lisp_Object binding,
|
0
|
2885 void *map_keymap_sorted_closure),
|
|
2886 void *map_keymap_sorted_closure)
|
|
2887 {
|
|
2888 /* This function can GC */
|
|
2889 struct gcpro gcpro1;
|
|
2890 Lisp_Object contents = Qnil;
|
|
2891
|
380
|
2892 if (XINT (Fhash_table_count (keymap_table)) == 0)
|
0
|
2893 return;
|
|
2894
|
|
2895 GCPRO1 (contents);
|
|
2896
|
|
2897 {
|
|
2898 struct map_keymap_sorted_closure c1;
|
|
2899 c1.result_locative = &contents;
|
|
2900 elisp_maphash (map_keymap_sorted_mapper, keymap_table, &c1);
|
|
2901 }
|
|
2902 contents = list_sort (contents, Qnil, map_keymap_sort_predicate);
|
|
2903 for (; !NILP (contents); contents = XCDR (contents))
|
|
2904 {
|
|
2905 Lisp_Object keysym = XCAR (XCAR (contents));
|
|
2906 Lisp_Object binding = XCDR (XCAR (contents));
|
412
|
2907 unsigned int sub_bits = MODIFIER_HASH_KEY_BITS (keysym);
|
0
|
2908 if (sub_bits != 0)
|
|
2909 map_keymap_sorted (XKEYMAP (get_keymap (binding,
|
|
2910 1, 1))->table,
|
|
2911 (modifiers | sub_bits),
|
|
2912 function,
|
|
2913 map_keymap_sorted_closure);
|
|
2914 else
|
|
2915 {
|
|
2916 struct key_data k;
|
|
2917 k.keysym = keysym;
|
|
2918 k.modifiers = modifiers;
|
|
2919 ((*function) (&k, binding, map_keymap_sorted_closure));
|
|
2920 }
|
|
2921 }
|
|
2922 UNGCPRO;
|
|
2923 }
|
|
2924
|
|
2925
|
|
2926 /* used by Fmap_keymap() */
|
|
2927 static void
|
412
|
2928 map_keymap_mapper (CONST struct key_data *key,
|
185
|
2929 Lisp_Object binding,
|
0
|
2930 void *function)
|
|
2931 {
|
|
2932 /* This function can GC */
|
|
2933 Lisp_Object fn;
|
|
2934 VOID_TO_LISP (fn, function);
|
|
2935 call2 (fn, make_key_description (key, 1), binding);
|
|
2936 }
|
|
2937
|
|
2938
|
|
2939 static void
|
|
2940 map_keymap (Lisp_Object keymap_table, int sort_first,
|
412
|
2941 void (*function) (CONST struct key_data *key,
|
0
|
2942 Lisp_Object binding,
|
|
2943 void *fn_arg),
|
|
2944 void *fn_arg)
|
|
2945 {
|
|
2946 /* This function can GC */
|
|
2947 if (sort_first)
|
|
2948 map_keymap_sorted (keymap_table, 0, function, fn_arg);
|
|
2949 else
|
|
2950 {
|
|
2951 struct map_keymap_unsorted_closure map_keymap_unsorted_closure;
|
|
2952 map_keymap_unsorted_closure.fn = function;
|
|
2953 map_keymap_unsorted_closure.arg = fn_arg;
|
|
2954 map_keymap_unsorted_closure.modifiers = 0;
|
|
2955 elisp_maphash (map_keymap_unsorted_mapper, keymap_table,
|
|
2956 &map_keymap_unsorted_closure);
|
|
2957 }
|
|
2958 }
|
|
2959
|
20
|
2960 DEFUN ("map-keymap", Fmap_keymap, 2, 3, 0, /*
|
0
|
2961 Apply FUNCTION to each element of KEYMAP.
|
|
2962 FUNCTION will be called with two arguments: a key-description list, and
|
|
2963 the binding. The order in which the elements of the keymap are passed to
|
|
2964 the function is unspecified. If the function inserts new elements into
|
|
2965 the keymap, it may or may not be called with them later. No element of
|
|
2966 the keymap will ever be passed to the function more than once.
|
|
2967
|
|
2968 The function will not be called on elements of this keymap's parents
|
272
|
2969 \(see the function `keymap-parents') or upon keymaps which are contained
|
0
|
2970 within this keymap (multi-character definitions).
|
185
|
2971 It will be called on "meta" characters since they are not really
|
0
|
2972 two-character sequences.
|
|
2973
|
|
2974 If the optional third argument SORT-FIRST is non-nil, then the elements of
|
|
2975 the keymap will be passed to the mapper function in a canonical order.
|
|
2976 Otherwise, they will be passed in hash (that is, random) order, which is
|
|
2977 faster.
|
20
|
2978 */
|
70
|
2979 (function, keymap, sort_first))
|
0
|
2980 {
|
|
2981 /* This function can GC */
|
|
2982 struct gcpro gcpro1, gcpro2;
|
|
2983
|
|
2984 /* tolerate obviously transposed args */
|
|
2985 if (!NILP (Fkeymapp (function)))
|
|
2986 {
|
|
2987 Lisp_Object tmp = function;
|
|
2988 function = keymap;
|
|
2989 keymap = tmp;
|
|
2990 }
|
|
2991 GCPRO2 (function, keymap);
|
|
2992 keymap = get_keymap (keymap, 1, 1);
|
|
2993 map_keymap (XKEYMAP (keymap)->table, !NILP (sort_first),
|
|
2994 map_keymap_mapper, LISP_TO_VOID (function));
|
|
2995 UNGCPRO;
|
|
2996 return Qnil;
|
|
2997 }
|
|
2998
|
|
2999
|
|
3000
|
|
3001 /************************************************************************/
|
|
3002 /* Accessible keymaps */
|
|
3003 /************************************************************************/
|
|
3004
|
|
3005 struct accessible_keymaps_closure
|
|
3006 {
|
|
3007 Lisp_Object tail;
|
|
3008 };
|
|
3009
|
|
3010
|
|
3011 static void
|
|
3012 accessible_keymaps_mapper_1 (Lisp_Object keysym, Lisp_Object contents,
|
412
|
3013 unsigned int modifiers,
|
0
|
3014 struct accessible_keymaps_closure *closure)
|
|
3015 {
|
|
3016 /* This function can GC */
|
412
|
3017 unsigned int subbits = MODIFIER_HASH_KEY_BITS (keysym);
|
0
|
3018
|
|
3019 if (subbits != 0)
|
|
3020 {
|
|
3021 Lisp_Object submaps;
|
|
3022
|
|
3023 contents = get_keymap (contents, 1, 1);
|
|
3024 submaps = keymap_submaps (contents);
|
|
3025 for (; !NILP (submaps); submaps = XCDR (submaps))
|
|
3026 {
|
|
3027 accessible_keymaps_mapper_1 (XCAR (XCAR (submaps)),
|
|
3028 XCDR (XCAR (submaps)),
|
|
3029 (subbits | modifiers),
|
|
3030 closure);
|
|
3031 }
|
|
3032 }
|
|
3033 else
|
|
3034 {
|
|
3035 Lisp_Object thisseq = Fcar (Fcar (closure->tail));
|
|
3036 Lisp_Object cmd = get_keyelt (contents, 1);
|
|
3037 Lisp_Object vec;
|
|
3038 int j;
|
173
|
3039 int len;
|
0
|
3040 struct key_data key;
|
|
3041 key.keysym = keysym;
|
|
3042 key.modifiers = modifiers;
|
|
3043
|
|
3044 if (NILP (cmd))
|
|
3045 abort ();
|
|
3046 cmd = get_keymap (cmd, 0, 1);
|
|
3047 if (!KEYMAPP (cmd))
|
|
3048 abort ();
|
|
3049
|
173
|
3050 vec = make_vector (XVECTOR_LENGTH (thisseq) + 1, Qnil);
|
|
3051 len = XVECTOR_LENGTH (thisseq);
|
|
3052 for (j = 0; j < len; j++)
|
|
3053 XVECTOR_DATA (vec) [j] = XVECTOR_DATA (thisseq) [j];
|
|
3054 XVECTOR_DATA (vec) [j] = make_key_description (&key, 1);
|
0
|
3055
|
|
3056 nconc2 (closure->tail, list1 (Fcons (vec, cmd)));
|
|
3057 }
|
|
3058 }
|
|
3059
|
|
3060
|
|
3061 static Lisp_Object
|
|
3062 accessible_keymaps_keymap_mapper (Lisp_Object thismap, void *arg)
|
|
3063 {
|
|
3064 /* This function can GC */
|
185
|
3065 struct accessible_keymaps_closure *closure =
|
|
3066 (struct accessible_keymaps_closure *) arg;
|
0
|
3067 Lisp_Object submaps = keymap_submaps (thismap);
|
|
3068
|
|
3069 for (; !NILP (submaps); submaps = XCDR (submaps))
|
|
3070 {
|
|
3071 accessible_keymaps_mapper_1 (XCAR (XCAR (submaps)),
|
|
3072 XCDR (XCAR (submaps)),
|
|
3073 0,
|
|
3074 closure);
|
|
3075 }
|
173
|
3076 return Qnil;
|
0
|
3077 }
|
|
3078
|
|
3079
|
20
|
3080 DEFUN ("accessible-keymaps", Faccessible_keymaps, 1, 2, 0, /*
|
185
|
3081 Find all keymaps accessible via prefix characters from KEYMAP.
|
0
|
3082 Returns a list of elements of the form (KEYS . MAP), where the sequence
|
185
|
3083 KEYS starting from KEYMAP gets you to MAP. These elements are ordered
|
|
3084 so that the KEYS increase in length. The first element is ([] . KEYMAP).
|
0
|
3085 An optional argument PREFIX, if non-nil, should be a key sequence;
|
|
3086 then the value includes only maps for prefixes that start with PREFIX.
|
20
|
3087 */
|
185
|
3088 (keymap, prefix))
|
0
|
3089 {
|
|
3090 /* This function can GC */
|
|
3091 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
|
|
3092 Lisp_Object accessible_keymaps = Qnil;
|
|
3093 struct accessible_keymaps_closure c;
|
|
3094 c.tail = Qnil;
|
185
|
3095 GCPRO4 (accessible_keymaps, c.tail, prefix, keymap);
|
0
|
3096
|
412
|
3097 retry:
|
398
|
3098 keymap = get_keymap (keymap, 1, 1);
|
0
|
3099 if (NILP (prefix))
|
412
|
3100 prefix = make_vector (0, Qnil);
|
|
3101 else if (!VECTORP (prefix) || STRINGP (prefix))
|
0
|
3102 {
|
412
|
3103 prefix = wrong_type_argument (Qarrayp, prefix);
|
|
3104 goto retry;
|
0
|
3105 }
|
412
|
3106 else
|
0
|
3107 {
|
|
3108 int len = XINT (Flength (prefix));
|
412
|
3109 Lisp_Object def = Flookup_key (keymap, prefix, Qnil);
|
0
|
3110 Lisp_Object p;
|
|
3111 int iii;
|
|
3112 struct gcpro ngcpro1;
|
|
3113
|
|
3114 def = get_keymap (def, 0, 1);
|
|
3115 if (!KEYMAPP (def))
|
|
3116 goto RETURN;
|
|
3117
|
185
|
3118 keymap = def;
|
0
|
3119 p = make_vector (len, Qnil);
|
|
3120 NGCPRO1 (p);
|
|
3121 for (iii = 0; iii < len; iii++)
|
|
3122 {
|
|
3123 struct key_data key;
|
|
3124 define_key_parser (Faref (prefix, make_int (iii)), &key);
|
173
|
3125 XVECTOR_DATA (p)[iii] = make_key_description (&key, 1);
|
0
|
3126 }
|
|
3127 NUNGCPRO;
|
|
3128 prefix = p;
|
|
3129 }
|
185
|
3130
|
|
3131 accessible_keymaps = list1 (Fcons (prefix, keymap));
|
0
|
3132
|
412
|
3133 /* For each map in the list maps,
|
|
3134 look at any other maps it points to
|
|
3135 and stick them at the end if they are not already in the list */
|
0
|
3136
|
|
3137 for (c.tail = accessible_keymaps;
|
|
3138 !NILP (c.tail);
|
|
3139 c.tail = XCDR (c.tail))
|
|
3140 {
|
|
3141 Lisp_Object thismap = Fcdr (Fcar (c.tail));
|
|
3142 CHECK_KEYMAP (thismap);
|
|
3143 traverse_keymaps (thismap, Qnil,
|
|
3144 accessible_keymaps_keymap_mapper, &c);
|
|
3145 }
|
|
3146 RETURN:
|
|
3147 UNGCPRO;
|
173
|
3148 return accessible_keymaps;
|
0
|
3149 }
|
|
3150
|
|
3151
|
|
3152
|
|
3153 /************************************************************************/
|
|
3154 /* Pretty descriptions of key sequences */
|
|
3155 /************************************************************************/
|
|
3156
|
20
|
3157 DEFUN ("key-description", Fkey_description, 1, 1, 0, /*
|
0
|
3158 Return a pretty description of key-sequence KEYS.
|
185
|
3159 Control characters turn into "C-foo" sequences, meta into "M-foo",
|
|
3160 spaces are put between sequence elements, etc...
|
20
|
3161 */
|
|
3162 (keys))
|
0
|
3163 {
|
70
|
3164 if (CHAR_OR_CHAR_INTP (keys) || CONSP (keys) || SYMBOLP (keys)
|
|
3165 || EVENTP (keys))
|
0
|
3166 {
|
|
3167 return Fsingle_key_description (keys);
|
|
3168 }
|
|
3169 else if (VECTORP (keys) ||
|
|
3170 STRINGP (keys))
|
|
3171 {
|
|
3172 Lisp_Object string = Qnil;
|
|
3173 /* Lisp_Object sep = Qnil; */
|
|
3174 int size = XINT (Flength (keys));
|
|
3175 int i;
|
|
3176
|
|
3177 for (i = 0; i < size; i++)
|
|
3178 {
|
|
3179 Lisp_Object s2 = Fsingle_key_description
|
424
|
3180 (STRINGP (keys)
|
|
3181 ? make_char (string_char (XSTRING (keys), i))
|
|
3182 : XVECTOR_DATA (keys)[i]);
|
0
|
3183
|
|
3184 if (i == 0)
|
|
3185 string = s2;
|
|
3186 else
|
|
3187 {
|
|
3188 /* if (NILP (sep)) Lisp_Object sep = build_string (" ") */;
|
|
3189 string = concat2 (string, concat2 (Vsingle_space_string, s2));
|
|
3190 }
|
|
3191 }
|
173
|
3192 return string;
|
0
|
3193 }
|
|
3194 return Fkey_description (wrong_type_argument (Qsequencep, keys));
|
|
3195 }
|
|
3196
|
20
|
3197 DEFUN ("single-key-description", Fsingle_key_description, 1, 1, 0, /*
|
0
|
3198 Return a pretty description of command character KEY.
|
|
3199 Control characters turn into C-whatever, etc.
|
|
3200 This differs from `text-char-description' in that it returns a description
|
|
3201 of a key read from the user rather than a character from a buffer.
|
20
|
3202 */
|
|
3203 (key))
|
0
|
3204 {
|
|
3205 if (SYMBOLP (key))
|
|
3206 key = Fcons (key, Qnil); /* sleaze sleaze */
|
|
3207
|
70
|
3208 if (EVENTP (key) || CHAR_OR_CHAR_INTP (key))
|
0
|
3209 {
|
|
3210 char buf [255];
|
|
3211 if (!EVENTP (key))
|
|
3212 {
|
412
|
3213 struct Lisp_Event event;
|
0
|
3214 event.event_type = empty_event;
|
|
3215 CHECK_CHAR_COERCE_INT (key);
|
|
3216 character_to_event (XCHAR (key), &event,
|
263
|
3217 XCONSOLE (Vselected_console), 0, 1);
|
0
|
3218 format_event_object (buf, &event, 1);
|
|
3219 }
|
|
3220 else
|
|
3221 format_event_object (buf, XEVENT (key), 1);
|
173
|
3222 return build_string (buf);
|
0
|
3223 }
|
|
3224
|
|
3225 if (CONSP (key))
|
|
3226 {
|
|
3227 char buf[255];
|
|
3228 char *bufp = buf;
|
|
3229 Lisp_Object rest;
|
|
3230 buf[0] = 0;
|
|
3231 LIST_LOOP (rest, key)
|
|
3232 {
|
|
3233 Lisp_Object keysym = XCAR (rest);
|
|
3234 if (EQ (keysym, Qcontrol)) strcpy (bufp, "C-"), bufp += 2;
|
|
3235 else if (EQ (keysym, Qctrl)) strcpy (bufp, "C-"), bufp += 2;
|
|
3236 else if (EQ (keysym, Qmeta)) strcpy (bufp, "M-"), bufp += 2;
|
|
3237 else if (EQ (keysym, Qsuper)) strcpy (bufp, "S-"), bufp += 2;
|
|
3238 else if (EQ (keysym, Qhyper)) strcpy (bufp, "H-"), bufp += 2;
|
|
3239 else if (EQ (keysym, Qalt)) strcpy (bufp, "A-"), bufp += 2;
|
|
3240 else if (EQ (keysym, Qshift)) strcpy (bufp, "Sh-"), bufp += 3;
|
70
|
3241 else if (CHAR_OR_CHAR_INTP (keysym))
|
|
3242 {
|
|
3243 bufp += set_charptr_emchar ((Bufbyte *) bufp,
|
|
3244 XCHAR_OR_CHAR_INT (keysym));
|
|
3245 *bufp = 0;
|
|
3246 }
|
0
|
3247 else
|
|
3248 {
|
|
3249 CHECK_SYMBOL (keysym);
|
|
3250 #if 0 /* This is bogus */
|
185
|
3251 if (EQ (keysym, QKlinefeed)) strcpy (bufp, "LFD");
|
|
3252 else if (EQ (keysym, QKtab)) strcpy (bufp, "TAB");
|
|
3253 else if (EQ (keysym, QKreturn)) strcpy (bufp, "RET");
|
|
3254 else if (EQ (keysym, QKescape)) strcpy (bufp, "ESC");
|
|
3255 else if (EQ (keysym, QKdelete)) strcpy (bufp, "DEL");
|
|
3256 else if (EQ (keysym, QKspace)) strcpy (bufp, "SPC");
|
|
3257 else if (EQ (keysym, QKbackspace)) strcpy (bufp, "BS");
|
0
|
3258 else
|
|
3259 #endif
|
|
3260 strcpy (bufp, (char *) string_data (XSYMBOL (keysym)->name));
|
|
3261 if (!NILP (XCDR (rest)))
|
380
|
3262 signal_simple_error ("Invalid key description",
|
0
|
3263 key);
|
|
3264 }
|
|
3265 }
|
|
3266 return build_string (buf);
|
|
3267 }
|
|
3268 return Fsingle_key_description
|
|
3269 (wrong_type_argument (intern ("char-or-event-p"), key));
|
|
3270 }
|
|
3271
|
20
|
3272 DEFUN ("text-char-description", Ftext_char_description, 1, 1, 0, /*
|
0
|
3273 Return a pretty description of file-character CHR.
|
185
|
3274 Unprintable characters turn into "^char" or \\NNN, depending on the value
|
0
|
3275 of the `ctl-arrow' variable.
|
|
3276 This differs from `single-key-description' in that it returns a description
|
|
3277 of a character from a buffer rather than a key read from the user.
|
20
|
3278 */
|
|
3279 (chr))
|
0
|
3280 {
|
|
3281 Bufbyte buf[200];
|
|
3282 Bufbyte *p;
|
272
|
3283 Emchar c;
|
0
|
3284 Lisp_Object ctl_arrow = current_buffer->ctl_arrow;
|
|
3285 int ctl_p = !NILP (ctl_arrow);
|
70
|
3286 Emchar printable_min = (CHAR_OR_CHAR_INTP (ctl_arrow)
|
|
3287 ? XCHAR_OR_CHAR_INT (ctl_arrow)
|
|
3288 : ((EQ (ctl_arrow, Qt) || NILP (ctl_arrow))
|
|
3289 ? 256 : 160));
|
0
|
3290
|
|
3291 if (EVENTP (chr))
|
|
3292 {
|
|
3293 Lisp_Object ch = Fevent_to_character (chr, Qnil, Qnil, Qt);
|
|
3294 if (NILP (ch))
|
|
3295 return
|
|
3296 signal_simple_continuable_error
|
|
3297 ("character has no ASCII equivalent", Fcopy_event (chr, Qnil));
|
|
3298 chr = ch;
|
|
3299 }
|
|
3300
|
|
3301 CHECK_CHAR_COERCE_INT (chr);
|
|
3302
|
|
3303 c = XCHAR (chr);
|
|
3304 p = buf;
|
|
3305
|
|
3306 if (c >= printable_min)
|
|
3307 {
|
|
3308 p += set_charptr_emchar (p, c);
|
|
3309 }
|
|
3310 else if (c < 040 && ctl_p)
|
|
3311 {
|
|
3312 *p++ = '^';
|
|
3313 *p++ = c + 64; /* 'A' - 1 */
|
|
3314 }
|
|
3315 else if (c == 0177)
|
|
3316 {
|
|
3317 *p++ = '^';
|
|
3318 *p++ = '?';
|
|
3319 }
|
|
3320 else if (c >= 0200 || c < 040)
|
|
3321 {
|
|
3322 *p++ = '\\';
|
70
|
3323 #ifdef MULE
|
|
3324 /* !!#### This syntax is not readable. It will
|
|
3325 be interpreted as a 3-digit octal number rather
|
|
3326 than a 7-digit octal number. */
|
|
3327 if (c >= 0400)
|
|
3328 {
|
|
3329 *p++ = '0' + ((c & 07000000) >> 18);
|
|
3330 *p++ = '0' + ((c & 0700000) >> 15);
|
|
3331 *p++ = '0' + ((c & 070000) >> 12);
|
|
3332 *p++ = '0' + ((c & 07000) >> 9);
|
|
3333 }
|
|
3334 #endif
|
0
|
3335 *p++ = '0' + ((c & 0700) >> 6);
|
|
3336 *p++ = '0' + ((c & 0070) >> 3);
|
|
3337 *p++ = '0' + ((c & 0007));
|
|
3338 }
|
|
3339 else
|
|
3340 {
|
|
3341 p += set_charptr_emchar (p, c);
|
|
3342 }
|
|
3343
|
|
3344 *p = 0;
|
|
3345 return build_string ((char *) buf);
|
|
3346 }
|
|
3347
|
|
3348
|
|
3349 /************************************************************************/
|
|
3350 /* where-is (mapping bindings to keys) */
|
|
3351 /************************************************************************/
|
|
3352
|
|
3353 static Lisp_Object
|
|
3354 where_is_internal (Lisp_Object definition, Lisp_Object *maps, int nmaps,
|
|
3355 Lisp_Object firstonly, char *target_buffer);
|
|
3356
|
20
|
3357 DEFUN ("where-is-internal", Fwhere_is_internal, 1, 5, 0, /*
|
0
|
3358 Return list of keys that invoke DEFINITION in KEYMAPS.
|
|
3359 KEYMAPS can be either a keymap (meaning search in that keymap and the
|
|
3360 current global keymap) or a list of keymaps (meaning search in exactly
|
|
3361 those keymaps and no others). If KEYMAPS is nil, search in the currently
|
|
3362 applicable maps for EVENT-OR-KEYS (this is equivalent to specifying
|
|
3363 `(current-keymaps EVENT-OR-KEYS)' as the argument to KEYMAPS).
|
|
3364
|
|
3365 If optional 3rd arg FIRSTONLY is non-nil, return a vector representing
|
|
3366 the first key sequence found, rather than a list of all possible key
|
|
3367 sequences.
|
|
3368
|
|
3369 If optional 4th arg NOINDIRECT is non-nil, don't follow indirections
|
|
3370 to other keymaps or slots. This makes it possible to search for an
|
|
3371 indirect definition itself.
|
20
|
3372 */
|
|
3373 (definition, keymaps, firstonly, noindirect, event_or_keys))
|
0
|
3374 {
|
|
3375 /* This function can GC */
|
|
3376 Lisp_Object maps[100];
|
|
3377 Lisp_Object *gubbish = maps;
|
|
3378 int nmaps;
|
|
3379
|
|
3380 /* Get keymaps as an array */
|
|
3381 if (NILP (keymaps))
|
|
3382 {
|
|
3383 nmaps = get_relevant_keymaps (event_or_keys, countof (maps),
|
|
3384 gubbish);
|
|
3385 if (nmaps > countof (maps))
|
|
3386 {
|
185
|
3387 gubbish = alloca_array (Lisp_Object, nmaps);
|
0
|
3388 nmaps = get_relevant_keymaps (event_or_keys, nmaps, gubbish);
|
|
3389 }
|
|
3390 }
|
|
3391 else if (CONSP (keymaps))
|
|
3392 {
|
|
3393 Lisp_Object rest;
|
|
3394 int i;
|
|
3395
|
|
3396 nmaps = XINT (Flength (keymaps));
|
|
3397 if (nmaps > countof (maps))
|
|
3398 {
|
185
|
3399 gubbish = alloca_array (Lisp_Object, nmaps);
|
0
|
3400 }
|
|
3401 for (rest = keymaps, i = 0; !NILP (rest);
|
|
3402 rest = XCDR (keymaps), i++)
|
|
3403 {
|
|
3404 gubbish[i] = get_keymap (XCAR (keymaps), 1, 1);
|
|
3405 }
|
|
3406 }
|
|
3407 else
|
|
3408 {
|
|
3409 nmaps = 1;
|
|
3410 gubbish[0] = get_keymap (keymaps, 1, 1);
|
|
3411 if (!EQ (gubbish[0], Vcurrent_global_map))
|
|
3412 {
|
|
3413 gubbish[1] = Vcurrent_global_map;
|
|
3414 nmaps++;
|
|
3415 }
|
|
3416 }
|
185
|
3417
|
0
|
3418 return where_is_internal (definition, gubbish, nmaps, firstonly, 0);
|
|
3419 }
|
|
3420
|
|
3421 /* This function is like
|
|
3422 (key-description (where-is-internal definition nil t))
|
185
|
3423 except that it writes its output into a (char *) buffer that you
|
0
|
3424 provide; it doesn't cons (or allocate memory) at all, so it's
|
|
3425 very fast. This is used by menubar.c.
|
|
3426 */
|
|
3427 void
|
|
3428 where_is_to_char (Lisp_Object definition, char *buffer)
|
|
3429 {
|
|
3430 /* This function can GC */
|
|
3431 Lisp_Object maps[100];
|
|
3432 Lisp_Object *gubbish = maps;
|
|
3433 int nmaps;
|
|
3434
|
|
3435 /* Get keymaps as an array */
|
|
3436 nmaps = get_relevant_keymaps (Qnil, countof (maps), gubbish);
|
|
3437 if (nmaps > countof (maps))
|
|
3438 {
|
185
|
3439 gubbish = alloca_array (Lisp_Object, nmaps);
|
0
|
3440 nmaps = get_relevant_keymaps (Qnil, nmaps, gubbish);
|
|
3441 }
|
|
3442
|
|
3443 buffer[0] = 0;
|
|
3444 where_is_internal (definition, maps, nmaps, Qt, buffer);
|
|
3445 }
|
|
3446
|
|
3447
|
185
|
3448 static Lisp_Object
|
0
|
3449 raw_keys_to_keys (struct key_data *keys, int count)
|
|
3450 {
|
|
3451 Lisp_Object result = make_vector (count, Qnil);
|
|
3452 while (count--)
|
173
|
3453 XVECTOR_DATA (result) [count] = make_key_description (&(keys[count]), 1);
|
|
3454 return result;
|
0
|
3455 }
|
|
3456
|
|
3457
|
|
3458 static void
|
|
3459 format_raw_keys (struct key_data *keys, int count, char *buf)
|
|
3460 {
|
|
3461 int i;
|
412
|
3462 struct Lisp_Event event;
|
0
|
3463 event.event_type = key_press_event;
|
|
3464 event.channel = Vselected_console;
|
|
3465 for (i = 0; i < count; i++)
|
|
3466 {
|
|
3467 event.event.key.keysym = keys[i].keysym;
|
|
3468 event.event.key.modifiers = keys[i].modifiers;
|
|
3469 format_event_object (buf, &event, 1);
|
|
3470 buf += strlen (buf);
|
|
3471 if (i < count-1)
|
|
3472 buf[0] = ' ', buf++;
|
|
3473 }
|
|
3474 }
|
|
3475
|
|
3476
|
|
3477 /* definition is the thing to look for.
|
|
3478 map is a keymap.
|
|
3479 shadow is an array of shadow_count keymaps; if there is a different
|
|
3480 binding in any of the keymaps of a key that we are considering
|
|
3481 returning, then we reconsider.
|
|
3482 firstonly means give up after finding the first match;
|
|
3483 keys_so_far and modifiers_so_far describe which map we're looking in;
|
|
3484 If we're in the "meta" submap of the map that "C-x 4" is bound to,
|
|
3485 then keys_so_far will be {(control x), \4}, and modifiers_so_far
|
412
|
3486 will be MOD_META. That is, keys_so_far is the chain of keys that we
|
0
|
3487 have followed, and modifiers_so_far_so_far is the bits (partial keys)
|
|
3488 beyond that.
|
185
|
3489
|
0
|
3490 (keys_so_far is a global buffer and the keys_count arg says how much
|
|
3491 of it we're currently interested in.)
|
185
|
3492
|
0
|
3493 If target_buffer is provided, then we write a key-description into it,
|
|
3494 to avoid consing a string. This only works with firstonly on.
|
|
3495 */
|
|
3496
|
|
3497 struct where_is_closure
|
|
3498 {
|
|
3499 Lisp_Object definition;
|
|
3500 Lisp_Object *shadow;
|
|
3501 int shadow_count;
|
|
3502 int firstonly;
|
|
3503 int keys_count;
|
412
|
3504 unsigned int modifiers_so_far;
|
0
|
3505 char *target_buffer;
|
|
3506 struct key_data *keys_so_far;
|
|
3507 int keys_so_far_total_size;
|
|
3508 int keys_so_far_malloced;
|
|
3509 };
|
|
3510
|
|
3511 static Lisp_Object where_is_recursive_mapper (Lisp_Object map, void *arg);
|
|
3512
|
|
3513 static Lisp_Object
|
|
3514 where_is_recursive_mapper (Lisp_Object map, void *arg)
|
|
3515 {
|
|
3516 /* This function can GC */
|
185
|
3517 struct where_is_closure *c = (struct where_is_closure *) arg;
|
0
|
3518 Lisp_Object definition = c->definition;
|
412
|
3519 CONST int firstonly = c->firstonly;
|
|
3520 CONST unsigned int keys_count = c->keys_count;
|
|
3521 CONST unsigned int modifiers_so_far = c->modifiers_so_far;
|
0
|
3522 char *target_buffer = c->target_buffer;
|
|
3523 Lisp_Object keys = Fgethash (definition,
|
|
3524 XKEYMAP (map)->inverse_table,
|
|
3525 Qnil);
|
|
3526 Lisp_Object submaps;
|
|
3527 Lisp_Object result = Qnil;
|
|
3528
|
|
3529 if (!NILP (keys))
|
|
3530 {
|
185
|
3531 /* One or more keys in this map match the definition we're looking for.
|
|
3532 Verify that these bindings aren't shadowed by other bindings
|
0
|
3533 in the shadow maps. Either nil or number as value from
|
185
|
3534 raw_lookup_key() means undefined. */
|
0
|
3535 struct key_data *so_far = c->keys_so_far;
|
|
3536
|
|
3537 for (;;) /* loop over all keys that match */
|
|
3538 {
|
424
|
3539 Lisp_Object k = CONSP (keys) ? XCAR (keys) : keys;
|
0
|
3540 int i;
|
185
|
3541
|
0
|
3542 so_far [keys_count].keysym = k;
|
|
3543 so_far [keys_count].modifiers = modifiers_so_far;
|
|
3544
|
|
3545 /* now loop over all shadow maps */
|
|
3546 for (i = 0; i < c->shadow_count; i++)
|
|
3547 {
|
|
3548 Lisp_Object shadowed = raw_lookup_key (c->shadow[i],
|
|
3549 so_far,
|
185
|
3550 keys_count + 1,
|
0
|
3551 0, 1);
|
|
3552
|
|
3553 if (NILP (shadowed) || CHARP (shadowed) ||
|
|
3554 EQ (shadowed, definition))
|
|
3555 continue; /* we passed this test; it's not shadowed here. */
|
|
3556 else
|
|
3557 /* ignore this key binding, since it actually has a
|
|
3558 different binding in a shadowing map */
|
|
3559 goto c_doesnt_have_proper_loop_exit_statements;
|
|
3560 }
|
|
3561
|
|
3562 /* OK, the key is for real */
|
|
3563 if (target_buffer)
|
|
3564 {
|
|
3565 if (!firstonly) abort ();
|
|
3566 format_raw_keys (so_far, keys_count + 1, target_buffer);
|
173
|
3567 return make_int (1);
|
0
|
3568 }
|
|
3569 else if (firstonly)
|
|
3570 return raw_keys_to_keys (so_far, keys_count + 1);
|
|
3571 else
|
|
3572 result = Fcons (raw_keys_to_keys (so_far, keys_count + 1),
|
|
3573 result);
|
|
3574
|
|
3575 c_doesnt_have_proper_loop_exit_statements:
|
|
3576 /* now on to the next matching key ... */
|
|
3577 if (!CONSP (keys)) break;
|
|
3578 keys = XCDR (keys);
|
|
3579 }
|
|
3580 }
|
|
3581
|
|
3582 /* Now search the sub-keymaps of this map.
|
185
|
3583 If we're in "firstonly" mode and have already found one, this
|
0
|
3584 point is not reached. If we get one from lower down, either
|
|
3585 return it immediately (in firstonly mode) or tack it onto the
|
|
3586 end of the ones we've gotten so far.
|
|
3587 */
|
|
3588 for (submaps = keymap_submaps (map);
|
|
3589 !NILP (submaps);
|
|
3590 submaps = XCDR (submaps))
|
|
3591 {
|
|
3592 Lisp_Object key = XCAR (XCAR (submaps));
|
|
3593 Lisp_Object submap = XCDR (XCAR (submaps));
|
412
|
3594 unsigned int lower_modifiers;
|
0
|
3595 int lower_keys_count = keys_count;
|
412
|
3596 unsigned int bucky;
|
0
|
3597
|
185
|
3598 submap = get_keymap (submap, 0, 0);
|
0
|
3599
|
|
3600 if (EQ (submap, map))
|
|
3601 /* Arrgh! Some loser has introduced a loop... */
|
|
3602 continue;
|
|
3603
|
|
3604 /* If this is not a keymap, then that's probably because someone
|
|
3605 did an `fset' of a symbol that used to point to a map such that
|
|
3606 it no longer does. Sigh. Ignore this, and invalidate the cache
|
|
3607 so that it doesn't happen to us next time too.
|
|
3608 */
|
|
3609 if (NILP (submap))
|
|
3610 {
|
|
3611 XKEYMAP (map)->sub_maps_cache = Qt;
|
|
3612 continue;
|
|
3613 }
|
|
3614
|
|
3615 /* If the map is a "bucky" map, then add a bit to the
|
|
3616 modifiers_so_far list.
|
|
3617 Otherwise, add a new raw_key onto the end of keys_so_far.
|
|
3618 */
|
|
3619 bucky = MODIFIER_HASH_KEY_BITS (key);
|
|
3620 if (bucky != 0)
|
|
3621 lower_modifiers = (modifiers_so_far | bucky);
|
|
3622 else
|
|
3623 {
|
|
3624 struct key_data *so_far = c->keys_so_far;
|
|
3625 lower_modifiers = 0;
|
|
3626 so_far [lower_keys_count].keysym = key;
|
|
3627 so_far [lower_keys_count].modifiers = modifiers_so_far;
|
|
3628 lower_keys_count++;
|
|
3629 }
|
|
3630
|
|
3631 if (lower_keys_count >= c->keys_so_far_total_size)
|
|
3632 {
|
|
3633 int size = lower_keys_count + 50;
|
|
3634 if (! c->keys_so_far_malloced)
|
|
3635 {
|
185
|
3636 struct key_data *new = xnew_array (struct key_data, size);
|
412
|
3637 memcpy ((void *)new, (CONST void *)c->keys_so_far,
|
0
|
3638 c->keys_so_far_total_size * sizeof (struct key_data));
|
|
3639 }
|
|
3640 else
|
185
|
3641 XREALLOC_ARRAY (c->keys_so_far, struct key_data, size);
|
0
|
3642
|
|
3643 c->keys_so_far_total_size = size;
|
|
3644 c->keys_so_far_malloced = 1;
|
|
3645 }
|
|
3646
|
|
3647 {
|
|
3648 Lisp_Object lower;
|
|
3649
|
|
3650 c->keys_count = lower_keys_count;
|
|
3651 c->modifiers_so_far = lower_modifiers;
|
|
3652
|
185
|
3653 lower = traverse_keymaps (submap, Qnil, where_is_recursive_mapper, c);
|
|
3654
|
0
|
3655 c->keys_count = keys_count;
|
|
3656 c->modifiers_so_far = modifiers_so_far;
|
|
3657
|
|
3658 if (!firstonly)
|
|
3659 result = nconc2 (lower, result);
|
|
3660 else if (!NILP (lower))
|
173
|
3661 return lower;
|
0
|
3662 }
|
|
3663 }
|
173
|
3664 return result;
|
0
|
3665 }
|
|
3666
|
|
3667
|
|
3668 static Lisp_Object
|
|
3669 where_is_internal (Lisp_Object definition, Lisp_Object *maps, int nmaps,
|
|
3670 Lisp_Object firstonly, char *target_buffer)
|
|
3671 {
|
|
3672 /* This function can GC */
|
|
3673 Lisp_Object result = Qnil;
|
|
3674 int i;
|
|
3675 struct key_data raw[20];
|
|
3676 struct where_is_closure c;
|
|
3677
|
|
3678 c.definition = definition;
|
|
3679 c.shadow = maps;
|
|
3680 c.firstonly = !NILP (firstonly);
|
|
3681 c.target_buffer = target_buffer;
|
|
3682 c.keys_so_far = raw;
|
|
3683 c.keys_so_far_total_size = countof (raw);
|
|
3684 c.keys_so_far_malloced = 0;
|
|
3685
|
|
3686 /* Loop over each of the maps, accumulating the keys found.
|
|
3687 For each map searched, all previous maps shadow this one
|
|
3688 so that bogus keys aren't listed. */
|
|
3689 for (i = 0; i < nmaps; i++)
|
|
3690 {
|
|
3691 Lisp_Object this_result;
|
|
3692 c.shadow_count = i;
|
|
3693 /* Reset the things set in each iteration */
|
|
3694 c.keys_count = 0;
|
|
3695 c.modifiers_so_far = 0;
|
|
3696
|
|
3697 this_result = traverse_keymaps (maps[i], Qnil, where_is_recursive_mapper,
|
|
3698 &c);
|
|
3699 if (!NILP (firstonly))
|
|
3700 {
|
|
3701 result = this_result;
|
|
3702 if (!NILP (result))
|
|
3703 break;
|
|
3704 }
|
|
3705 else
|
|
3706 result = nconc2 (this_result, result);
|
|
3707 }
|
|
3708
|
|
3709 if (NILP (firstonly))
|
|
3710 result = Fnreverse (result);
|
|
3711
|
|
3712 if (c.keys_so_far_malloced)
|
|
3713 xfree (c.keys_so_far);
|
173
|
3714 return result;
|
0
|
3715 }
|
|
3716
|
|
3717
|
|
3718 /************************************************************************/
|
|
3719 /* Describing keymaps */
|
|
3720 /************************************************************************/
|
|
3721
|
20
|
3722 DEFUN ("describe-bindings-internal", Fdescribe_bindings_internal, 1, 5, 0, /*
|
0
|
3723 Insert a list of all defined keys and their definitions in MAP.
|
185
|
3724 Optional second argument ALL says whether to include even "uninteresting"
|
0
|
3725 definitions (ie symbols with a non-nil `suppress-keymap' property.
|
|
3726 Third argument SHADOW is a list of keymaps whose bindings shadow those
|
|
3727 of map; if a binding is present in any shadowing map, it is not printed.
|
|
3728 Fourth argument PREFIX, if non-nil, should be a key sequence;
|
|
3729 only bindings which start with that key sequence will be printed.
|
|
3730 Fifth argument MOUSE-ONLY-P says to only print bindings for mouse clicks.
|
20
|
3731 */
|
|
3732 (map, all, shadow, prefix, mouse_only_p))
|
0
|
3733 {
|
|
3734 /* This function can GC */
|
219
|
3735
|
|
3736 /* #### At some point, this function should be changed to accept a
|
|
3737 BUFFER argument. Currently, the BUFFER argument to
|
|
3738 describe_map_tree is being used only internally. */
|
0
|
3739 describe_map_tree (map, NILP (all), shadow, prefix,
|
219
|
3740 !NILP (mouse_only_p), Fcurrent_buffer ());
|
173
|
3741 return Qnil;
|
0
|
3742 }
|
|
3743
|
|
3744
|
380
|
3745 /* Insert a description of the key bindings in STARTMAP,
|
0
|
3746 followed by those of all maps reachable through STARTMAP.
|
|
3747 If PARTIAL is nonzero, omit certain "uninteresting" commands
|
|
3748 (such as `undefined').
|
|
3749 If SHADOW is non-nil, it is a list of other maps;
|
|
3750 don't mention keys which would be shadowed by any of them
|
185
|
3751 If PREFIX is non-nil, only list bindings which start with those keys.
|
0
|
3752 */
|
|
3753
|
|
3754 void
|
|
3755 describe_map_tree (Lisp_Object startmap, int partial, Lisp_Object shadow,
|
219
|
3756 Lisp_Object prefix, int mice_only_p, Lisp_Object buffer)
|
0
|
3757 {
|
|
3758 /* This function can GC */
|
|
3759 Lisp_Object maps = Qnil;
|
|
3760 struct gcpro gcpro1, gcpro2; /* get_keymap may autoload */
|
|
3761 GCPRO2 (maps, shadow);
|
|
3762
|
|
3763 maps = Faccessible_keymaps (startmap, prefix);
|
|
3764
|
|
3765 for (; !NILP (maps); maps = Fcdr (maps))
|
|
3766 {
|
|
3767 Lisp_Object sub_shadow = Qnil;
|
|
3768 Lisp_Object elt = Fcar (maps);
|
185
|
3769 Lisp_Object tail;
|
0
|
3770 int no_prefix = (VECTORP (Fcar (elt))
|
|
3771 && XINT (Flength (Fcar (elt))) == 0);
|
|
3772 struct gcpro ngcpro1, ngcpro2, ngcpro3;
|
|
3773 NGCPRO3 (sub_shadow, elt, tail);
|
|
3774
|
185
|
3775 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
|
0
|
3776 {
|
185
|
3777 Lisp_Object shmap = XCAR (tail);
|
0
|
3778
|
|
3779 /* If the sequence by which we reach this keymap is zero-length,
|
|
3780 then the shadow maps for this keymap are just SHADOW. */
|
|
3781 if (no_prefix)
|
|
3782 ;
|
|
3783 /* If the sequence by which we reach this keymap actually has
|
|
3784 some elements, then the sequence's definition in SHADOW is
|
|
3785 what we should use. */
|
|
3786 else
|
|
3787 {
|
185
|
3788 shmap = Flookup_key (shmap, Fcar (elt), Qt);
|
|
3789 if (CHARP (shmap))
|
|
3790 shmap = Qnil;
|
0
|
3791 }
|
|
3792
|
185
|
3793 if (!NILP (shmap))
|
0
|
3794 {
|
185
|
3795 Lisp_Object shm = get_keymap (shmap, 0, 1);
|
|
3796 /* If shmap is not nil and not a keymap, it completely
|
|
3797 shadows this map, so don't describe this map at all. */
|
0
|
3798 if (!KEYMAPP (shm))
|
|
3799 goto SKIP;
|
|
3800 sub_shadow = Fcons (shm, sub_shadow);
|
|
3801 }
|
|
3802 }
|
|
3803
|
|
3804 {
|
|
3805 /* Describe the contents of map MAP, assuming that this map
|
|
3806 itself is reached by the sequence of prefix keys KEYS (a vector).
|
|
3807 PARTIAL and SHADOW are as in `describe_map_tree'. */
|
|
3808 Lisp_Object keysdesc
|
|
3809 = ((!no_prefix)
|
|
3810 ? concat2 (Fkey_description (Fcar (elt)), Vsingle_space_string)
|
|
3811 : Qnil);
|
|
3812 describe_map (Fcdr (elt), keysdesc,
|
|
3813 describe_command,
|
|
3814 partial,
|
|
3815 sub_shadow,
|
219
|
3816 mice_only_p,
|
|
3817 buffer);
|
0
|
3818 }
|
|
3819 SKIP:
|
|
3820 NUNGCPRO;
|
|
3821 }
|
|
3822 UNGCPRO;
|
|
3823 }
|
|
3824
|
|
3825
|
|
3826 static void
|
219
|
3827 describe_command (Lisp_Object definition, Lisp_Object buffer)
|
0
|
3828 {
|
|
3829 /* This function can GC */
|
|
3830 int keymapp = !NILP (Fkeymapp (definition));
|
219
|
3831 struct gcpro gcpro1;
|
|
3832 GCPRO1 (definition);
|
|
3833
|
0
|
3834 Findent_to (make_int (16), make_int (3), buffer);
|
|
3835 if (keymapp)
|
|
3836 buffer_insert_c_string (XBUFFER (buffer), "<< ");
|
|
3837
|
|
3838 if (SYMBOLP (definition))
|
|
3839 {
|
|
3840 buffer_insert1 (XBUFFER (buffer), Fsymbol_name (definition));
|
|
3841 }
|
|
3842 else if (STRINGP (definition) || VECTORP (definition))
|
|
3843 {
|
|
3844 buffer_insert_c_string (XBUFFER (buffer), "Kbd Macro: ");
|
|
3845 buffer_insert1 (XBUFFER (buffer), Fkey_description (definition));
|
|
3846 }
|
|
3847 else if (COMPILED_FUNCTIONP (definition))
|
|
3848 buffer_insert_c_string (XBUFFER (buffer), "Anonymous Compiled Function");
|
|
3849 else if (CONSP (definition) && EQ (XCAR (definition), Qlambda))
|
|
3850 buffer_insert_c_string (XBUFFER (buffer), "Anonymous Lambda");
|
|
3851 else if (KEYMAPP (definition))
|
|
3852 {
|
|
3853 Lisp_Object name = XKEYMAP (definition)->name;
|
|
3854 if (STRINGP (name) || (SYMBOLP (name) && !NILP (name)))
|
|
3855 {
|
|
3856 buffer_insert_c_string (XBUFFER (buffer), "Prefix command ");
|
185
|
3857 if (SYMBOLP (name)
|
0
|
3858 && EQ (find_symbol_value (name), definition))
|
|
3859 buffer_insert1 (XBUFFER (buffer), Fsymbol_name (name));
|
|
3860 else
|
|
3861 {
|
|
3862 buffer_insert1 (XBUFFER (buffer), Fprin1_to_string (name, Qnil));
|
|
3863 }
|
|
3864 }
|
|
3865 else
|
|
3866 buffer_insert_c_string (XBUFFER (buffer), "Prefix Command");
|
|
3867 }
|
|
3868 else
|
|
3869 buffer_insert_c_string (XBUFFER (buffer), "??");
|
|
3870
|
|
3871 if (keymapp)
|
|
3872 buffer_insert_c_string (XBUFFER (buffer), " >>");
|
|
3873 buffer_insert_c_string (XBUFFER (buffer), "\n");
|
|
3874 UNGCPRO;
|
|
3875 }
|
|
3876
|
|
3877 struct describe_map_closure
|
|
3878 {
|
|
3879 Lisp_Object *list; /* pointer to the list to update */
|
|
3880 Lisp_Object partial; /* whether to ignore suppressed commands */
|
|
3881 Lisp_Object shadow; /* list of maps shadowing this one */
|
|
3882 Lisp_Object self; /* this map */
|
|
3883 Lisp_Object self_root; /* this map, or some map that has this map as
|
|
3884 a parent. this is the base of the tree */
|
|
3885 int mice_only_p; /* whether we are to display only button bindings */
|
|
3886 };
|
|
3887
|
|
3888 struct describe_map_shadow_closure
|
|
3889 {
|
412
|
3890 CONST struct key_data *raw_key;
|
0
|
3891 Lisp_Object self;
|
|
3892 };
|
|
3893
|
|
3894 static Lisp_Object
|
|
3895 describe_map_mapper_shadow_search (Lisp_Object map, void *arg)
|
|
3896 {
|
185
|
3897 struct describe_map_shadow_closure *c =
|
|
3898 (struct describe_map_shadow_closure *) arg;
|
0
|
3899
|
|
3900 if (EQ (map, c->self))
|
173
|
3901 return Qzero; /* Not shadowed; terminate search */
|
185
|
3902
|
272
|
3903 return !NILP (keymap_lookup_directly (map,
|
|
3904 c->raw_key->keysym,
|
|
3905 c->raw_key->modifiers))
|
185
|
3906 ? Qt : Qnil;
|
0
|
3907 }
|
185
|
3908
|
0
|
3909
|
|
3910 static Lisp_Object
|
|
3911 keymap_lookup_inherited_mapper (Lisp_Object km, void *arg)
|
|
3912 {
|
185
|
3913 struct key_data *k = (struct key_data *) arg;
|
173
|
3914 return keymap_lookup_directly (km, k->keysym, k->modifiers);
|
0
|
3915 }
|
|
3916
|
|
3917
|
|
3918 static void
|
412
|
3919 describe_map_mapper (CONST struct key_data *key,
|
0
|
3920 Lisp_Object binding,
|
|
3921 void *describe_map_closure)
|
|
3922 {
|
|
3923 /* This function can GC */
|
185
|
3924 struct describe_map_closure *closure =
|
|
3925 (struct describe_map_closure *) describe_map_closure;
|
0
|
3926 Lisp_Object keysym = key->keysym;
|
412
|
3927 unsigned int modifiers = key->modifiers;
|
0
|
3928
|
380
|
3929 /* Don't mention suppressed commands. */
|
0
|
3930 if (SYMBOLP (binding)
|
|
3931 && !NILP (closure->partial)
|
|
3932 && !NILP (Fget (binding, closure->partial, Qnil)))
|
|
3933 return;
|
185
|
3934
|
0
|
3935 /* If we're only supposed to display mouse bindings and this isn't one,
|
|
3936 then bug out. */
|
|
3937 if (closure->mice_only_p &&
|
185
|
3938 (! (EQ (keysym, Qbutton0) ||
|
|
3939 EQ (keysym, Qbutton1) ||
|
|
3940 EQ (keysym, Qbutton2) ||
|
|
3941 EQ (keysym, Qbutton3) ||
|
|
3942 EQ (keysym, Qbutton4) ||
|
|
3943 EQ (keysym, Qbutton5) ||
|
|
3944 EQ (keysym, Qbutton6) ||
|
215
|
3945 EQ (keysym, Qbutton7) ||
|
|
3946 EQ (keysym, Qbutton0up) ||
|
|
3947 EQ (keysym, Qbutton1up) ||
|
|
3948 EQ (keysym, Qbutton2up) ||
|
|
3949 EQ (keysym, Qbutton3up) ||
|
|
3950 EQ (keysym, Qbutton4up) ||
|
|
3951 EQ (keysym, Qbutton5up) ||
|
|
3952 EQ (keysym, Qbutton6up) ||
|
|
3953 EQ (keysym, Qbutton7up))))
|
0
|
3954 return;
|
|
3955
|
|
3956 /* If this command in this map is shadowed by some other map, ignore it. */
|
|
3957 {
|
|
3958 Lisp_Object tail;
|
|
3959
|
|
3960 for (tail = closure->shadow; CONSP (tail); tail = XCDR (tail))
|
|
3961 {
|
|
3962 QUIT;
|
|
3963 if (!NILP (traverse_keymaps (XCAR (tail), Qnil,
|
|
3964 keymap_lookup_inherited_mapper,
|
|
3965 /* Cast to discard `const' */
|
|
3966 (void *)key)))
|
|
3967 return;
|
|
3968 }
|
|
3969 }
|
|
3970
|
|
3971 /* If this key is in some map of which this map is a parent, then ignore
|
|
3972 it (in that case, it has been shadowed).
|
|
3973 */
|
|
3974 {
|
|
3975 Lisp_Object sh;
|
|
3976 struct describe_map_shadow_closure c;
|
|
3977 c.raw_key = key;
|
|
3978 c.self = closure->self;
|
|
3979
|
|
3980 sh = traverse_keymaps (closure->self_root, Qnil,
|
|
3981 describe_map_mapper_shadow_search, &c);
|
|
3982 if (!NILP (sh) && !ZEROP (sh))
|
|
3983 return;
|
|
3984 }
|
|
3985
|
|
3986 /* Otherwise add it to the list to be sorted. */
|
|
3987 *(closure->list) = Fcons (Fcons (Fcons (keysym, make_int (modifiers)),
|
|
3988 binding),
|
|
3989 *(closure->list));
|
|
3990 }
|
|
3991
|
|
3992
|
|
3993 static int
|
185
|
3994 describe_map_sort_predicate (Lisp_Object obj1, Lisp_Object obj2,
|
0
|
3995 Lisp_Object pred)
|
|
3996 {
|
|
3997 /* obj1 and obj2 are conses of the form
|
|
3998 ( ( <keysym> . <modifiers> ) . <binding> )
|
|
3999 keysym and modifiers are used, binding is ignored.
|
|
4000 */
|
412
|
4001 unsigned int bit1, bit2;
|
0
|
4002 obj1 = XCAR (obj1);
|
|
4003 obj2 = XCAR (obj2);
|
|
4004 bit1 = XINT (XCDR (obj1));
|
|
4005 bit2 = XINT (XCDR (obj2));
|
|
4006 if (bit1 != bit2)
|
173
|
4007 return bit1 < bit2 ? 1 : -1;
|
0
|
4008 else
|
|
4009 return map_keymap_sort_predicate (obj1, obj2, pred);
|
|
4010 }
|
|
4011
|
|
4012 /* Elide 2 or more consecutive numeric keysyms bound to the same thing,
|
|
4013 or 2 or more symbolic keysyms that are bound to the same thing and
|
|
4014 have consecutive character-set-properties.
|
|
4015 */
|
|
4016 static int
|
|
4017 elide_next_two_p (Lisp_Object list)
|
|
4018 {
|
|
4019 Lisp_Object s1, s2;
|
|
4020
|
|
4021 if (NILP (XCDR (list)))
|
|
4022 return 0;
|
|
4023
|
|
4024 /* next two bindings differ */
|
|
4025 if (!EQ (XCDR (XCAR (list)),
|
|
4026 XCDR (XCAR (XCDR (list)))))
|
|
4027 return 0;
|
|
4028
|
|
4029 /* next two modifier-sets differ */
|
|
4030 if (!EQ (XCDR (XCAR (XCAR (list))),
|
|
4031 XCDR (XCAR (XCAR (XCDR (list))))))
|
|
4032 return 0;
|
|
4033
|
|
4034 s1 = XCAR (XCAR (XCAR (list)));
|
|
4035 s2 = XCAR (XCAR (XCAR (XCDR (list))));
|
|
4036
|
|
4037 if (SYMBOLP (s1))
|
|
4038 {
|
|
4039 Lisp_Object code = Fget (s1, Vcharacter_set_property, Qnil);
|
70
|
4040 if (CHAR_OR_CHAR_INTP (code))
|
|
4041 {
|
|
4042 s1 = code;
|
|
4043 CHECK_CHAR_COERCE_INT (s1);
|
|
4044 }
|
0
|
4045 else return 0;
|
|
4046 }
|
|
4047 if (SYMBOLP (s2))
|
|
4048 {
|
|
4049 Lisp_Object code = Fget (s2, Vcharacter_set_property, Qnil);
|
70
|
4050 if (CHAR_OR_CHAR_INTP (code))
|
|
4051 {
|
|
4052 s2 = code;
|
|
4053 CHECK_CHAR_COERCE_INT (s2);
|
|
4054 }
|
0
|
4055 else return 0;
|
|
4056 }
|
|
4057
|
185
|
4058 return (XCHAR (s1) == XCHAR (s2) ||
|
|
4059 XCHAR (s1) + 1 == XCHAR (s2));
|
0
|
4060 }
|
|
4061
|
|
4062
|
|
4063 static Lisp_Object
|
|
4064 describe_map_parent_mapper (Lisp_Object keymap, void *arg)
|
|
4065 {
|
|
4066 /* This function can GC */
|
185
|
4067 struct describe_map_closure *describe_map_closure =
|
|
4068 (struct describe_map_closure *) arg;
|
0
|
4069 describe_map_closure->self = keymap;
|
|
4070 map_keymap (XKEYMAP (keymap)->table,
|
|
4071 0, /* don't sort: we'll do it later */
|
|
4072 describe_map_mapper, describe_map_closure);
|
173
|
4073 return Qnil;
|
0
|
4074 }
|
|
4075
|
|
4076
|
185
|
4077 /* Describe the contents of map MAP, assuming that this map itself is
|
|
4078 reached by the sequence of prefix keys KEYS (a string or vector).
|
|
4079 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
|
|
4080
|
0
|
4081 static void
|
|
4082 describe_map (Lisp_Object keymap, Lisp_Object elt_prefix,
|
219
|
4083 void (*elt_describer) (Lisp_Object, Lisp_Object),
|
185
|
4084 int partial,
|
0
|
4085 Lisp_Object shadow,
|
219
|
4086 int mice_only_p,
|
|
4087 Lisp_Object buffer)
|
0
|
4088 {
|
|
4089 /* This function can GC */
|
|
4090 struct describe_map_closure describe_map_closure;
|
|
4091 Lisp_Object list = Qnil;
|
219
|
4092 struct buffer *buf = XBUFFER (buffer);
|
0
|
4093 Emchar printable_min = (CHAR_OR_CHAR_INTP (buf->ctl_arrow)
|
|
4094 ? XCHAR_OR_CHAR_INT (buf->ctl_arrow)
|
|
4095 : ((EQ (buf->ctl_arrow, Qt)
|
|
4096 || EQ (buf->ctl_arrow, Qnil))
|
|
4097 ? 256 : 160));
|
|
4098 int elided = 0;
|
|
4099 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
|
|
4100
|
|
4101 keymap = get_keymap (keymap, 1, 1);
|
|
4102 describe_map_closure.partial = (partial ? Qsuppress_keymap : Qnil);
|
|
4103 describe_map_closure.shadow = shadow;
|
|
4104 describe_map_closure.list = &list;
|
|
4105 describe_map_closure.self_root = keymap;
|
|
4106 describe_map_closure.mice_only_p = mice_only_p;
|
|
4107
|
|
4108 GCPRO4 (keymap, elt_prefix, shadow, list);
|
|
4109
|
|
4110 traverse_keymaps (keymap, Qnil,
|
|
4111 describe_map_parent_mapper, &describe_map_closure);
|
|
4112
|
|
4113 if (!NILP (list))
|
|
4114 {
|
|
4115 list = list_sort (list, Qnil, describe_map_sort_predicate);
|
|
4116 buffer_insert_c_string (buf, "\n");
|
|
4117 while (!NILP (list))
|
|
4118 {
|
|
4119 Lisp_Object elt = XCAR (XCAR (list));
|
|
4120 Lisp_Object keysym = XCAR (elt);
|
412
|
4121 unsigned int modifiers = XINT (XCDR (elt));
|
0
|
4122
|
|
4123 if (!NILP (elt_prefix))
|
|
4124 buffer_insert_lisp_string (buf, elt_prefix);
|
|
4125
|
412
|
4126 if (modifiers & MOD_META) buffer_insert_c_string (buf, "M-");
|
|
4127 if (modifiers & MOD_CONTROL) buffer_insert_c_string (buf, "C-");
|
|
4128 if (modifiers & MOD_SUPER) buffer_insert_c_string (buf, "S-");
|
|
4129 if (modifiers & MOD_HYPER) buffer_insert_c_string (buf, "H-");
|
|
4130 if (modifiers & MOD_ALT) buffer_insert_c_string (buf, "Alt-");
|
|
4131 if (modifiers & MOD_SHIFT) buffer_insert_c_string (buf, "Sh-");
|
0
|
4132 if (SYMBOLP (keysym))
|
|
4133 {
|
|
4134 Lisp_Object code = Fget (keysym, Vcharacter_set_property, Qnil);
|
|
4135 Emchar c = (CHAR_OR_CHAR_INTP (code)
|
380
|
4136 ? XCHAR_OR_CHAR_INT (code) : (Emchar) -1);
|
0
|
4137 /* Calling Fsingle_key_description() would cons more */
|
|
4138 #if 0 /* This is bogus */
|
|
4139 if (EQ (keysym, QKlinefeed))
|
|
4140 buffer_insert_c_string (buf, "LFD");
|
|
4141 else if (EQ (keysym, QKtab))
|
|
4142 buffer_insert_c_string (buf, "TAB");
|
|
4143 else if (EQ (keysym, QKreturn))
|
|
4144 buffer_insert_c_string (buf, "RET");
|
|
4145 else if (EQ (keysym, QKescape))
|
|
4146 buffer_insert_c_string (buf, "ESC");
|
|
4147 else if (EQ (keysym, QKdelete))
|
|
4148 buffer_insert_c_string (buf, "DEL");
|
|
4149 else if (EQ (keysym, QKspace))
|
|
4150 buffer_insert_c_string (buf, "SPC");
|
|
4151 else if (EQ (keysym, QKbackspace))
|
|
4152 buffer_insert_c_string (buf, "BS");
|
185
|
4153 else
|
0
|
4154 #endif
|
|
4155 if (c >= printable_min)
|
|
4156 buffer_insert_emacs_char (buf, c);
|
|
4157 else buffer_insert1 (buf, Fsymbol_name (keysym));
|
|
4158 }
|
|
4159 else if (CHARP (keysym))
|
|
4160 buffer_insert_emacs_char (buf, XCHAR (keysym));
|
|
4161 else
|
|
4162 buffer_insert_c_string (buf, "---bad keysym---");
|
|
4163
|
|
4164 if (elided)
|
|
4165 elided = 0;
|
|
4166 else
|
|
4167 {
|
|
4168 int k = 0;
|
|
4169
|
|
4170 while (elide_next_two_p (list))
|
|
4171 {
|
|
4172 k++;
|
|
4173 list = XCDR (list);
|
|
4174 }
|
|
4175 if (k != 0)
|
|
4176 {
|
|
4177 if (k == 1)
|
|
4178 buffer_insert_c_string (buf, ", ");
|
|
4179 else
|
|
4180 buffer_insert_c_string (buf, " .. ");
|
|
4181 elided = 1;
|
|
4182 continue;
|
|
4183 }
|
|
4184 }
|
|
4185
|
|
4186 /* Print a description of the definition of this character. */
|
219
|
4187 (*elt_describer) (XCDR (XCAR (list)), buffer);
|
0
|
4188 list = XCDR (list);
|
|
4189 }
|
|
4190 }
|
|
4191 UNGCPRO;
|
|
4192 }
|
|
4193
|
|
4194
|
|
4195 void
|
|
4196 syms_of_keymap (void)
|
|
4197 {
|
|
4198 defsymbol (&Qminor_mode_map_alist, "minor-mode-map-alist");
|
|
4199
|
|
4200 defsymbol (&Qkeymapp, "keymapp");
|
|
4201
|
|
4202 defsymbol (&Qsuppress_keymap, "suppress-keymap");
|
|
4203
|
|
4204 defsymbol (&Qmodeline_map, "modeline-map");
|
|
4205 defsymbol (&Qtoolbar_map, "toolbar-map");
|
|
4206
|
20
|
4207 DEFSUBR (Fkeymap_parents);
|
|
4208 DEFSUBR (Fset_keymap_parents);
|
|
4209 DEFSUBR (Fkeymap_name);
|
|
4210 DEFSUBR (Fset_keymap_name);
|
|
4211 DEFSUBR (Fkeymap_prompt);
|
|
4212 DEFSUBR (Fset_keymap_prompt);
|
|
4213 DEFSUBR (Fkeymap_default_binding);
|
|
4214 DEFSUBR (Fset_keymap_default_binding);
|
|
4215
|
|
4216 DEFSUBR (Fkeymapp);
|
|
4217 DEFSUBR (Fmake_keymap);
|
|
4218 DEFSUBR (Fmake_sparse_keymap);
|
|
4219
|
|
4220 DEFSUBR (Fcopy_keymap);
|
|
4221 DEFSUBR (Fkeymap_fullness);
|
|
4222 DEFSUBR (Fmap_keymap);
|
|
4223 DEFSUBR (Fevent_matches_key_specifier_p);
|
|
4224 DEFSUBR (Fdefine_key);
|
|
4225 DEFSUBR (Flookup_key);
|
|
4226 DEFSUBR (Fkey_binding);
|
|
4227 DEFSUBR (Fuse_global_map);
|
|
4228 DEFSUBR (Fuse_local_map);
|
|
4229 DEFSUBR (Fcurrent_local_map);
|
|
4230 DEFSUBR (Fcurrent_global_map);
|
|
4231 DEFSUBR (Fcurrent_keymaps);
|
|
4232 DEFSUBR (Faccessible_keymaps);
|
|
4233 DEFSUBR (Fkey_description);
|
|
4234 DEFSUBR (Fsingle_key_description);
|
|
4235 DEFSUBR (Fwhere_is_internal);
|
|
4236 DEFSUBR (Fdescribe_bindings_internal);
|
|
4237
|
|
4238 DEFSUBR (Ftext_char_description);
|
0
|
4239
|
|
4240 defsymbol (&Qcontrol, "control");
|
|
4241 defsymbol (&Qctrl, "ctrl");
|
185
|
4242 defsymbol (&Qmeta, "meta");
|
|
4243 defsymbol (&Qsuper, "super");
|
|
4244 defsymbol (&Qhyper, "hyper");
|
0
|
4245 defsymbol (&Qalt, "alt");
|
|
4246 defsymbol (&Qshift, "shift");
|
|
4247 defsymbol (&Qbutton0, "button0");
|
|
4248 defsymbol (&Qbutton1, "button1");
|
|
4249 defsymbol (&Qbutton2, "button2");
|
|
4250 defsymbol (&Qbutton3, "button3");
|
|
4251 defsymbol (&Qbutton4, "button4");
|
|
4252 defsymbol (&Qbutton5, "button5");
|
|
4253 defsymbol (&Qbutton6, "button6");
|
|
4254 defsymbol (&Qbutton7, "button7");
|
|
4255 defsymbol (&Qbutton0up, "button0up");
|
|
4256 defsymbol (&Qbutton1up, "button1up");
|
|
4257 defsymbol (&Qbutton2up, "button2up");
|
|
4258 defsymbol (&Qbutton3up, "button3up");
|
|
4259 defsymbol (&Qbutton4up, "button4up");
|
|
4260 defsymbol (&Qbutton5up, "button5up");
|
|
4261 defsymbol (&Qbutton6up, "button6up");
|
|
4262 defsymbol (&Qbutton7up, "button7up");
|
98
|
4263 defsymbol (&Qmouse_1, "mouse-1");
|
|
4264 defsymbol (&Qmouse_2, "mouse-2");
|
|
4265 defsymbol (&Qmouse_3, "mouse-3");
|
265
|
4266 defsymbol (&Qmouse_4, "mouse-4");
|
|
4267 defsymbol (&Qmouse_5, "mouse-5");
|
98
|
4268 defsymbol (&Qdown_mouse_1, "down-mouse-1");
|
|
4269 defsymbol (&Qdown_mouse_2, "down-mouse-2");
|
|
4270 defsymbol (&Qdown_mouse_3, "down-mouse-3");
|
265
|
4271 defsymbol (&Qdown_mouse_4, "down-mouse-4");
|
|
4272 defsymbol (&Qdown_mouse_5, "down-mouse-5");
|
0
|
4273 defsymbol (&Qmenu_selection, "menu-selection");
|
|
4274 defsymbol (&QLFD, "LFD");
|
|
4275 defsymbol (&QTAB, "TAB");
|
|
4276 defsymbol (&QRET, "RET");
|
|
4277 defsymbol (&QESC, "ESC");
|
|
4278 defsymbol (&QDEL, "DEL");
|
424
|
4279 defsymbol (&QSPC, "SPC");
|
0
|
4280 defsymbol (&QBS, "BS");
|
|
4281 }
|
|
4282
|
|
4283 void
|
|
4284 vars_of_keymap (void)
|
|
4285 {
|
|
4286 DEFVAR_LISP ("meta-prefix-char", &Vmeta_prefix_char /*
|
|
4287 Meta-prefix character.
|
|
4288 This character followed by some character `foo' turns into `Meta-foo'.
|
|
4289 This can be any form recognized as a single key specifier.
|
|
4290 To disable the meta-prefix-char, set it to a negative number.
|
|
4291 */ );
|
|
4292 Vmeta_prefix_char = make_char (033);
|
|
4293
|
|
4294 DEFVAR_LISP ("mouse-grabbed-buffer", &Vmouse_grabbed_buffer /*
|
|
4295 A buffer which should be consulted first for all mouse activity.
|
|
4296 When a mouse-click is processed, it will first be looked up in the
|
|
4297 local-map of this buffer, and then through the normal mechanism if there
|
|
4298 is no binding for that click. This buffer's value of `mode-motion-hook'
|
|
4299 will be consulted instead of the `mode-motion-hook' of the buffer of the
|
|
4300 window under the mouse. You should *bind* this, not set it.
|
|
4301 */ );
|
|
4302 Vmouse_grabbed_buffer = Qnil;
|
|
4303
|
|
4304 DEFVAR_LISP ("overriding-local-map", &Voverriding_local_map /*
|
|
4305 Keymap that overrides all other local keymaps.
|
|
4306 If this variable is non-nil, it is used as a keymap instead of the
|
|
4307 buffer's local map, and the minor mode keymaps and extent-local keymaps.
|
|
4308 You should *bind* this, not set it.
|
|
4309 */ );
|
|
4310 Voverriding_local_map = Qnil;
|
|
4311
|
|
4312 Fset (Qminor_mode_map_alist, Qnil);
|
|
4313
|
|
4314 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map /*
|
|
4315 Keymap of key translations that can override keymaps.
|
|
4316 This keymap works like `function-key-map', but comes after that,
|
|
4317 and applies even for keys that have ordinary bindings.
|
|
4318 */ );
|
373
|
4319 Vkey_translation_map = Qnil;
|
0
|
4320
|
284
|
4321 DEFVAR_LISP ("vertical-divider-map", &Vvertical_divider_map /*
|
|
4322 Keymap which handles mouse clicks over vertical dividers.
|
|
4323 */ );
|
373
|
4324 Vvertical_divider_map = Qnil;
|
284
|
4325
|
0
|
4326 DEFVAR_INT ("keymap-tick", &keymap_tick /*
|
|
4327 Incremented for each change to any keymap.
|
|
4328 */ );
|
|
4329 keymap_tick = 0;
|
|
4330
|
|
4331 staticpro (&Vcurrent_global_map);
|
|
4332
|
424
|
4333 Vsingle_space_string = make_string ((CONST Bufbyte *) " ", 1);
|
0
|
4334 staticpro (&Vsingle_space_string);
|
|
4335 }
|
|
4336
|
|
4337 void
|
|
4338 complex_vars_of_keymap (void)
|
|
4339 {
|
|
4340 /* This function can GC */
|
|
4341 Lisp_Object ESC_prefix = intern ("ESC-prefix");
|
|
4342 Lisp_Object meta_disgustitute;
|
|
4343
|
|
4344 Vcurrent_global_map = Fmake_keymap (Qnil);
|
|
4345
|
|
4346 meta_disgustitute = Fmake_keymap (Qnil);
|
|
4347 Ffset (ESC_prefix, meta_disgustitute);
|
|
4348 /* no need to protect meta_disgustitute, though */
|
412
|
4349 keymap_store_internal (MAKE_MODIFIER_HASH_KEY (MOD_META),
|
0
|
4350 XKEYMAP (Vcurrent_global_map),
|
|
4351 meta_disgustitute);
|
|
4352 XKEYMAP (Vcurrent_global_map)->sub_maps_cache = Qt;
|
|
4353
|
|
4354 Vkey_translation_map = Fmake_sparse_keymap (intern ("key-translation-map"));
|
|
4355 }
|