428
|
1 /* Block-relocating memory allocator.
|
|
2 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
|
|
3
|
|
4 This file is part of XEmacs.
|
|
5
|
|
6 XEmacs is free software; you can redistribute it and/or modify it
|
|
7 under the terms of the GNU General Public License as published by the
|
|
8 Free Software Foundation; either version 2, or (at your option) any
|
|
9 later version.
|
|
10
|
|
11 XEmacs is distributed in the hope that it will be useful, but WITHOUT
|
|
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
14 for more details.
|
|
15
|
|
16 You should have received a copy of the GNU General Public License
|
|
17 along with GNU Emacs; see the file COPYING. If not, write to
|
|
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
19 Boston, MA 02111-1307, USA.
|
|
20
|
|
21 Synched Up with: FSF 20.2 (non-mmap portion only)
|
|
22 */
|
|
23
|
|
24 /* NOTES:
|
|
25
|
|
26 Only relocate the blocs necessary for SIZE in r_alloc_sbrk,
|
|
27 rather than all of them. This means allowing for a possible
|
|
28 hole between the first bloc and the end of malloc storage. */
|
|
29
|
|
30 #ifdef HAVE_CONFIG_H
|
|
31 #include <config.h>
|
|
32 #endif
|
|
33
|
|
34 #ifdef HAVE_UNISTD_H
|
|
35 #include <unistd.h> /* for getpagesize() */
|
|
36 #endif
|
|
37
|
|
38 #ifdef emacs
|
|
39
|
|
40 #include "lisp.h"
|
|
41
|
|
42 /* The important properties of this type are that 1) it's a pointer, and
|
|
43 2) arithmetic on it should work as if the size of the object pointed
|
|
44 to has a size of 1. */
|
|
45 #if 0 /* Arithmetic on void* is a GCC extension. */
|
|
46 #ifdef __STDC__
|
|
47 typedef void *POINTER;
|
|
48 #else
|
|
49 typedef unsigned char *POINTER;
|
|
50 #endif
|
|
51 #endif /* 0 */
|
|
52
|
|
53 /* Unconditionally use unsigned char * for this. */
|
|
54 typedef unsigned char *POINTER;
|
|
55
|
|
56 #ifdef DOUG_LEA_MALLOC
|
|
57 #define M_TOP_PAD -2
|
|
58 #include <malloc.h>
|
|
59 #endif
|
|
60
|
|
61 #include "getpagesize.h"
|
|
62
|
|
63 #include <string.h>
|
|
64 void refill_memory_reserve (void);
|
|
65
|
|
66 #else /* Not emacs. */
|
|
67
|
|
68 #include <stddef.h>
|
|
69
|
|
70 typedef void *POINTER;
|
|
71
|
|
72 #include <unistd.h>
|
|
73 #include <malloc.h>
|
|
74 #include <string.h>
|
|
75
|
|
76 #endif /* emacs. */
|
|
77
|
|
78 void init_ralloc (void);
|
|
79
|
|
80 #define NIL ((POINTER) 0)
|
|
81
|
|
82
|
|
83 #if !defined(HAVE_MMAP) || defined(DOUG_LEA_MALLOC)
|
|
84
|
|
85 /* A flag to indicate whether we have initialized ralloc yet. For
|
|
86 Emacs's sake, please do not make this local to malloc_init; on some
|
|
87 machines, the dumping procedure makes all static variables
|
|
88 read-only. On these machines, the word static is #defined to be
|
|
89 the empty string, meaning that r_alloc_initialized becomes an
|
|
90 automatic variable, and loses its value each time Emacs is started up. */
|
|
91 static int r_alloc_initialized = 0;
|
|
92
|
|
93
|
|
94 /* Declarations for working with the malloc, ralloc, and system breaks. */
|
|
95
|
|
96 /* Function to set the real break value. */
|
|
97 static POINTER (*real_morecore) (ptrdiff_t size);
|
|
98
|
|
99 /* The break value, as seen by malloc (). */
|
|
100 static POINTER virtual_break_value;
|
|
101
|
|
102 /* The break value, viewed by the relocatable blocs. */
|
|
103 static POINTER break_value;
|
|
104
|
|
105 /* This is the size of a page. We round memory requests to this boundary. */
|
|
106 static int page_size;
|
|
107
|
|
108 /* Whenever we get memory from the system, get this many extra bytes. This
|
|
109 must be a multiple of page_size. */
|
|
110 static int extra_bytes;
|
|
111
|
|
112 /* Macros for rounding. Note that rounding to any value is possible
|
|
113 by changing the definition of PAGE. */
|
|
114 #define PAGE (getpagesize ())
|
|
115 #define ALIGNED(addr) (((unsigned long int) (addr) & (page_size - 1)) == 0)
|
|
116 #define ROUNDUP(size) (((unsigned long int) (size) + page_size - 1) \
|
|
117 & ~(page_size - 1))
|
|
118 #define ROUND_TO_PAGE(addr) (addr & (~(page_size - 1)))
|
|
119
|
|
120 #define MEM_ALIGN sizeof(double)
|
|
121 #define MEM_ROUNDUP(addr) (((unsigned long int)(addr) + MEM_ALIGN - 1) \
|
|
122 & ~(MEM_ALIGN - 1))
|
|
123
|
|
124 /* Data structures of heaps and blocs. */
|
|
125
|
|
126 /* The relocatable objects, or blocs, and the malloc data
|
|
127 both reside within one or more heaps.
|
|
128 Each heap contains malloc data, running from `start' to `bloc_start',
|
|
129 and relocatable objects, running from `bloc_start' to `free'.
|
|
130
|
|
131 Relocatable objects may relocate within the same heap
|
|
132 or may move into another heap; the heaps themselves may grow
|
|
133 but they never move.
|
|
134
|
|
135 We try to make just one heap and make it larger as necessary.
|
|
136 But sometimes we can't do that, because we can't get contiguous
|
|
137 space to add onto the heap. When that happens, we start a new heap. */
|
|
138
|
|
139 typedef struct heap
|
|
140 {
|
|
141 struct heap *next;
|
|
142 struct heap *prev;
|
|
143 /* Start of memory range of this heap. */
|
|
144 POINTER start;
|
|
145 /* End of memory range of this heap. */
|
|
146 POINTER end;
|
|
147 /* Start of relocatable data in this heap. */
|
|
148 POINTER bloc_start;
|
|
149 /* Start of unused space in this heap. */
|
|
150 POINTER free;
|
|
151 /* First bloc in this heap. */
|
|
152 struct bp *first_bloc;
|
|
153 /* Last bloc in this heap. */
|
|
154 struct bp *last_bloc;
|
|
155 } *heap_ptr;
|
|
156
|
|
157 #define NIL_HEAP ((heap_ptr) 0)
|
|
158 #define HEAP_PTR_SIZE (sizeof (struct heap))
|
|
159
|
|
160 /* This is the first heap object.
|
|
161 If we need additional heap objects, each one resides at the beginning of
|
|
162 the space it covers. */
|
|
163 static struct heap heap_base;
|
|
164
|
|
165 /* Head and tail of the list of heaps. */
|
|
166 static heap_ptr first_heap, last_heap;
|
|
167
|
|
168 /* These structures are allocated in the malloc arena.
|
|
169 The linked list is kept in order of increasing '.data' members.
|
|
170 The data blocks abut each other; if b->next is non-nil, then
|
|
171 b->data + b->size == b->next->data.
|
|
172
|
|
173 An element with variable==NIL denotes a freed block, which has not yet
|
|
174 been collected. They may only appear while r_alloc_freeze > 0, and will be
|
|
175 freed when the arena is thawed. Currently, these blocs are not reusable,
|
|
176 while the arena is frozen. Very inefficient. */
|
|
177
|
|
178 typedef struct bp
|
|
179 {
|
|
180 struct bp *next;
|
|
181 struct bp *prev;
|
|
182 POINTER *variable;
|
|
183 POINTER data;
|
440
|
184 size_t size;
|
428
|
185 POINTER new_data; /* temporarily used for relocation */
|
|
186 struct heap *heap; /* Heap this bloc is in. */
|
|
187 } *bloc_ptr;
|
|
188
|
|
189 #define NIL_BLOC ((bloc_ptr) 0)
|
|
190 #define BLOC_PTR_SIZE (sizeof (struct bp))
|
|
191
|
|
192 /* Head and tail of the list of relocatable blocs. */
|
|
193 static bloc_ptr first_bloc, last_bloc;
|
|
194
|
|
195 static int use_relocatable_buffers;
|
|
196
|
|
197 /* If >0, no relocation whatsoever takes place. */
|
|
198 static int r_alloc_freeze_level;
|
|
199
|
|
200 /* Obtain SIZE bytes of space. If enough space is not presently available
|
|
201 in our process reserve, (i.e., (page_break_value - break_value)),
|
|
202 this means getting more page-aligned space from the system.
|
|
203
|
|
204 Return non-zero if all went well, or zero if we couldn't allocate
|
|
205 the memory. */
|
|
206
|
|
207 /* Functions to get and return memory from the system. */
|
|
208
|
|
209 /* Find the heap that ADDRESS falls within. */
|
|
210
|
|
211 static heap_ptr
|
|
212 find_heap (POINTER address)
|
|
213 {
|
|
214 heap_ptr heap;
|
|
215
|
|
216 for (heap = last_heap; heap; heap = heap->prev)
|
|
217 {
|
|
218 if (heap->start <= address && address <= heap->end)
|
|
219 return heap;
|
|
220 }
|
|
221
|
|
222 return NIL_HEAP;
|
|
223 }
|
|
224
|
|
225 /* Find SIZE bytes of space in a heap.
|
|
226 Try to get them at ADDRESS (which must fall within some heap's range)
|
|
227 if we can get that many within one heap.
|
|
228
|
|
229 If enough space is not presently available in our reserve, this means
|
|
230 getting more page-aligned space from the system. If the returned space
|
|
231 is not contiguous to the last heap, allocate a new heap, and append it
|
|
232
|
|
233 obtain does not try to keep track of whether space is in use
|
|
234 or not in use. It just returns the address of SIZE bytes that
|
|
235 fall within a single heap. If you call obtain twice in a row
|
|
236 with the same arguments, you typically get the same value.
|
|
237 to the heap list. It's the caller's responsibility to keep
|
|
238 track of what space is in use.
|
|
239
|
|
240 Return the address of the space if all went well, or zero if we couldn't
|
|
241 allocate the memory. */
|
|
242
|
|
243 static POINTER
|
440
|
244 obtain (POINTER address, size_t size)
|
428
|
245 {
|
|
246 heap_ptr heap;
|
440
|
247 size_t already_available;
|
428
|
248
|
|
249 /* Find the heap that ADDRESS falls within. */
|
|
250 for (heap = last_heap; heap; heap = heap->prev)
|
|
251 {
|
|
252 if (heap->start <= address && address <= heap->end)
|
|
253 break;
|
|
254 }
|
|
255
|
|
256 if (! heap)
|
|
257 abort ();
|
|
258
|
|
259 /* If we can't fit SIZE bytes in that heap,
|
|
260 try successive later heaps. */
|
|
261 while (heap && address + size > heap->end)
|
|
262 {
|
|
263 heap = heap->next;
|
|
264 if (heap == NIL_HEAP)
|
|
265 break;
|
|
266 address = heap->bloc_start;
|
|
267 }
|
|
268
|
|
269 /* If we can't fit them within any existing heap,
|
|
270 get more space. */
|
|
271 if (heap == NIL_HEAP)
|
|
272 {
|
|
273 POINTER new = (*real_morecore)(0);
|
440
|
274 size_t get;
|
428
|
275
|
|
276 already_available = (char *)last_heap->end - (char *)address;
|
|
277
|
|
278 if (new != last_heap->end)
|
|
279 {
|
|
280 /* Someone else called sbrk. Make a new heap. */
|
|
281
|
|
282 heap_ptr new_heap = (heap_ptr) MEM_ROUNDUP (new);
|
|
283 POINTER bloc_start = (POINTER) MEM_ROUNDUP ((POINTER)(new_heap + 1));
|
|
284
|
|
285 if ((*real_morecore) (bloc_start - new) != new)
|
|
286 return 0;
|
|
287
|
|
288 new_heap->start = new;
|
|
289 new_heap->end = bloc_start;
|
|
290 new_heap->bloc_start = bloc_start;
|
|
291 new_heap->free = bloc_start;
|
|
292 new_heap->next = NIL_HEAP;
|
|
293 new_heap->prev = last_heap;
|
|
294 new_heap->first_bloc = NIL_BLOC;
|
|
295 new_heap->last_bloc = NIL_BLOC;
|
|
296 last_heap->next = new_heap;
|
|
297 last_heap = new_heap;
|
|
298
|
|
299 address = bloc_start;
|
|
300 already_available = 0;
|
|
301 }
|
|
302
|
|
303 /* Add space to the last heap (which we may have just created).
|
|
304 Get some extra, so we can come here less often. */
|
|
305
|
|
306 get = size + extra_bytes - already_available;
|
|
307 get = (char *) ROUNDUP ((char *)last_heap->end + get)
|
|
308 - (char *) last_heap->end;
|
|
309
|
|
310 if ((*real_morecore) (get) != last_heap->end)
|
|
311 return 0;
|
|
312
|
|
313 last_heap->end += get;
|
|
314 }
|
|
315
|
|
316 return address;
|
|
317 }
|
|
318
|
|
319 #if 0
|
|
320 /* Obtain SIZE bytes of space and return a pointer to the new area.
|
|
321 If we could not allocate the space, return zero. */
|
|
322
|
|
323 static POINTER
|
440
|
324 get_more_space (size_t size)
|
428
|
325 {
|
|
326 POINTER ptr = break_value;
|
|
327 if (obtain (size))
|
|
328 return ptr;
|
|
329 else
|
|
330 return 0;
|
|
331 }
|
|
332 #endif
|
|
333
|
|
334 /* Note that SIZE bytes of space have been relinquished by the process.
|
|
335 If SIZE is more than a page, return the space to the system. */
|
|
336
|
|
337 static void
|
|
338 relinquish (void)
|
|
339 {
|
|
340 register heap_ptr h;
|
|
341 int excess = 0;
|
|
342
|
|
343 /* Add the amount of space beyond break_value
|
|
344 in all heaps which have extend beyond break_value at all. */
|
|
345
|
|
346 for (h = last_heap; h && break_value < h->end; h = h->prev)
|
|
347 {
|
|
348 excess += (char *) h->end - (char *) ((break_value < h->bloc_start)
|
|
349 ? h->bloc_start : break_value);
|
|
350 }
|
|
351
|
|
352 if (excess > extra_bytes * 2 && (*real_morecore) (0) == last_heap->end)
|
|
353 {
|
|
354 /* Keep extra_bytes worth of empty space.
|
|
355 And don't free anything unless we can free at least extra_bytes. */
|
|
356 excess -= extra_bytes;
|
|
357
|
|
358 if ((char *)last_heap->end - (char *)last_heap->bloc_start <= excess)
|
|
359 {
|
|
360 /* This heap should have no blocs in it. */
|
|
361 if (last_heap->first_bloc != NIL_BLOC
|
|
362 || last_heap->last_bloc != NIL_BLOC)
|
|
363 abort ();
|
|
364
|
|
365 /* Return the last heap, with its header, to the system. */
|
|
366 excess = (char *)last_heap->end - (char *)last_heap->start;
|
|
367 last_heap = last_heap->prev;
|
|
368 last_heap->next = NIL_HEAP;
|
|
369 }
|
|
370 else
|
|
371 {
|
|
372 excess = (char *) last_heap->end
|
|
373 - (char *) ROUNDUP ((char *)last_heap->end - excess);
|
|
374 last_heap->end -= excess;
|
|
375 }
|
|
376
|
|
377 if ((*real_morecore) (- excess) == 0)
|
|
378 abort ();
|
|
379 }
|
|
380 }
|
|
381
|
|
382 /* Return the total size in use by relocating allocator,
|
|
383 above where malloc gets space. */
|
|
384
|
|
385 long r_alloc_size_in_use (void);
|
|
386 long
|
440
|
387 r_alloc_size_in_use (void)
|
428
|
388 {
|
|
389 return break_value - virtual_break_value;
|
|
390 }
|
|
391
|
|
392 /* The meat - allocating, freeing, and relocating blocs. */
|
|
393
|
|
394
|
|
395 /* Find the bloc referenced by the address in PTR. Returns a pointer
|
|
396 to that block. */
|
|
397
|
|
398 static bloc_ptr
|
|
399 find_bloc (POINTER *ptr)
|
|
400 {
|
|
401 register bloc_ptr p = first_bloc;
|
|
402
|
|
403 while (p != NIL_BLOC)
|
|
404 {
|
|
405 if (p->variable == ptr && p->data == *ptr)
|
|
406 return p;
|
|
407
|
|
408 p = p->next;
|
|
409 }
|
|
410
|
|
411 return p;
|
|
412 }
|
|
413
|
|
414 /* Allocate a bloc of SIZE bytes and append it to the chain of blocs.
|
|
415 Returns a pointer to the new bloc, or zero if we couldn't allocate
|
|
416 memory for the new block. */
|
|
417
|
|
418 static bloc_ptr
|
440
|
419 get_bloc (size_t size)
|
428
|
420 {
|
|
421 register bloc_ptr new_bloc;
|
|
422 register heap_ptr heap;
|
|
423
|
|
424 if (! (new_bloc = (bloc_ptr) malloc (BLOC_PTR_SIZE))
|
|
425 || ! (new_bloc->data = obtain (break_value, size)))
|
|
426 {
|
|
427 if (new_bloc)
|
|
428 free (new_bloc);
|
|
429
|
|
430 return 0;
|
|
431 }
|
|
432
|
|
433 break_value = new_bloc->data + size;
|
|
434
|
|
435 new_bloc->size = size;
|
|
436 new_bloc->next = NIL_BLOC;
|
|
437 new_bloc->variable = (POINTER *) NIL;
|
|
438 new_bloc->new_data = 0;
|
|
439
|
|
440 /* Record in the heap that this space is in use. */
|
|
441 heap = find_heap (new_bloc->data);
|
|
442 heap->free = break_value;
|
|
443
|
|
444 /* Maintain the correspondence between heaps and blocs. */
|
|
445 new_bloc->heap = heap;
|
|
446 heap->last_bloc = new_bloc;
|
|
447 if (heap->first_bloc == NIL_BLOC)
|
|
448 heap->first_bloc = new_bloc;
|
|
449
|
|
450 /* Put this bloc on the doubly-linked list of blocs. */
|
|
451 if (first_bloc)
|
|
452 {
|
|
453 new_bloc->prev = last_bloc;
|
|
454 last_bloc->next = new_bloc;
|
|
455 last_bloc = new_bloc;
|
|
456 }
|
|
457 else
|
|
458 {
|
|
459 first_bloc = last_bloc = new_bloc;
|
|
460 new_bloc->prev = NIL_BLOC;
|
|
461 }
|
|
462
|
|
463 return new_bloc;
|
|
464 }
|
|
465
|
|
466 /* Calculate new locations of blocs in the list beginning with BLOC,
|
|
467 relocating it to start at ADDRESS, in heap HEAP. If enough space is
|
|
468 not presently available in our reserve, call obtain for
|
|
469 more space.
|
|
470
|
|
471 Store the new location of each bloc in its new_data field.
|
|
472 Do not touch the contents of blocs or break_value. */
|
|
473
|
|
474 static int
|
|
475 relocate_blocs (bloc_ptr bloc, heap_ptr heap, POINTER address)
|
|
476 {
|
|
477 register bloc_ptr b = bloc;
|
|
478
|
|
479 /* No need to ever call this if arena is frozen, bug somewhere! */
|
|
480 if (r_alloc_freeze_level)
|
|
481 abort();
|
|
482
|
|
483 while (b)
|
|
484 {
|
|
485 /* If bloc B won't fit within HEAP,
|
|
486 move to the next heap and try again. */
|
|
487 while (heap && address + b->size > heap->end)
|
|
488 {
|
|
489 heap = heap->next;
|
|
490 if (heap == NIL_HEAP)
|
|
491 break;
|
|
492 address = heap->bloc_start;
|
|
493 }
|
|
494
|
|
495 /* If BLOC won't fit in any heap,
|
|
496 get enough new space to hold BLOC and all following blocs. */
|
|
497 if (heap == NIL_HEAP)
|
|
498 {
|
|
499 register bloc_ptr tb = b;
|
440
|
500 register size_t s = 0;
|
428
|
501
|
|
502 /* Add up the size of all the following blocs. */
|
|
503 while (tb != NIL_BLOC)
|
|
504 {
|
|
505 if (tb->variable)
|
|
506 s += tb->size;
|
|
507
|
|
508 tb = tb->next;
|
|
509 }
|
|
510
|
|
511 /* Get that space. */
|
|
512 address = obtain (address, s);
|
|
513 if (address == 0)
|
|
514 return 0;
|
|
515
|
|
516 heap = last_heap;
|
|
517 }
|
|
518
|
|
519 /* Record the new address of this bloc
|
|
520 and update where the next bloc can start. */
|
|
521 b->new_data = address;
|
|
522 if (b->variable)
|
|
523 address += b->size;
|
|
524 b = b->next;
|
|
525 }
|
|
526
|
|
527 return 1;
|
|
528 }
|
|
529
|
|
530 #if 0 /* unused */
|
|
531 /* Reorder the bloc BLOC to go before bloc BEFORE in the doubly linked list.
|
|
532 This is necessary if we put the memory of space of BLOC
|
|
533 before that of BEFORE. */
|
|
534
|
|
535 static void
|
|
536 reorder_bloc (bloc_ptr bloc, bloc_ptr before)
|
|
537 {
|
|
538 bloc_ptr prev, next;
|
|
539
|
|
540 /* Splice BLOC out from where it is. */
|
|
541 prev = bloc->prev;
|
|
542 next = bloc->next;
|
|
543
|
|
544 if (prev)
|
|
545 prev->next = next;
|
|
546 if (next)
|
|
547 next->prev = prev;
|
|
548
|
|
549 /* Splice it in before BEFORE. */
|
|
550 prev = before->prev;
|
|
551
|
|
552 if (prev)
|
|
553 prev->next = bloc;
|
|
554 bloc->prev = prev;
|
|
555
|
|
556 before->prev = bloc;
|
|
557 bloc->next = before;
|
|
558 }
|
|
559 #endif /* unused */
|
|
560
|
|
561 /* Update the records of which heaps contain which blocs, starting
|
|
562 with heap HEAP and bloc BLOC. */
|
|
563
|
|
564 static void
|
|
565 update_heap_bloc_correspondence (bloc_ptr bloc, heap_ptr heap)
|
|
566 {
|
|
567 register bloc_ptr b;
|
|
568
|
|
569 /* Initialize HEAP's status to reflect blocs before BLOC. */
|
|
570 if (bloc != NIL_BLOC && bloc->prev != NIL_BLOC && bloc->prev->heap == heap)
|
|
571 {
|
|
572 /* The previous bloc is in HEAP. */
|
|
573 heap->last_bloc = bloc->prev;
|
|
574 heap->free = bloc->prev->data + bloc->prev->size;
|
|
575 }
|
|
576 else
|
|
577 {
|
|
578 /* HEAP contains no blocs before BLOC. */
|
|
579 heap->first_bloc = NIL_BLOC;
|
|
580 heap->last_bloc = NIL_BLOC;
|
|
581 heap->free = heap->bloc_start;
|
|
582 }
|
|
583
|
|
584 /* Advance through blocs one by one. */
|
|
585 for (b = bloc; b != NIL_BLOC; b = b->next)
|
|
586 {
|
|
587 /* Advance through heaps, marking them empty,
|
|
588 till we get to the one that B is in. */
|
|
589 while (heap)
|
|
590 {
|
|
591 if (heap->bloc_start <= b->data && b->data <= heap->end)
|
|
592 break;
|
|
593 heap = heap->next;
|
|
594 /* We know HEAP is not null now,
|
|
595 because there has to be space for bloc B. */
|
|
596 heap->first_bloc = NIL_BLOC;
|
|
597 heap->last_bloc = NIL_BLOC;
|
|
598 heap->free = heap->bloc_start;
|
|
599 }
|
|
600
|
|
601 /* Update HEAP's status for bloc B. */
|
|
602 heap->free = b->data + b->size;
|
|
603 heap->last_bloc = b;
|
|
604 if (heap->first_bloc == NIL_BLOC)
|
|
605 heap->first_bloc = b;
|
|
606
|
|
607 /* Record that B is in HEAP. */
|
|
608 b->heap = heap;
|
|
609 }
|
|
610
|
|
611 /* If there are any remaining heaps and no blocs left,
|
|
612 mark those heaps as empty. */
|
|
613 heap = heap->next;
|
|
614 while (heap)
|
|
615 {
|
|
616 heap->first_bloc = NIL_BLOC;
|
|
617 heap->last_bloc = NIL_BLOC;
|
|
618 heap->free = heap->bloc_start;
|
|
619 heap = heap->next;
|
|
620 }
|
|
621 }
|
|
622
|
|
623 /* Resize BLOC to SIZE bytes. This relocates the blocs
|
|
624 that come after BLOC in memory. */
|
|
625
|
|
626 static int
|
440
|
627 resize_bloc (bloc_ptr bloc, size_t size)
|
428
|
628 {
|
|
629 register bloc_ptr b;
|
|
630 heap_ptr heap;
|
|
631 POINTER address;
|
440
|
632 size_t old_size;
|
428
|
633
|
|
634 /* No need to ever call this if arena is frozen, bug somewhere! */
|
|
635 if (r_alloc_freeze_level)
|
|
636 abort();
|
|
637
|
|
638 if (bloc == NIL_BLOC || size == bloc->size)
|
|
639 return 1;
|
|
640
|
|
641 for (heap = first_heap; heap != NIL_HEAP; heap = heap->next)
|
|
642 {
|
|
643 if (heap->bloc_start <= bloc->data && bloc->data <= heap->end)
|
|
644 break;
|
|
645 }
|
|
646
|
|
647 if (heap == NIL_HEAP)
|
|
648 abort ();
|
|
649
|
|
650 old_size = bloc->size;
|
|
651 bloc->size = size;
|
|
652
|
|
653 /* Note that bloc could be moved into the previous heap. */
|
|
654 address = (bloc->prev ? bloc->prev->data + bloc->prev->size
|
|
655 : first_heap->bloc_start);
|
|
656 while (heap)
|
|
657 {
|
|
658 if (heap->bloc_start <= address && address <= heap->end)
|
|
659 break;
|
|
660 heap = heap->prev;
|
|
661 }
|
|
662
|
|
663 if (! relocate_blocs (bloc, heap, address))
|
|
664 {
|
|
665 bloc->size = old_size;
|
|
666 return 0;
|
|
667 }
|
|
668
|
|
669 if (size > old_size)
|
|
670 {
|
|
671 for (b = last_bloc; b != bloc; b = b->prev)
|
|
672 {
|
|
673 if (!b->variable)
|
|
674 {
|
|
675 b->size = 0;
|
|
676 b->data = b->new_data;
|
|
677 }
|
|
678 else
|
|
679 {
|
440
|
680 memmove (b->new_data, b->data, b->size);
|
428
|
681 *b->variable = b->data = b->new_data;
|
|
682 }
|
|
683 }
|
|
684 if (!bloc->variable)
|
|
685 {
|
|
686 bloc->size = 0;
|
|
687 bloc->data = bloc->new_data;
|
|
688 }
|
|
689 else
|
|
690 {
|
440
|
691 memmove (bloc->new_data, bloc->data, old_size);
|
428
|
692 memset (bloc->new_data + old_size, 0, size - old_size);
|
|
693 *bloc->variable = bloc->data = bloc->new_data;
|
|
694 }
|
|
695 }
|
|
696 else
|
|
697 {
|
|
698 for (b = bloc; b != NIL_BLOC; b = b->next)
|
|
699 {
|
|
700 if (!b->variable)
|
|
701 {
|
|
702 b->size = 0;
|
|
703 b->data = b->new_data;
|
|
704 }
|
|
705 else
|
|
706 {
|
440
|
707 memmove (b->new_data, b->data, b->size);
|
428
|
708 *b->variable = b->data = b->new_data;
|
|
709 }
|
|
710 }
|
|
711 }
|
|
712
|
|
713 update_heap_bloc_correspondence (bloc, heap);
|
|
714
|
|
715 break_value = (last_bloc ? last_bloc->data + last_bloc->size
|
|
716 : first_heap->bloc_start);
|
|
717 return 1;
|
|
718 }
|
|
719
|
|
720 /* Free BLOC from the chain of blocs, relocating any blocs above it
|
|
721 and returning BLOC->size bytes to the free area. */
|
|
722
|
|
723 static void
|
|
724 free_bloc (bloc_ptr bloc)
|
|
725 {
|
|
726 heap_ptr heap = bloc->heap;
|
|
727
|
|
728 if (r_alloc_freeze_level)
|
|
729 {
|
|
730 bloc->variable = (POINTER *) NIL;
|
|
731 return;
|
|
732 }
|
|
733
|
|
734 resize_bloc (bloc, 0);
|
|
735
|
|
736 if (bloc == first_bloc && bloc == last_bloc)
|
|
737 {
|
|
738 first_bloc = last_bloc = NIL_BLOC;
|
|
739 }
|
|
740 else if (bloc == last_bloc)
|
|
741 {
|
|
742 last_bloc = bloc->prev;
|
|
743 last_bloc->next = NIL_BLOC;
|
|
744 }
|
|
745 else if (bloc == first_bloc)
|
|
746 {
|
|
747 first_bloc = bloc->next;
|
|
748 first_bloc->prev = NIL_BLOC;
|
|
749 }
|
|
750 else
|
|
751 {
|
|
752 bloc->next->prev = bloc->prev;
|
|
753 bloc->prev->next = bloc->next;
|
|
754 }
|
|
755
|
|
756 /* Update the records of which blocs are in HEAP. */
|
|
757 if (heap->first_bloc == bloc)
|
|
758 {
|
|
759 if (bloc->next != 0 && bloc->next->heap == heap)
|
|
760 heap->first_bloc = bloc->next;
|
|
761 else
|
|
762 heap->first_bloc = heap->last_bloc = NIL_BLOC;
|
|
763 }
|
|
764 if (heap->last_bloc == bloc)
|
|
765 {
|
|
766 if (bloc->prev != 0 && bloc->prev->heap == heap)
|
|
767 heap->last_bloc = bloc->prev;
|
|
768 else
|
|
769 heap->first_bloc = heap->last_bloc = NIL_BLOC;
|
|
770 }
|
|
771
|
|
772 relinquish ();
|
|
773 free (bloc);
|
|
774 }
|
|
775
|
|
776 /* Interface routines. */
|
|
777
|
|
778 /* Obtain SIZE bytes of storage from the free pool, or the system, as
|
|
779 necessary. If relocatable blocs are in use, this means relocating
|
|
780 them. This function gets plugged into the GNU malloc's __morecore
|
|
781 hook.
|
|
782
|
|
783 We provide hysteresis, never relocating by less than extra_bytes.
|
|
784
|
|
785 If we're out of memory, we should return zero, to imitate the other
|
|
786 __morecore hook values - in particular, __default_morecore in the
|
|
787 GNU malloc package. */
|
|
788
|
|
789 POINTER r_alloc_sbrk (ptrdiff_t size);
|
|
790 POINTER
|
|
791 r_alloc_sbrk (ptrdiff_t size)
|
|
792 {
|
|
793 register bloc_ptr b;
|
|
794 POINTER address;
|
|
795
|
|
796 if (! r_alloc_initialized)
|
|
797 init_ralloc ();
|
|
798
|
|
799 if (! use_relocatable_buffers)
|
|
800 return (*real_morecore) (size);
|
|
801
|
|
802 if (size == 0)
|
|
803 return virtual_break_value;
|
|
804
|
|
805 if (size > 0)
|
|
806 {
|
|
807 /* Allocate a page-aligned space. GNU malloc would reclaim an
|
|
808 extra space if we passed an unaligned one. But we could
|
|
809 not always find a space which is contiguous to the previous. */
|
|
810 POINTER new_bloc_start;
|
|
811 heap_ptr h = first_heap;
|
440
|
812 size_t get = ROUNDUP (size);
|
428
|
813
|
|
814 address = (POINTER) ROUNDUP (virtual_break_value);
|
|
815
|
|
816 /* Search the list upward for a heap which is large enough. */
|
|
817 while ((char *) h->end < (char *) MEM_ROUNDUP ((char *)address + get))
|
|
818 {
|
|
819 h = h->next;
|
|
820 if (h == NIL_HEAP)
|
|
821 break;
|
|
822 address = (POINTER) ROUNDUP (h->start);
|
|
823 }
|
|
824
|
|
825 /* If not found, obtain more space. */
|
|
826 if (h == NIL_HEAP)
|
|
827 {
|
|
828 get += extra_bytes + page_size;
|
|
829
|
|
830 if (! obtain (address, get))
|
|
831 return 0;
|
|
832
|
|
833 if (first_heap == last_heap)
|
|
834 address = (POINTER) ROUNDUP (virtual_break_value);
|
|
835 else
|
|
836 address = (POINTER) ROUNDUP (last_heap->start);
|
|
837 h = last_heap;
|
|
838 }
|
|
839
|
|
840 new_bloc_start = (POINTER) MEM_ROUNDUP ((char *)address + get);
|
|
841
|
|
842 if (first_heap->bloc_start < new_bloc_start)
|
|
843 {
|
|
844 /* This is no clean solution - no idea how to do it better. */
|
|
845 if (r_alloc_freeze_level)
|
|
846 return NIL;
|
|
847
|
|
848 /* There is a bug here: if the above obtain call succeeded, but the
|
|
849 relocate_blocs call below does not succeed, we need to free
|
|
850 the memory that we got with obtain. */
|
|
851
|
|
852 /* Move all blocs upward. */
|
|
853 if (! relocate_blocs (first_bloc, h, new_bloc_start))
|
|
854 return 0;
|
|
855
|
|
856 /* Note that (POINTER)(h+1) <= new_bloc_start since
|
|
857 get >= page_size, so the following does not destroy the heap
|
|
858 header. */
|
|
859 for (b = last_bloc; b != NIL_BLOC; b = b->prev)
|
|
860 {
|
440
|
861 memmove (b->new_data, b->data, b->size);
|
428
|
862 *b->variable = b->data = b->new_data;
|
|
863 }
|
|
864
|
|
865 h->bloc_start = new_bloc_start;
|
|
866
|
|
867 update_heap_bloc_correspondence (first_bloc, h);
|
|
868 }
|
|
869 if (h != first_heap)
|
|
870 {
|
|
871 /* Give up managing heaps below the one the new
|
|
872 virtual_break_value points to. */
|
|
873 first_heap->prev = NIL_HEAP;
|
|
874 first_heap->next = h->next;
|
|
875 first_heap->start = h->start;
|
|
876 first_heap->end = h->end;
|
|
877 first_heap->free = h->free;
|
|
878 first_heap->first_bloc = h->first_bloc;
|
|
879 first_heap->last_bloc = h->last_bloc;
|
|
880 first_heap->bloc_start = h->bloc_start;
|
|
881
|
|
882 if (first_heap->next)
|
|
883 first_heap->next->prev = first_heap;
|
|
884 else
|
|
885 last_heap = first_heap;
|
|
886 }
|
|
887
|
|
888 memset (address, 0, size);
|
|
889 }
|
|
890 else /* size < 0 */
|
|
891 {
|
440
|
892 size_t excess = (char *)first_heap->bloc_start
|
428
|
893 - ((char *)virtual_break_value + size);
|
|
894
|
|
895 address = virtual_break_value;
|
|
896
|
|
897 if (r_alloc_freeze_level == 0 && excess > 2 * extra_bytes)
|
|
898 {
|
|
899 excess -= extra_bytes;
|
|
900 first_heap->bloc_start
|
|
901 = (POINTER) MEM_ROUNDUP ((char *)first_heap->bloc_start - excess);
|
|
902
|
|
903 relocate_blocs (first_bloc, first_heap, first_heap->bloc_start);
|
|
904
|
|
905 for (b = first_bloc; b != NIL_BLOC; b = b->next)
|
|
906 {
|
440
|
907 memmove (b->new_data, b->data, b->size);
|
428
|
908 *b->variable = b->data = b->new_data;
|
|
909 }
|
|
910 }
|
|
911
|
|
912 if ((char *)virtual_break_value + size < (char *)first_heap->start)
|
|
913 {
|
|
914 /* We found an additional space below the first heap */
|
|
915 first_heap->start = (POINTER) ((char *)virtual_break_value + size);
|
|
916 }
|
|
917 }
|
|
918
|
|
919 virtual_break_value = (POINTER) ((char *)address + size);
|
|
920 break_value = (last_bloc
|
|
921 ? last_bloc->data + last_bloc->size
|
|
922 : first_heap->bloc_start);
|
|
923 if (size < 0)
|
|
924 relinquish ();
|
|
925
|
|
926 return address;
|
|
927 }
|
|
928
|
|
929 /* Allocate a relocatable bloc of storage of size SIZE. A pointer to
|
|
930 the data is returned in *PTR. PTR is thus the address of some variable
|
|
931 which will use the data area.
|
|
932
|
|
933 The allocation of 0 bytes is valid.
|
|
934 In case r_alloc_freeze is set, a best fit of unused blocs could be done
|
|
935 before allocating a new area. Not yet done.
|
|
936
|
|
937 If we can't allocate the necessary memory, set *PTR to zero, and
|
|
938 return zero. */
|
|
939
|
440
|
940 POINTER r_alloc (POINTER *ptr, size_t size);
|
428
|
941 POINTER
|
440
|
942 r_alloc (POINTER *ptr, size_t size)
|
428
|
943 {
|
|
944 bloc_ptr new_bloc;
|
|
945
|
|
946 if (! r_alloc_initialized)
|
|
947 init_ralloc ();
|
|
948
|
|
949 new_bloc = get_bloc (size);
|
|
950 if (new_bloc)
|
|
951 {
|
|
952 new_bloc->variable = ptr;
|
|
953 *ptr = new_bloc->data;
|
|
954 }
|
|
955 else
|
|
956 *ptr = 0;
|
|
957
|
|
958 return *ptr;
|
|
959 }
|
|
960
|
|
961 /* Free a bloc of relocatable storage whose data is pointed to by PTR.
|
|
962 Store 0 in *PTR to show there's no block allocated. */
|
|
963
|
|
964 void r_alloc_free (POINTER *ptr);
|
|
965 void
|
|
966 r_alloc_free (POINTER *ptr)
|
|
967 {
|
|
968 register bloc_ptr dead_bloc;
|
|
969
|
|
970 if (! r_alloc_initialized)
|
|
971 init_ralloc ();
|
|
972
|
|
973 dead_bloc = find_bloc (ptr);
|
|
974 if (dead_bloc == NIL_BLOC)
|
|
975 abort ();
|
|
976
|
|
977 free_bloc (dead_bloc);
|
|
978 *ptr = 0;
|
|
979
|
|
980 #ifdef emacs
|
|
981 refill_memory_reserve ();
|
|
982 #endif
|
|
983 }
|
|
984
|
|
985 /* Given a pointer at address PTR to relocatable data, resize it to SIZE.
|
|
986 Do this by shifting all blocks above this one up in memory, unless
|
|
987 SIZE is less than or equal to the current bloc size, in which case
|
|
988 do nothing.
|
|
989
|
|
990 In case r_alloc_freeze is set, a new bloc is allocated, and the
|
|
991 memory copied to it. Not very efficient. We could traverse the
|
|
992 bloc_list for a best fit of free blocs first.
|
|
993
|
|
994 Change *PTR to reflect the new bloc, and return this value.
|
|
995
|
|
996 If more memory cannot be allocated, then leave *PTR unchanged, and
|
|
997 return zero. */
|
|
998
|
440
|
999 POINTER r_re_alloc (POINTER *ptr, size_t size);
|
428
|
1000 POINTER
|
440
|
1001 r_re_alloc (POINTER *ptr, size_t size)
|
428
|
1002 {
|
|
1003 register bloc_ptr bloc;
|
|
1004
|
|
1005 if (! r_alloc_initialized)
|
|
1006 init_ralloc ();
|
|
1007
|
|
1008 if (!*ptr)
|
|
1009 return r_alloc (ptr, size);
|
|
1010 if (!size)
|
|
1011 {
|
|
1012 r_alloc_free (ptr);
|
|
1013 return r_alloc (ptr, 0);
|
|
1014 }
|
|
1015
|
|
1016 bloc = find_bloc (ptr);
|
|
1017 if (bloc == NIL_BLOC)
|
|
1018 abort ();
|
|
1019
|
|
1020 if (size < bloc->size)
|
|
1021 {
|
|
1022 /* Wouldn't it be useful to actually resize the bloc here? */
|
|
1023 /* I think so too, but not if it's too expensive... */
|
|
1024 if ((bloc->size - MEM_ROUNDUP (size) >= page_size)
|
|
1025 && r_alloc_freeze_level == 0)
|
|
1026 {
|
|
1027 resize_bloc (bloc, MEM_ROUNDUP (size));
|
|
1028 /* Never mind if this fails, just do nothing... */
|
|
1029 /* It *should* be infallible! */
|
|
1030 }
|
|
1031 }
|
|
1032 else if (size > bloc->size)
|
|
1033 {
|
|
1034 if (r_alloc_freeze_level)
|
|
1035 {
|
|
1036 bloc_ptr new_bloc;
|
|
1037 new_bloc = get_bloc (MEM_ROUNDUP (size));
|
|
1038 if (new_bloc)
|
|
1039 {
|
|
1040 new_bloc->variable = ptr;
|
|
1041 *ptr = new_bloc->data;
|
|
1042 bloc->variable = (POINTER *) NIL;
|
|
1043 }
|
|
1044 else
|
|
1045 return NIL;
|
|
1046 }
|
|
1047 else
|
|
1048 {
|
|
1049 if (! resize_bloc (bloc, MEM_ROUNDUP (size)))
|
|
1050 return NIL;
|
|
1051 }
|
|
1052 }
|
|
1053 return *ptr;
|
|
1054 }
|
|
1055
|
|
1056 /* Disable relocations, after making room for at least SIZE bytes
|
|
1057 of non-relocatable heap if possible. The relocatable blocs are
|
|
1058 guaranteed to hold still until thawed, even if this means that
|
|
1059 malloc must return a null pointer. */
|
|
1060
|
|
1061 void r_alloc_freeze (long size);
|
|
1062 void
|
|
1063 r_alloc_freeze (long size)
|
|
1064 {
|
|
1065 if (! r_alloc_initialized)
|
|
1066 init_ralloc ();
|
|
1067
|
|
1068 /* If already frozen, we can't make any more room, so don't try. */
|
|
1069 if (r_alloc_freeze_level > 0)
|
|
1070 size = 0;
|
|
1071 /* If we can't get the amount requested, half is better than nothing. */
|
|
1072 while (size > 0 && r_alloc_sbrk (size) == 0)
|
|
1073 size /= 2;
|
|
1074 ++r_alloc_freeze_level;
|
|
1075 if (size > 0)
|
|
1076 r_alloc_sbrk (-size);
|
|
1077 }
|
|
1078
|
|
1079 void r_alloc_thaw (void);
|
|
1080 void
|
|
1081 r_alloc_thaw (void)
|
|
1082 {
|
|
1083
|
|
1084 if (! r_alloc_initialized)
|
|
1085 init_ralloc ();
|
|
1086
|
|
1087 if (--r_alloc_freeze_level < 0)
|
|
1088 abort ();
|
|
1089
|
|
1090 /* This frees all unused blocs. It is not too inefficient, as the resize
|
440
|
1091 and memmove is done only once. Afterwards, all unreferenced blocs are
|
428
|
1092 already shrunk to zero size. */
|
|
1093 if (!r_alloc_freeze_level)
|
|
1094 {
|
|
1095 bloc_ptr *b = &first_bloc;
|
|
1096 while (*b)
|
|
1097 if (!(*b)->variable)
|
|
1098 free_bloc (*b);
|
|
1099 else
|
|
1100 b = &(*b)->next;
|
|
1101 }
|
|
1102 }
|
|
1103
|
|
1104
|
|
1105 /* The hook `malloc' uses for the function which gets more space
|
|
1106 from the system. */
|
|
1107 #ifndef DOUG_LEA_MALLOC
|
|
1108 extern POINTER (*__morecore) (ptrdiff_t size);
|
|
1109 #endif
|
|
1110
|
|
1111 /* Initialize various things for memory allocation. */
|
|
1112
|
|
1113 void
|
|
1114 init_ralloc (void)
|
|
1115 {
|
|
1116 if (r_alloc_initialized)
|
|
1117 return;
|
|
1118
|
|
1119 r_alloc_initialized = 1;
|
|
1120 real_morecore = (POINTER (*) (ptrdiff_t)) __morecore;
|
|
1121 __morecore =
|
|
1122 #ifdef __GNUC__
|
|
1123 (__typeof__ (__morecore))
|
|
1124 #endif
|
|
1125 r_alloc_sbrk;
|
|
1126
|
|
1127 first_heap = last_heap = &heap_base;
|
|
1128 first_heap->next = first_heap->prev = NIL_HEAP;
|
|
1129 first_heap->start = first_heap->bloc_start
|
|
1130 = virtual_break_value = break_value = (*real_morecore) (0);
|
|
1131 if (break_value == NIL)
|
|
1132 abort ();
|
|
1133
|
|
1134 page_size = PAGE;
|
|
1135 extra_bytes = ROUNDUP (50000);
|
|
1136
|
|
1137 #ifdef DOUG_LEA_MALLOC
|
|
1138 mallopt (M_TOP_PAD, 64 * 4096);
|
|
1139 #else
|
|
1140 #if 0 /* Hasn't been synched yet */
|
|
1141 /* Give GNU malloc's morecore some hysteresis
|
|
1142 so that we move all the relocatable blocks much less often. */
|
|
1143 __malloc_extra_blocks = 64;
|
|
1144 #endif
|
|
1145 #endif
|
|
1146
|
|
1147 first_heap->end = (POINTER) ROUNDUP (first_heap->start);
|
|
1148
|
|
1149 /* The extra call to real_morecore guarantees that the end of the
|
|
1150 address space is a multiple of page_size, even if page_size is
|
|
1151 not really the page size of the system running the binary in
|
|
1152 which page_size is stored. This allows a binary to be built on a
|
|
1153 system with one page size and run on a system with a smaller page
|
|
1154 size. */
|
|
1155 (*real_morecore) (first_heap->end - first_heap->start);
|
|
1156
|
|
1157 /* Clear the rest of the last page; this memory is in our address space
|
|
1158 even though it is after the sbrk value. */
|
|
1159 /* Doubly true, with the additional call that explicitly adds the
|
|
1160 rest of that page to the address space. */
|
|
1161 memset (first_heap->start, 0, first_heap->end - first_heap->start);
|
|
1162 virtual_break_value = break_value = first_heap->bloc_start = first_heap->end;
|
|
1163 use_relocatable_buffers = 1;
|
|
1164 }
|
|
1165
|
|
1166 #if defined (emacs) && defined (DOUG_LEA_MALLOC)
|
|
1167
|
|
1168 /* Reinitialize the morecore hook variables after restarting a dumped
|
|
1169 Emacs. This is needed when using Doug Lea's malloc from GNU libc. */
|
|
1170 void r_alloc_reinit (void);
|
|
1171 void
|
|
1172 r_alloc_reinit (void)
|
|
1173 {
|
|
1174 /* Only do this if the hook has been reset, so that we don't get an
|
|
1175 infinite loop, in case Emacs was linked statically. */
|
|
1176 if ( (POINTER (*) (ptrdiff_t)) __morecore != r_alloc_sbrk)
|
|
1177 {
|
|
1178 real_morecore = (POINTER (*) (ptrdiff_t)) __morecore;
|
|
1179 __morecore =
|
|
1180 #ifdef __GNUC__
|
|
1181 (__typeof__ (__morecore))
|
|
1182 #endif
|
|
1183 r_alloc_sbrk;
|
|
1184 }
|
|
1185 }
|
|
1186 #if 0
|
|
1187 #ifdef DEBUG
|
|
1188
|
|
1189 void
|
|
1190 r_alloc_check (void)
|
|
1191 {
|
|
1192 int found = 0;
|
|
1193 heap_ptr h, ph = 0;
|
|
1194 bloc_ptr b, pb = 0;
|
|
1195
|
|
1196 if (!r_alloc_initialized)
|
|
1197 return;
|
|
1198
|
|
1199 assert (first_heap);
|
|
1200 assert (last_heap->end <= (POINTER) sbrk (0));
|
|
1201 assert ((POINTER) first_heap < first_heap->start);
|
|
1202 assert (first_heap->start <= virtual_break_value);
|
|
1203 assert (virtual_break_value <= first_heap->end);
|
|
1204
|
|
1205 for (h = first_heap; h; h = h->next)
|
|
1206 {
|
|
1207 assert (h->prev == ph);
|
|
1208 assert ((POINTER) ROUNDUP (h->end) == h->end);
|
|
1209 #if 0 /* ??? The code in ralloc.c does not really try to ensure
|
|
1210 the heap start has any sort of alignment.
|
|
1211 Perhaps it should. */
|
|
1212 assert ((POINTER) MEM_ROUNDUP (h->start) == h->start);
|
|
1213 #endif
|
|
1214 assert ((POINTER) MEM_ROUNDUP (h->bloc_start) == h->bloc_start);
|
|
1215 assert (h->start <= h->bloc_start && h->bloc_start <= h->end);
|
|
1216
|
|
1217 if (ph)
|
|
1218 {
|
|
1219 assert (ph->end < h->start);
|
|
1220 assert (h->start <= (POINTER)h && (POINTER)(h+1) <= h->bloc_start);
|
|
1221 }
|
|
1222
|
|
1223 if (h->bloc_start <= break_value && break_value <= h->end)
|
|
1224 found = 1;
|
|
1225
|
|
1226 ph = h;
|
|
1227 }
|
|
1228
|
|
1229 assert (found);
|
|
1230 assert (last_heap == ph);
|
|
1231
|
|
1232 for (b = first_bloc; b; b = b->next)
|
|
1233 {
|
|
1234 assert (b->prev == pb);
|
|
1235 assert ((POINTER) MEM_ROUNDUP (b->data) == b->data);
|
440
|
1236 assert ((size_t) MEM_ROUNDUP (b->size) == b->size);
|
428
|
1237
|
|
1238 ph = 0;
|
|
1239 for (h = first_heap; h; h = h->next)
|
|
1240 {
|
|
1241 if (h->bloc_start <= b->data && b->data + b->size <= h->end)
|
|
1242 break;
|
|
1243 ph = h;
|
|
1244 }
|
|
1245
|
|
1246 assert (h);
|
|
1247
|
|
1248 if (pb && pb->data + pb->size != b->data)
|
|
1249 {
|
|
1250 assert (ph && b->data == h->bloc_start);
|
|
1251 while (ph)
|
|
1252 {
|
|
1253 if (ph->bloc_start <= pb->data
|
|
1254 && pb->data + pb->size <= ph->end)
|
|
1255 {
|
|
1256 assert (pb->data + pb->size + b->size > ph->end);
|
|
1257 break;
|
|
1258 }
|
|
1259 else
|
|
1260 {
|
|
1261 assert (ph->bloc_start + b->size > ph->end);
|
|
1262 }
|
|
1263 ph = ph->prev;
|
|
1264 }
|
|
1265 }
|
|
1266 pb = b;
|
|
1267 }
|
|
1268
|
|
1269 assert (last_bloc == pb);
|
|
1270
|
|
1271 if (last_bloc)
|
|
1272 assert (last_bloc->data + last_bloc->size == break_value);
|
|
1273 else
|
|
1274 assert (first_heap->bloc_start == break_value);
|
|
1275 }
|
|
1276 #endif /* DEBUG */
|
|
1277 #endif /* 0 */
|
|
1278
|
|
1279 #endif
|
|
1280
|
|
1281 #else /* HAVE_MMAP */
|
|
1282
|
|
1283 /*
|
|
1284 A relocating allocator built using the mmap(2) facility available
|
|
1285 in some OSes. Based on another version written by Paul Flinders,
|
|
1286 from which code (and comments) are snarfed.
|
|
1287
|
|
1288 The OS should support mmap() with MAP_ANONYMOUS attribute, or have
|
|
1289 /dev/zero. It should support private memory mapping.
|
|
1290
|
|
1291 Paul Flinders wrote a version which works well for systems that
|
|
1292 allow callers to specify (virtual) addresses to mmap().
|
|
1293 Unfortunately, such a scheme doesn't work for certain systems like
|
|
1294 HP-UX that have a system-wide virtual->real address map, and
|
|
1295 consequently impose restrictions on the virtual address values
|
|
1296 permitted.
|
|
1297
|
|
1298 NB: The mapping scheme in HP-UX is motivated by the inverted page
|
|
1299 table design in some HP processors.
|
|
1300
|
|
1301 This alternate implementation allows for the addresses to be
|
|
1302 optionally chosen by the system. Fortunately, buffer allocation
|
|
1303 doesn't insist upon contiguous memory which Flinders' scheme
|
|
1304 provides, and this one doesn't.
|
|
1305
|
|
1306 We don't really provide for hysteresis here, but add some metering
|
|
1307 to monitor how poorly the allocator actually works. See the
|
|
1308 documentation for `mmap-hysteresis'.
|
|
1309
|
|
1310 This implementation actually cycles through the blocks allocated
|
|
1311 via mmap() and only sends it to free() if it wasn't one of them.
|
|
1312 Unfortunately, this is O(n) in the number of mmapped blocks. (Not
|
|
1313 really, as we have a hash table which tries to reduce the cost.)
|
|
1314 Also, this dereferences the pointer passed, so it would cause a
|
|
1315 segfault if garbage was passed to it. */
|
|
1316
|
|
1317 #include <fcntl.h>
|
|
1318 #include <sys/mman.h>
|
|
1319 #include <stdio.h>
|
|
1320
|
|
1321 typedef void *VM_ADDR; /* VM addresses */
|
442
|
1322 static const VM_ADDR VM_FAILURE_ADDR = (VM_ADDR) -1; /* mmap returns this when it fails. */
|
428
|
1323
|
|
1324 /* Configuration for relocating allocator. */
|
|
1325
|
|
1326 /* #define MMAP_GENERATE_ADDRESSES */
|
|
1327 /* Define this if you want Emacs to manage the address table.
|
|
1328 It is not recommended unless you have major problems with the
|
|
1329 default scheme, which allows the OS to pick addresses. */
|
|
1330
|
|
1331 /* USELESS_LOWER_ADDRESS_BITS defines the number of bits which can be
|
|
1332 discarded while computing the hash, as they're always zero. The
|
|
1333 default is appropriate for a page size of 4096 bytes. */
|
|
1334
|
|
1335 #define USELESS_LOWER_ADDRESS_BITS 12
|
|
1336
|
|
1337
|
|
1338 /* Size of hash table for inverted VM_ADDR->MMAP_HANDLE lookup */
|
|
1339
|
|
1340 #define MHASH_PRIME 89
|
|
1341
|
|
1342
|
|
1343 /* Whether we want to enable metering of some ralloc performance.
|
|
1344 This incurs a constant penalty for each mmap operation. */
|
|
1345
|
|
1346 #define MMAP_METERING
|
|
1347
|
|
1348
|
|
1349 /* Rename the following to protect against a some smartness elsewhere.
|
|
1350 We need access to the allocator used for non-mmap allocation
|
|
1351 elsewhere, in case we get passed a handle that we didn't allocate
|
|
1352 ourselves. Currently, this default allocator is also used to
|
|
1353 maintain local structures for relocatable blocks. */
|
|
1354
|
|
1355 #define UNDERLYING_MALLOC malloc
|
|
1356 #define UNDERLYING_FREE free
|
|
1357 #define UNDERLYING_REALLOC realloc
|
|
1358
|
|
1359 /* MAP_ADDRCHOICE_FLAG is set to MAP_FIXED if MMAP_GENERATE_ADDRESSES
|
|
1360 is defined, and MAP_VARIABLE otherwise. Some losing systems don't
|
|
1361 define the _FIXED/_VARIABLE flags, in which case it is set to 0 */
|
|
1362
|
|
1363 #ifdef MMAP_GENERATE_ADDRESSES
|
|
1364 # ifdef MAP_FIXED
|
|
1365 # define MAP_ADDRCHOICE_FLAG MAP_FIXED
|
|
1366 # endif
|
|
1367 #else /* !MMAP_GENERATE_ADDRESSES */
|
|
1368 # ifdef MAP_VARIABLE
|
|
1369 # define MAP_ADDRCHOICE_FLAG MAP_VARIABLE
|
|
1370 # endif
|
|
1371 #endif /* MMAP_GENERATE_ADDRESSES */
|
|
1372
|
|
1373 /* Default case. */
|
|
1374 #ifndef MAP_ADDRCHOICE_FLAG
|
|
1375 # define MAP_ADDRCHOICE_FLAG 0
|
|
1376 #endif /* MAP_ADDRCHOICE_FLAG */
|
|
1377
|
|
1378 #ifdef MAP_ANONYMOUS
|
|
1379 # define MAP_FLAGS (MAP_PRIVATE | MAP_ADDRCHOICE_FLAG | MAP_ANONYMOUS)
|
|
1380 #else
|
|
1381 # define MAP_FLAGS (MAP_PRIVATE | MAP_ADDRCHOICE_FLAG)
|
|
1382 #endif /* MAP_ANONYMOUS */
|
|
1383
|
|
1384
|
|
1385 /* (ptf): A flag to indicate whether we have initialized ralloc yet. For
|
|
1386 Emacs's sake, please do not make this local to malloc_init; on some
|
|
1387 machines, the dumping procedure makes all static variables
|
|
1388 read-only. On these machines, the word static is #defined to be
|
|
1389 the empty string, meaning that r_alloc_initialized becomes an
|
|
1390 automatic variable, and loses its value each time Emacs is started up.
|
|
1391
|
|
1392 If we're using mmap this flag has three possible values
|
|
1393 0 - initial value
|
|
1394 1 - Normal value when running temacs. In this case buffers
|
|
1395 are allocated using malloc so that any data that they
|
|
1396 contain becomes part of the undumped executable.
|
|
1397 2 - Normal value when running emacs */
|
|
1398 static int r_alloc_initialized = 0;
|
|
1399
|
|
1400 /* (ptf): Macros for rounding. Note that rounding to any value is possible
|
|
1401 by changing the definition of PAGE. */
|
|
1402 #define PAGE (getpagesize ())
|
|
1403 #define PAGES_FOR(size) (((unsigned long int) (size) + page_size - 1)/page_size)
|
|
1404 #define ROUNDUP(size) ((unsigned long int)PAGES_FOR(size)*page_size)
|
|
1405
|
|
1406
|
|
1407 /* DEV_ZERO_FD is -1 normally, but for systems without MAP_ANONYMOUS
|
|
1408 points to a file descriptor opened on /dev/zero */
|
|
1409
|
|
1410 static int DEV_ZERO_FD = -1;
|
|
1411
|
|
1412
|
|
1413 /* We actually need a data structure that can be usefully structured
|
|
1414 based on the VM address, and allows an ~O(1) lookup on an arbitrary
|
|
1415 address, i.e. a hash table. Maybe the XEmacs hash table can be
|
|
1416 coaxed enough. At the moment, we use lookup on a hash table to
|
|
1417 decide whether to do an O(n) search on the malloced block list.
|
|
1418 Addresses are hashed to a bucket modulo MHASH_PRIME. */
|
|
1419
|
|
1420
|
|
1421 /* We settle for a standard doubly-linked-list. The dynarr type isn't
|
|
1422 very amenable to deletion of items in the middle, so we conjure up
|
|
1423 yet another stupid datastructure. The structure is maintained as a
|
|
1424 ring, and the singleton ring has the sole element as its left and
|
|
1425 right neighbours. */
|
|
1426
|
|
1427 static void init_MHASH_table (void); /* Forward reference */
|
|
1428
|
|
1429 typedef struct alloc_dll
|
|
1430 {
|
|
1431 size_t size; /* #bytes currently in use */
|
|
1432 size_t space_for; /* #bytes we really have */
|
|
1433 POINTER* aliased_address; /* Address of aliased variable, to tweak if relocating */
|
|
1434 VM_ADDR vm_addr; /* VM address returned by mmap */
|
|
1435 struct alloc_dll *left; /* Left link in circular doubly linked list */
|
|
1436 struct alloc_dll *right;
|
|
1437 } *MMAP_HANDLE;
|
|
1438
|
|
1439 static MMAP_HANDLE mmap_start = 0; /* Head of linked list */
|
|
1440 static size_t page_size = 0; /* Size of VM pages */
|
458
|
1441 static Fixnum mmap_hysteresis; /* Logically a "size_t" */
|
428
|
1442
|
|
1443 /* Get a new handle for a fresh block. */
|
|
1444 static MMAP_HANDLE
|
|
1445 new_mmap_handle (size_t nsiz)
|
|
1446 {
|
|
1447 MMAP_HANDLE h = (MMAP_HANDLE) UNDERLYING_MALLOC( sizeof (struct alloc_dll));
|
|
1448 if ( h == 0) return 0;
|
|
1449 h->size = nsiz;
|
|
1450 if (mmap_start == 0)
|
|
1451 {
|
|
1452 init_MHASH_table ();
|
|
1453 mmap_start = h; mmap_start->left = h; mmap_start->right = h;
|
|
1454 }
|
|
1455 {
|
|
1456 MMAP_HANDLE prev = mmap_start->left;
|
|
1457 MMAP_HANDLE nex = mmap_start;
|
|
1458
|
|
1459 /* Four pointers need fixing. */
|
|
1460 h->right = nex;
|
|
1461 h->left = prev;
|
|
1462 prev->right = h;
|
|
1463 nex->left = h;
|
|
1464 }
|
|
1465 return h;
|
|
1466 }
|
|
1467
|
|
1468 /* Find a handle given the aliased address using linear search. */
|
|
1469 static MMAP_HANDLE
|
|
1470 find_mmap_handle_lsearch (POINTER *alias)
|
|
1471 {
|
|
1472 MMAP_HANDLE h = mmap_start;
|
|
1473 if (h == 0) return 0;
|
|
1474 do {
|
|
1475 if (h->aliased_address == alias && *alias == h->vm_addr)
|
|
1476 return h;
|
|
1477 h = h->right;
|
|
1478 } while( h != mmap_start );
|
|
1479 return 0; /* Bogus alias passed. */
|
|
1480 }
|
|
1481
|
|
1482 /* Free a handle. */
|
|
1483 static void
|
|
1484 free_mmap_handle (MMAP_HANDLE h)
|
|
1485 {
|
|
1486 MMAP_HANDLE prev = h->left;
|
|
1487 MMAP_HANDLE nex = h->right;
|
|
1488 if (prev == h || nex == h) /* In fact, this should be && */
|
|
1489 { /* We're the singleton dll */
|
|
1490 UNDERLYING_FREE( h ); /* Free the sole item */
|
|
1491 mmap_start = 0; return;
|
|
1492 }
|
|
1493 else if (h == mmap_start)
|
|
1494 {
|
|
1495 mmap_start = nex; /* Make sure mmap_start isn't bogus. */
|
|
1496 }
|
|
1497 prev->right = nex;
|
|
1498 nex->left = prev;
|
|
1499 UNDERLYING_FREE( h );
|
|
1500 }
|
|
1501
|
|
1502 /* A simple hash table to speed up the inverted lookup of
|
|
1503 VM_ADDR->MMAP_HANDLE. We maintain the number of hits for a
|
|
1504 particular bucket. We invalidate a hash table entry during block
|
|
1505 deletion if the hash has cached the deleted block's address. */
|
|
1506
|
|
1507 /* Simple hash check. */
|
|
1508 struct {
|
|
1509 int n_hits; /* How many addresses map to this? */
|
|
1510 MMAP_HANDLE handle; /* What is the current handle? */
|
|
1511 VM_ADDR addr; /* What is its VM address? */
|
|
1512 } MHASH_HITS[ MHASH_PRIME ];
|
|
1513
|
|
1514 static void
|
|
1515 init_MHASH_table (void)
|
|
1516 {
|
|
1517 int i = 0;
|
|
1518 for (; i < MHASH_PRIME; i++)
|
|
1519 {
|
|
1520 MHASH_HITS[i].n_hits = 0;
|
|
1521 MHASH_HITS[i].addr = 0;
|
|
1522 MHASH_HITS[i].handle = 0;
|
|
1523 }
|
|
1524 }
|
|
1525
|
|
1526 /* Compute the hash value for an address. */
|
|
1527 static int
|
|
1528 MHASH (VM_ADDR addr)
|
|
1529 {
|
|
1530 #if (LONGBITS == 64)
|
|
1531 unsigned long int addr_shift = (unsigned long int)(addr) >> USELESS_LOWER_ADDRESS_BITS;
|
|
1532 #else
|
|
1533 unsigned int addr_shift = (unsigned int)(addr) >> USELESS_LOWER_ADDRESS_BITS;
|
|
1534 #endif
|
|
1535 int hval = addr_shift % MHASH_PRIME; /* We could have addresses which are -ve
|
|
1536 when converted to signed ints */
|
|
1537 return ((hval >= 0) ? hval : MHASH_PRIME + hval);
|
|
1538 }
|
|
1539
|
|
1540 /* Add a VM address with its corresponding handle to the table. */
|
|
1541 static void
|
|
1542 MHASH_ADD (VM_ADDR addr, MMAP_HANDLE h)
|
|
1543 {
|
|
1544 int kVal = MHASH( addr );
|
|
1545 if (MHASH_HITS[kVal].n_hits++ == 0)
|
|
1546 { /* Only overwrite the table if there were no hits so far. */
|
|
1547 MHASH_HITS[kVal].addr = addr;
|
|
1548 MHASH_HITS[kVal].handle = h;
|
|
1549 }
|
|
1550 }
|
|
1551
|
|
1552 /* Delete a VM address entry from the hash table. */
|
|
1553 static void
|
|
1554 MHASH_DEL (VM_ADDR addr)
|
|
1555 {
|
|
1556 int kVal = MHASH( addr );
|
|
1557 MHASH_HITS[kVal].n_hits--;
|
|
1558 if (addr == MHASH_HITS[kVal].addr)
|
|
1559 {
|
|
1560 MHASH_HITS[kVal].addr = 0; /* Invalidate cache. */
|
|
1561 MHASH_HITS[kVal].handle = 0;
|
|
1562 }
|
|
1563 }
|
|
1564
|
|
1565 /* End of hash buckets */
|
|
1566
|
|
1567 /* Metering malloc performance. */
|
|
1568 #ifdef MMAP_METERING
|
|
1569 /* If we're metering, we introduce some extra symbols to aid the noble
|
|
1570 cause of bloating XEmacs core size. */
|
|
1571
|
|
1572 static Lisp_Object Qmmap_times_mapped;
|
|
1573 static Lisp_Object Qmmap_pages_mapped;
|
|
1574 static Lisp_Object Qmmap_times_unmapped;
|
|
1575 static Lisp_Object Qmmap_times_remapped;
|
|
1576 static Lisp_Object Qmmap_didnt_copy;
|
|
1577 static Lisp_Object Qmmap_pages_copied;
|
|
1578 static Lisp_Object Qmmap_average_bumpval;
|
|
1579 static Lisp_Object Qmmap_wastage;
|
|
1580 static Lisp_Object Qmmap_live_pages;
|
|
1581 static Lisp_Object Qmmap_addr_looked_up;
|
|
1582 static Lisp_Object Qmmap_hash_worked;
|
|
1583 static Lisp_Object Qmmap_addrlist_size;
|
|
1584
|
|
1585 #define M_Map 0 /* How many times allocated? */
|
|
1586 #define M_Pages_Map 1 /* How many pages allocated? */
|
|
1587 #define M_Unmap 2 /* How many times freed? */
|
|
1588 #define M_Remap 3 /* How many times increased in size? */
|
|
1589 #define M_Didnt_Copy 4 /* How many times didn't need to copy? */
|
|
1590 #define M_Copy_Pages 5 /* Total # pages copied */
|
|
1591 #define M_Average_Bumpval 6 /* Average bump value */
|
|
1592 #define M_Wastage 7 /* Remaining (unused space) */
|
|
1593 #define M_Live_Pages 8 /* #live pages */
|
|
1594 #define M_Address_Lookup 9 /* How many times did we need to check if an addr is in the block? */
|
|
1595 #define M_Hash_Worked 10 /* How many times did the simple hash check work? */
|
|
1596 #define M_Addrlist_Size 11 /* What is the size of the XEmacs memory map? */
|
|
1597
|
|
1598 #define N_Meterables 12 /* Total number of meterables */
|
|
1599 #define MEMMETER(x) {x;}
|
|
1600 #define MVAL(x) (meter[x])
|
|
1601 #define MLVAL(x) (make_int (meter[x]))
|
|
1602 static int meter[N_Meterables];
|
|
1603
|
|
1604 DEFUN ("mmap-allocator-status", Fmmap_allocator_status, 0, 0, 0, /*
|
|
1605 Return some information about mmap-based allocator.
|
|
1606
|
|
1607 mmap-times-mapped: number of times r_alloc was called.
|
|
1608 mmap-pages-mapped: number of pages mapped by r_alloc calls only.
|
|
1609 mmap-times-unmapped: number of times r_free was called.
|
|
1610 mmap-times-remapped: number of times r_re_alloc was called.
|
|
1611 mmap-didnt-copy: number of times re-alloc did NOT have to move the block.
|
|
1612 mmap-pages-copied: total number of pages copied.
|
|
1613 mmap-average-bumpval: average increase in size demanded to re-alloc.
|
|
1614 mmap-wastage: total number of bytes allocated, but not currently in use.
|
|
1615 mmap-live-pages: total number of pages live.
|
|
1616 mmap-addr-looked-up: total number of times needed to check if addr is in block.
|
|
1617 mmap-hash-worked: total number of times the simple hash check worked.
|
|
1618 mmap-addrlist-size: number of entries in address picking list.
|
|
1619 */
|
|
1620 ())
|
|
1621 {
|
|
1622 Lisp_Object result = Qnil;
|
|
1623
|
|
1624 result = cons3 (Qmmap_addrlist_size, MLVAL (M_Addrlist_Size), result);
|
|
1625 result = cons3 (Qmmap_hash_worked, MLVAL (M_Hash_Worked), result);
|
|
1626 result = cons3 (Qmmap_addr_looked_up, MLVAL (M_Address_Lookup), result);
|
|
1627 result = cons3 (Qmmap_live_pages, MLVAL (M_Live_Pages), result);
|
|
1628 result = cons3 (Qmmap_wastage, MLVAL (M_Wastage), result);
|
|
1629 result = cons3 (Qmmap_average_bumpval,MLVAL (M_Average_Bumpval), result);
|
|
1630 result = cons3 (Qmmap_pages_copied, MLVAL (M_Copy_Pages), result);
|
|
1631 result = cons3 (Qmmap_didnt_copy, MLVAL (M_Didnt_Copy), result);
|
|
1632 result = cons3 (Qmmap_times_remapped, MLVAL (M_Remap), result);
|
|
1633 result = cons3 (Qmmap_times_unmapped, MLVAL (M_Unmap), result);
|
|
1634 result = cons3 (Qmmap_pages_mapped, MLVAL (M_Pages_Map), result);
|
|
1635 result = cons3 (Qmmap_times_mapped, MLVAL (M_Map), result);
|
|
1636
|
|
1637 return result;
|
|
1638 }
|
|
1639
|
|
1640 #else /* !MMAP_METERING */
|
|
1641
|
|
1642 #define MEMMETER(x)
|
|
1643 #define MVAL(x)
|
|
1644
|
|
1645 #endif /* MMAP_METERING */
|
|
1646
|
|
1647 static MMAP_HANDLE
|
|
1648 find_mmap_handle (POINTER *alias)
|
|
1649 {
|
|
1650 int kval = MHASH( *alias );
|
|
1651 MEMMETER( MVAL(M_Address_Lookup)++ )
|
|
1652 switch( MHASH_HITS[kval].n_hits)
|
|
1653 {
|
|
1654 case 0:
|
|
1655 MEMMETER( MVAL( M_Hash_Worked )++ )
|
|
1656 return 0;
|
|
1657
|
|
1658 case 1:
|
|
1659 if (*alias == MHASH_HITS[kval].addr)
|
|
1660 {
|
|
1661 MEMMETER( MVAL( M_Hash_Worked) ++ );
|
|
1662 return MHASH_HITS[kval].handle;
|
|
1663 }
|
|
1664 /* FALL THROUGH */
|
|
1665 default:
|
|
1666 return find_mmap_handle_lsearch( alias );
|
|
1667 } /* switch */
|
|
1668 }
|
|
1669
|
|
1670 /*
|
|
1671 Some kernels don't like being asked to pick addresses for mapping
|
|
1672 themselves---IRIX is known to become extremely slow if mmap is
|
|
1673 passed a ZERO as the first argument. In such cases, we use an
|
|
1674 address map which is managed local to the XEmacs process. The
|
|
1675 address map maintains an ordered linked list of (address, size,
|
|
1676 occupancy) triples ordered by the absolute address. Initially, a
|
|
1677 large address area is marked as being empty. The address picking
|
|
1678 scheme takes bites off the first block which is still empty and
|
|
1679 large enough. If mmap with the specified address fails, it is
|
|
1680 marked unavailable and not attempted thereafter. The scheme will
|
|
1681 keep fragmenting the large empty block until it finds an address
|
|
1682 which can be successfully mmapped, or until there are no free
|
|
1683 blocks of the given size left.
|
|
1684
|
|
1685 Note that this scheme, given its first-fit strategy, is prone to
|
|
1686 fragmentation of the first part of memory earmarked for this
|
|
1687 purpose. [ACP Vol I]. We can't use the workaround of using a
|
|
1688 randomized first fit because we don't want to presume too much
|
|
1689 about the memory map. Instead, we try to coalesce empty or
|
|
1690 unavailable blocks at any available opportunity. */
|
|
1691
|
|
1692 /* Initialization procedure for address picking scheme */
|
|
1693 static void Addr_Block_initialize(void);
|
|
1694
|
|
1695 /* Get a suitable VM_ADDR via mmap */
|
440
|
1696 static VM_ADDR New_Addr_Block (size_t sz);
|
428
|
1697
|
|
1698 /* Free a VM_ADDR allocated via New_Addr_Block */
|
440
|
1699 static void Free_Addr_Block (VM_ADDR addr, size_t sz);
|
428
|
1700
|
|
1701 #ifdef MMAP_GENERATE_ADDRESSES
|
|
1702 /* Implementation of the three calls for address picking when XEmacs is incharge */
|
|
1703
|
|
1704 /* The enum denotes the status of the following block. */
|
|
1705 typedef enum { empty = 0, occupied, unavailable } addr_status;
|
|
1706
|
|
1707 typedef struct addr_chain
|
|
1708 {
|
|
1709 POINTER addr;
|
440
|
1710 size_t sz;
|
428
|
1711 addr_status flag;
|
|
1712 struct addr_chain *next;
|
|
1713 } ADDRESS_BLOCK, *ADDRESS_CHAIN;
|
|
1714 /* NB: empty and unavailable blocks are concatenated. */
|
|
1715
|
|
1716 static ADDRESS_CHAIN addr_chain = 0;
|
|
1717 /* Start off the address block chain with a humongous address block
|
|
1718 which is empty to start with. Note that addr_chain is invariant
|
|
1719 WRT the addition/deletion of address blocks because of the assert
|
|
1720 in Coalesce() and the strict ordering of blocks by their address
|
|
1721 */
|
440
|
1722 static void
|
|
1723 Addr_Block_initialize (void)
|
428
|
1724 {
|
|
1725 MEMMETER( MVAL( M_Addrlist_Size )++)
|
|
1726 addr_chain = (ADDRESS_CHAIN) UNDERLYING_MALLOC( sizeof( ADDRESS_BLOCK ));
|
|
1727 addr_chain->next = 0; /* Last block in chain */
|
|
1728 addr_chain->sz = 0x0c000000; /* Size */
|
442
|
1729 addr_chain->addr = (POINTER) (0x04000000);
|
428
|
1730 addr_chain->flag = empty;
|
|
1731 }
|
|
1732
|
|
1733 /* Coalesce address blocks if they are contiguous. Only empty and
|
|
1734 unavailable slots are coalesced. */
|
440
|
1735 static void
|
|
1736 Coalesce_Addr_Blocks (void)
|
428
|
1737 {
|
|
1738 ADDRESS_CHAIN p;
|
|
1739 for (p = addr_chain; p; p = p->next)
|
|
1740 {
|
|
1741 while (p->next && p->flag == p->next->flag)
|
|
1742 {
|
|
1743 ADDRESS_CHAIN np;
|
|
1744 np = p->next;
|
|
1745
|
|
1746 if (p->flag == occupied) break; /* No cigar */
|
|
1747
|
|
1748 /* Check if the addresses are contiguous. */
|
|
1749 if (p->addr + p->sz != np->addr) break;
|
|
1750
|
|
1751 MEMMETER( MVAL( M_Addrlist_Size )--)
|
|
1752 /* We can coalesce these two. */
|
|
1753 p->sz += np->sz;
|
|
1754 p->next = np->next;
|
|
1755 assert( np != addr_chain ); /* We're not freeing the head of the list. */
|
|
1756 UNDERLYING_FREE( np );
|
|
1757 }
|
|
1758 } /* for all p */
|
|
1759 }
|
|
1760
|
|
1761 /* Get an empty address block of specified size. */
|
440
|
1762 static VM_ADDR
|
|
1763 New_Addr_Block (size_t sz)
|
428
|
1764 {
|
|
1765 ADDRESS_CHAIN p = addr_chain;
|
|
1766 VM_ADDR new_addr = VM_FAILURE_ADDR;
|
|
1767 for (; p; p = p->next)
|
|
1768 {
|
|
1769 if (p->flag == empty && p->sz > sz)
|
|
1770 {
|
|
1771 /* Create a new entry following p which is empty. */
|
|
1772 ADDRESS_CHAIN remainder = (ADDRESS_CHAIN) UNDERLYING_MALLOC( sizeof( ADDRESS_BLOCK ) );
|
|
1773 remainder->next = p->next;
|
|
1774 remainder->flag = empty;
|
|
1775 remainder->addr = p->addr + sz;
|
|
1776 remainder->sz = p->sz - sz;
|
|
1777
|
|
1778 MEMMETER( MVAL( M_Addrlist_Size )++)
|
|
1779
|
|
1780 /* Now make p become an occupied block with the appropriate size */
|
|
1781 p->next = remainder;
|
|
1782 p->sz = sz;
|
|
1783 new_addr = mmap( (VM_ADDR) p->addr, p->sz, PROT_READ|PROT_WRITE,
|
|
1784 MAP_FLAGS, DEV_ZERO_FD, 0 );
|
|
1785 if (new_addr == VM_FAILURE_ADDR)
|
|
1786 {
|
|
1787 p->flag = unavailable;
|
|
1788 continue;
|
|
1789 }
|
|
1790 p->flag = occupied;
|
|
1791 break;
|
|
1792 }
|
|
1793 }
|
|
1794 Coalesce_Addr_Blocks();
|
|
1795 return new_addr;
|
|
1796 }
|
|
1797
|
|
1798 /* Free an address block. We mark the block as being empty, and attempt to
|
|
1799 do any coalescing that may have resulted from this. */
|
440
|
1800 static void
|
|
1801 Free_Addr_Block (VM_ADDR addr, size_t sz)
|
428
|
1802 {
|
|
1803 ADDRESS_CHAIN p = addr_chain;
|
|
1804 for (; p; p = p->next )
|
|
1805 {
|
|
1806 if (p->addr == addr)
|
|
1807 {
|
|
1808 if (p->sz != sz) abort(); /* ACK! Shouldn't happen at all. */
|
|
1809 munmap( (VM_ADDR) p->addr, p->sz );
|
|
1810 p->flag = empty;
|
|
1811 break;
|
|
1812 }
|
|
1813 }
|
|
1814 if (!p) abort(); /* Can't happen... we've got a block to free which is not in
|
|
1815 the address list. */
|
|
1816 Coalesce_Addr_Blocks();
|
|
1817 }
|
|
1818 #else /* !MMAP_GENERATE_ADDRESSES */
|
|
1819 /* This is an alternate (simpler) implementation in cases where the
|
|
1820 address is picked by the kernel. */
|
|
1821
|
440
|
1822 static void
|
|
1823 Addr_Block_initialize (void)
|
428
|
1824 {
|
|
1825 /* Nothing. */
|
|
1826 }
|
|
1827
|
440
|
1828 static VM_ADDR
|
|
1829 New_Addr_Block (size_t sz)
|
428
|
1830 {
|
|
1831 return mmap (0, sz, PROT_READ|PROT_WRITE, MAP_FLAGS,
|
|
1832 DEV_ZERO_FD, 0 );
|
|
1833 }
|
|
1834
|
440
|
1835 static void
|
|
1836 Free_Addr_Block (VM_ADDR addr, size_t sz)
|
428
|
1837 {
|
|
1838 munmap ((caddr_t) addr, sz );
|
|
1839 }
|
|
1840
|
|
1841 #endif /* MMAP_GENERATE_ADDRESSES */
|
|
1842
|
|
1843
|
|
1844 /* IMPLEMENTATION OF EXPORTED RELOCATOR INTERFACE */
|
|
1845
|
|
1846 /*
|
440
|
1847 r_alloc (POINTER, SIZE): Allocate a relocatable area with the start
|
428
|
1848 address aliased to the first parameter.
|
|
1849 */
|
|
1850
|
440
|
1851 POINTER r_alloc (POINTER *ptr, size_t size);
|
428
|
1852 POINTER
|
440
|
1853 r_alloc (POINTER *ptr, size_t size)
|
428
|
1854 {
|
|
1855 MMAP_HANDLE mh;
|
|
1856
|
|
1857 switch(r_alloc_initialized)
|
|
1858 {
|
|
1859 case 0:
|
|
1860 abort();
|
|
1861 case 1:
|
|
1862 *ptr = (POINTER) UNDERLYING_MALLOC(size);
|
|
1863 break;
|
|
1864 default:
|
|
1865 mh = new_mmap_handle( size );
|
|
1866 if (mh)
|
|
1867 {
|
440
|
1868 size_t hysteresis = (mmap_hysteresis > 0 ? mmap_hysteresis : 0);
|
|
1869 size_t mmapped_size = ROUNDUP( size + hysteresis );
|
428
|
1870 MEMMETER( MVAL(M_Map)++ )
|
|
1871 MEMMETER( MVAL(M_Pages_Map) += (mmapped_size/page_size) )
|
|
1872 MEMMETER( MVAL(M_Wastage) += mmapped_size - size )
|
|
1873 MEMMETER( MVAL(M_Live_Pages) += (mmapped_size/page_size) )
|
|
1874 mh->vm_addr = New_Addr_Block( mmapped_size );
|
|
1875 if (mh->vm_addr == VM_FAILURE_ADDR) {
|
|
1876 free_mmap_handle( mh ); /* Free the loser */
|
|
1877 *ptr = 0;
|
|
1878 return 0; /* ralloc failed due to mmap() failure. */
|
|
1879 }
|
|
1880 MHASH_ADD( mh->vm_addr, mh );
|
|
1881 mh->space_for = mmapped_size;
|
|
1882 mh->aliased_address = ptr;
|
|
1883 *ptr = (POINTER) mh->vm_addr;
|
|
1884 }
|
|
1885 else
|
|
1886 *ptr = 0; /* Malloc of block failed */
|
|
1887 break;
|
|
1888 }
|
|
1889 return *ptr;
|
|
1890 }
|
|
1891
|
|
1892 /* Free a bloc of relocatable storage whose data is pointed to by PTR.
|
|
1893 Store 0 in *PTR to show there's no block allocated. */
|
|
1894
|
|
1895 void r_alloc_free (POINTER *ptr);
|
|
1896 void
|
|
1897 r_alloc_free (POINTER *ptr)
|
|
1898 {
|
|
1899 switch( r_alloc_initialized) {
|
|
1900 case 0:
|
|
1901 abort();
|
|
1902
|
|
1903 case 1:
|
|
1904 UNDERLYING_FREE( *ptr ); /* Certain this is from the heap. */
|
|
1905 break;
|
|
1906
|
|
1907 default:
|
|
1908 {
|
|
1909 MMAP_HANDLE dead_handle = find_mmap_handle( ptr );
|
|
1910 /* Check if we've got it. */
|
|
1911 if (dead_handle == 0) /* Didn't find it in the list of mmap handles */
|
|
1912 {
|
|
1913 UNDERLYING_FREE( *ptr );
|
|
1914 }
|
|
1915 else
|
|
1916 {
|
|
1917 MEMMETER( MVAL( M_Wastage ) -= (dead_handle->space_for - dead_handle->size) )
|
|
1918 MEMMETER( MVAL( M_Live_Pages ) -= (dead_handle->space_for / page_size ))
|
|
1919 MEMMETER(MVAL(M_Unmap)++)
|
|
1920 MHASH_DEL( dead_handle->vm_addr );
|
|
1921 Free_Addr_Block( dead_handle->vm_addr, dead_handle->space_for );
|
|
1922 free_mmap_handle (dead_handle);
|
|
1923 }
|
|
1924 }
|
|
1925 break;
|
|
1926 } /* r_alloc_initialized */
|
|
1927 *ptr = 0; /* Zap the pointer's contents. */
|
|
1928 }
|
|
1929
|
|
1930 /* Given a pointer at address PTR to relocatable data, resize it to SIZE.
|
|
1931
|
|
1932 Change *PTR to reflect the new bloc, and return this value.
|
|
1933
|
|
1934 If more memory cannot be allocated, then leave *PTR unchanged, and
|
|
1935 return zero. */
|
|
1936
|
440
|
1937 POINTER r_re_alloc (POINTER *ptr, size_t sz);
|
428
|
1938 POINTER
|
440
|
1939 r_re_alloc (POINTER *ptr, size_t sz)
|
428
|
1940 {
|
|
1941 if (r_alloc_initialized == 0)
|
|
1942 {
|
|
1943 abort ();
|
|
1944 return 0; /* suppress compiler warning */
|
|
1945 }
|
|
1946 else if (r_alloc_initialized == 1)
|
|
1947 {
|
|
1948 POINTER tmp = (POINTER) realloc(*ptr, sz);
|
|
1949 if (tmp)
|
|
1950 *ptr = tmp;
|
|
1951 return tmp;
|
|
1952 }
|
|
1953 else
|
|
1954 {
|
440
|
1955 size_t hysteresis = (mmap_hysteresis > 0 ? mmap_hysteresis : 0);
|
|
1956 size_t actual_sz = ROUNDUP( sz + hysteresis );
|
428
|
1957 MMAP_HANDLE h = find_mmap_handle( ptr );
|
|
1958 VM_ADDR new_vm_addr;
|
|
1959
|
|
1960 if ( h == 0 ) /* Was allocated using malloc. */
|
|
1961 {
|
|
1962 POINTER tmp = (POINTER) UNDERLYING_REALLOC(*ptr, sz);
|
|
1963 if (tmp)
|
|
1964 *ptr = tmp;
|
|
1965 return tmp;
|
|
1966 }
|
|
1967
|
|
1968 MEMMETER(
|
|
1969 MVAL(M_Average_Bumpval) =
|
|
1970 (((double) MVAL(M_Remap) * MVAL(M_Average_Bumpval)) + (sz - h->size))
|
|
1971 / (double) (MVAL(M_Remap) + 1))
|
|
1972 MEMMETER(MVAL(M_Remap)++)
|
|
1973 if (h->space_for > sz) /* We've got some more room */
|
|
1974 { /* Also, if a shrinkage was asked for. */
|
|
1975 MEMMETER( MVAL(M_Didnt_Copy)++ )
|
|
1976 MEMMETER( MVAL(M_Wastage) -= (sz - h->size))
|
|
1977 /* We're pretty dumb at handling shrinkage. We should check for
|
|
1978 a larger gap than the standard hysteresis allowable, and if so,
|
|
1979 shrink the number of pages. Right now, we simply reset the size
|
|
1980 component and return. */
|
|
1981 h->size = sz;
|
|
1982 return *ptr;
|
|
1983 }
|
|
1984
|
|
1985 new_vm_addr = New_Addr_Block( actual_sz );
|
|
1986 if (new_vm_addr == VM_FAILURE_ADDR)
|
|
1987 {/* Failed to realloc. */
|
|
1988 /* *ptr = 0; */
|
|
1989 return 0;
|
|
1990 }
|
|
1991
|
|
1992 MHASH_ADD( new_vm_addr, h );
|
|
1993 /* We got a block OK: now we should move the old contents to the
|
|
1994 new address. We use the old size of this block. */
|
|
1995 memmove(new_vm_addr, h->vm_addr, h->size);
|
|
1996 MHASH_DEL( h->vm_addr );
|
|
1997 Free_Addr_Block( h->vm_addr, h->space_for ); /* Unmap old area. */
|
|
1998
|
|
1999 MEMMETER( MVAL( M_Copy_Pages ) += (h->space_for/page_size) )
|
|
2000 MEMMETER( MVAL( M_Live_Pages ) -= (h->space_for / page_size))
|
|
2001 MEMMETER( MVAL( M_Live_Pages ) += (actual_sz / page_size))
|
|
2002 MEMMETER( MVAL( M_Wastage ) -= (h->space_for - h->size))
|
|
2003 MEMMETER( MVAL( M_Wastage ) += (actual_sz - sz) )
|
|
2004
|
|
2005 /* Update block datastructure. */
|
|
2006 h->space_for = actual_sz; /* New total space */
|
|
2007 h->size = sz; /* New (requested) size */
|
|
2008 h->vm_addr = new_vm_addr; /* New VM start address */
|
|
2009 h->aliased_address = ptr; /* Change alias to reflect block relocation. */
|
|
2010 *ptr = (POINTER) h->vm_addr;
|
|
2011 return *ptr;
|
|
2012 }
|
|
2013 }
|
|
2014
|
|
2015
|
|
2016 /* Initialize various things for memory allocation.
|
|
2017 */
|
|
2018 void
|
|
2019 init_ralloc (void)
|
|
2020 {
|
|
2021 int i = 0;
|
|
2022 if (r_alloc_initialized > 1)
|
|
2023 return; /* used to return 1 */
|
|
2024
|
|
2025 if (++r_alloc_initialized == 1)
|
|
2026 return; /* used to return 1 */
|
|
2027
|
|
2028 Addr_Block_initialize(); /* Initialize the address picker, if required. */
|
|
2029 page_size = PAGE;
|
|
2030 assert( page_size > 0 ); /* getpagesize() bogosity check. */
|
|
2031
|
|
2032 #ifndef MAP_ANONYMOUS
|
|
2033 DEV_ZERO_FD = open( "/dev/zero", O_RDWR );
|
|
2034 if (DEV_ZERO_FD < 0)
|
|
2035 /* Failed. Perhaps we should abort here? */
|
|
2036 return; /* used to return 0 */
|
|
2037 #endif
|
|
2038
|
|
2039 #ifdef MMAP_METERING
|
|
2040 for(i = 0; i < N_Meterables; i++ )
|
|
2041 {
|
|
2042 meter[i] = 0;
|
|
2043 }
|
|
2044 #endif /* MMAP_METERING */
|
|
2045 }
|
|
2046
|
|
2047 void
|
|
2048 syms_of_ralloc (void)
|
|
2049 {
|
|
2050 #ifdef MMAP_METERING
|
|
2051 defsymbol (&Qmmap_times_mapped, "mmap-times-mapped");
|
|
2052 defsymbol (&Qmmap_pages_mapped, "mmap-pages-mapped");
|
|
2053 defsymbol (&Qmmap_times_unmapped, "mmap-times-unmapped");
|
|
2054 defsymbol (&Qmmap_times_remapped, "mmap-times-remapped");
|
|
2055 defsymbol (&Qmmap_didnt_copy, "mmap-didnt-copy");
|
|
2056 defsymbol (&Qmmap_pages_copied, "mmap-pages-copied");
|
|
2057 defsymbol (&Qmmap_average_bumpval, "mmap-average-bumpval");
|
|
2058 defsymbol (&Qmmap_wastage, "mmap-wastage");
|
|
2059 defsymbol (&Qmmap_live_pages, "mmap-live-pages");
|
|
2060 defsymbol (&Qmmap_addr_looked_up, "mmap-addr-looked-up");
|
|
2061 defsymbol (&Qmmap_hash_worked, "mmap-hash-worked");
|
|
2062 defsymbol (&Qmmap_addrlist_size, "mmap-addrlist-size");
|
|
2063 DEFSUBR (Fmmap_allocator_status);
|
|
2064 #endif /* MMAP_METERING */
|
|
2065 }
|
|
2066
|
|
2067 void
|
|
2068 vars_of_ralloc (void)
|
|
2069 {
|
|
2070 DEFVAR_INT ("mmap-hysteresis", &mmap_hysteresis /*
|
|
2071 Extra room left at the end of an allocated arena,
|
|
2072 so that a re-alloc requesting extra space smaller than this
|
|
2073 does not actually cause a new arena to be allocated.
|
|
2074
|
|
2075 A negative value is considered equal to zero. This is the
|
|
2076 minimum amount of space guaranteed to be left at the end of
|
|
2077 the arena. Because allocation happens in multiples of the OS
|
|
2078 page size, it is possible for more space to be left unused.
|
|
2079 */ );
|
|
2080 mmap_hysteresis = 0;
|
|
2081 }
|
|
2082
|
|
2083 #endif /* HAVE_MMAP */
|