428
|
1 /* CCL (Code Conversion Language) interpreter.
|
444
|
2 Copyright (C) 1995, 1997 Electrotechnical Laboratory, JAPAN.
|
428
|
3 Licensed to the Free Software Foundation.
|
|
4
|
444
|
5 This file is part of GNU Emacs.
|
428
|
6
|
|
7 GNU Emacs is free software; you can redistribute it and/or modify
|
|
8 it under the terms of the GNU General Public License as published by
|
|
9 the Free Software Foundation; either version 2, or (at your option)
|
|
10 any later version.
|
|
11
|
|
12 GNU Emacs is distributed in the hope that it will be useful,
|
|
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
15 GNU General Public License for more details.
|
|
16
|
|
17 You should have received a copy of the GNU General Public License
|
|
18 along with GNU Emacs; see the file COPYING. If not, write to
|
|
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
|
|
20 Boston, MA 02111-1307, USA. */
|
|
21
|
444
|
22 /* Synched up with : FSF Emacs 21.0.90 except TranslateCharacter */
|
428
|
23
|
|
24 #ifdef emacs
|
|
25 #include <config.h>
|
444
|
26 #endif
|
428
|
27
|
444
|
28 #include <stdio.h>
|
|
29
|
|
30 #ifdef emacs
|
428
|
31
|
|
32 #include "lisp.h"
|
|
33 #include "buffer.h"
|
|
34 #include "mule-charset.h"
|
|
35 #include "mule-ccl.h"
|
|
36 #include "file-coding.h"
|
|
37
|
|
38 #else /* not emacs */
|
|
39
|
|
40 #include "mulelib.h"
|
|
41
|
|
42 #endif /* not emacs */
|
|
43
|
|
44 /* This contains all code conversion map available to CCL. */
|
|
45 Lisp_Object Vcode_conversion_map_vector;
|
|
46
|
|
47 /* Alist of fontname patterns vs corresponding CCL program. */
|
|
48 Lisp_Object Vfont_ccl_encoder_alist;
|
|
49
|
444
|
50 /* This symbol is a property which associates with ccl program vector.
|
428
|
51 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
|
|
52 Lisp_Object Qccl_program;
|
|
53
|
|
54 /* These symbols are properties which associate with code conversion
|
|
55 map and their ID respectively. */
|
|
56 Lisp_Object Qcode_conversion_map;
|
|
57 Lisp_Object Qcode_conversion_map_id;
|
|
58
|
|
59 /* Symbols of ccl program have this property, a value of the property
|
444
|
60 is an index for Vccl_program_table. */
|
428
|
61 Lisp_Object Qccl_program_idx;
|
|
62
|
444
|
63 /* Table of registered CCL programs. Each element is a vector of
|
|
64 NAME, CCL_PROG, and RESOLVEDP where NAME (symbol) is the name of
|
|
65 the program, CCL_PROG (vector) is the compiled code of the program,
|
|
66 RESOLVEDP (t or nil) is the flag to tell if symbols in CCL_PROG is
|
|
67 already resolved to index numbers or not. */
|
428
|
68 Lisp_Object Vccl_program_table;
|
|
69
|
|
70 /* CCL (Code Conversion Language) is a simple language which has
|
|
71 operations on one input buffer, one output buffer, and 7 registers.
|
|
72 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
|
|
73 `ccl-compile' compiles a CCL program and produces a CCL code which
|
|
74 is a vector of integers. The structure of this vector is as
|
|
75 follows: The 1st element: buffer-magnification, a factor for the
|
|
76 size of output buffer compared with the size of input buffer. The
|
|
77 2nd element: address of CCL code to be executed when encountered
|
|
78 with end of input stream. The 3rd and the remaining elements: CCL
|
|
79 codes. */
|
|
80
|
|
81 /* Header of CCL compiled code */
|
|
82 #define CCL_HEADER_BUF_MAG 0
|
|
83 #define CCL_HEADER_EOF 1
|
|
84 #define CCL_HEADER_MAIN 2
|
|
85
|
|
86 /* CCL code is a sequence of 28-bit non-negative integers (i.e. the
|
|
87 MSB is always 0), each contains CCL command and/or arguments in the
|
|
88 following format:
|
|
89
|
|
90 |----------------- integer (28-bit) ------------------|
|
|
91 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
|
|
92 |--constant argument--|-register-|-register-|-command-|
|
|
93 ccccccccccccccccc RRR rrr XXXXX
|
|
94 or
|
|
95 |------- relative address -------|-register-|-command-|
|
|
96 cccccccccccccccccccc rrr XXXXX
|
|
97 or
|
|
98 |------------- constant or other args ----------------|
|
|
99 cccccccccccccccccccccccccccc
|
|
100
|
|
101 where, `cc...c' is a non-negative integer indicating constant value
|
|
102 (the left most `c' is always 0) or an absolute jump address, `RRR'
|
|
103 and `rrr' are CCL register number, `XXXXX' is one of the following
|
|
104 CCL commands. */
|
|
105
|
|
106 /* CCL commands
|
|
107
|
|
108 Each comment fields shows one or more lines for command syntax and
|
|
109 the following lines for semantics of the command. In semantics, IC
|
|
110 stands for Instruction Counter. */
|
|
111
|
|
112 #define CCL_SetRegister 0x00 /* Set register a register value:
|
|
113 1:00000000000000000RRRrrrXXXXX
|
|
114 ------------------------------
|
|
115 reg[rrr] = reg[RRR];
|
|
116 */
|
|
117
|
|
118 #define CCL_SetShortConst 0x01 /* Set register a short constant value:
|
|
119 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
120 ------------------------------
|
|
121 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
|
|
122 */
|
|
123
|
|
124 #define CCL_SetConst 0x02 /* Set register a constant value:
|
|
125 1:00000000000000000000rrrXXXXX
|
|
126 2:CONSTANT
|
|
127 ------------------------------
|
|
128 reg[rrr] = CONSTANT;
|
|
129 IC++;
|
|
130 */
|
|
131
|
|
132 #define CCL_SetArray 0x03 /* Set register an element of array:
|
|
133 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
|
|
134 2:ELEMENT[0]
|
|
135 3:ELEMENT[1]
|
|
136 ...
|
|
137 ------------------------------
|
|
138 if (0 <= reg[RRR] < CC..C)
|
|
139 reg[rrr] = ELEMENT[reg[RRR]];
|
|
140 IC += CC..C;
|
|
141 */
|
|
142
|
|
143 #define CCL_Jump 0x04 /* Jump:
|
|
144 1:A--D--D--R--E--S--S-000XXXXX
|
|
145 ------------------------------
|
|
146 IC += ADDRESS;
|
|
147 */
|
|
148
|
|
149 /* Note: If CC..C is greater than 0, the second code is omitted. */
|
|
150
|
|
151 #define CCL_JumpCond 0x05 /* Jump conditional:
|
|
152 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
153 ------------------------------
|
|
154 if (!reg[rrr])
|
|
155 IC += ADDRESS;
|
|
156 */
|
|
157
|
|
158
|
|
159 #define CCL_WriteRegisterJump 0x06 /* Write register and jump:
|
|
160 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
161 ------------------------------
|
|
162 write (reg[rrr]);
|
|
163 IC += ADDRESS;
|
|
164 */
|
|
165
|
|
166 #define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
|
|
167 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
168 2:A--D--D--R--E--S--S-rrrYYYYY
|
|
169 -----------------------------
|
|
170 write (reg[rrr]);
|
|
171 IC++;
|
|
172 read (reg[rrr]);
|
|
173 IC += ADDRESS;
|
|
174 */
|
|
175 /* Note: If read is suspended, the resumed execution starts from the
|
|
176 second code (YYYYY == CCL_ReadJump). */
|
|
177
|
|
178 #define CCL_WriteConstJump 0x08 /* Write constant and jump:
|
|
179 1:A--D--D--R--E--S--S-000XXXXX
|
444
|
180 2:CONST
|
428
|
181 ------------------------------
|
444
|
182 write (CONST);
|
428
|
183 IC += ADDRESS;
|
|
184 */
|
|
185
|
|
186 #define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
|
|
187 1:A--D--D--R--E--S--S-rrrXXXXX
|
444
|
188 2:CONST
|
428
|
189 3:A--D--D--R--E--S--S-rrrYYYYY
|
|
190 -----------------------------
|
444
|
191 write (CONST);
|
428
|
192 IC += 2;
|
|
193 read (reg[rrr]);
|
|
194 IC += ADDRESS;
|
|
195 */
|
|
196 /* Note: If read is suspended, the resumed execution starts from the
|
|
197 second code (YYYYY == CCL_ReadJump). */
|
|
198
|
|
199 #define CCL_WriteStringJump 0x0A /* Write string and jump:
|
|
200 1:A--D--D--R--E--S--S-000XXXXX
|
|
201 2:LENGTH
|
|
202 3:0000STRIN[0]STRIN[1]STRIN[2]
|
|
203 ...
|
|
204 ------------------------------
|
|
205 write_string (STRING, LENGTH);
|
|
206 IC += ADDRESS;
|
|
207 */
|
|
208
|
|
209 #define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
|
|
210 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
211 2:LENGTH
|
|
212 3:ELEMENET[0]
|
|
213 4:ELEMENET[1]
|
|
214 ...
|
|
215 N:A--D--D--R--E--S--S-rrrYYYYY
|
|
216 ------------------------------
|
|
217 if (0 <= reg[rrr] < LENGTH)
|
|
218 write (ELEMENT[reg[rrr]]);
|
|
219 IC += LENGTH + 2; (... pointing at N+1)
|
|
220 read (reg[rrr]);
|
|
221 IC += ADDRESS;
|
|
222 */
|
|
223 /* Note: If read is suspended, the resumed execution starts from the
|
|
224 Nth code (YYYYY == CCL_ReadJump). */
|
|
225
|
|
226 #define CCL_ReadJump 0x0C /* Read and jump:
|
|
227 1:A--D--D--R--E--S--S-rrrYYYYY
|
|
228 -----------------------------
|
|
229 read (reg[rrr]);
|
|
230 IC += ADDRESS;
|
|
231 */
|
|
232
|
|
233 #define CCL_Branch 0x0D /* Jump by branch table:
|
|
234 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
235 2:A--D--D--R--E-S-S[0]000XXXXX
|
|
236 3:A--D--D--R--E-S-S[1]000XXXXX
|
|
237 ...
|
|
238 ------------------------------
|
|
239 if (0 <= reg[rrr] < CC..C)
|
|
240 IC += ADDRESS[reg[rrr]];
|
|
241 else
|
|
242 IC += ADDRESS[CC..C];
|
|
243 */
|
|
244
|
|
245 #define CCL_ReadRegister 0x0E /* Read bytes into registers:
|
|
246 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
247 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
248 ...
|
|
249 ------------------------------
|
|
250 while (CCC--)
|
|
251 read (reg[rrr]);
|
|
252 */
|
|
253
|
|
254 #define CCL_WriteExprConst 0x0F /* write result of expression:
|
|
255 1:00000OPERATION000RRR000XXXXX
|
|
256 2:CONSTANT
|
|
257 ------------------------------
|
|
258 write (reg[RRR] OPERATION CONSTANT);
|
|
259 IC++;
|
|
260 */
|
|
261
|
|
262 /* Note: If the Nth read is suspended, the resumed execution starts
|
|
263 from the Nth code. */
|
|
264
|
|
265 #define CCL_ReadBranch 0x10 /* Read one byte into a register,
|
|
266 and jump by branch table:
|
|
267 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
268 2:A--D--D--R--E-S-S[0]000XXXXX
|
|
269 3:A--D--D--R--E-S-S[1]000XXXXX
|
|
270 ...
|
|
271 ------------------------------
|
|
272 read (read[rrr]);
|
|
273 if (0 <= reg[rrr] < CC..C)
|
|
274 IC += ADDRESS[reg[rrr]];
|
|
275 else
|
|
276 IC += ADDRESS[CC..C];
|
|
277 */
|
|
278
|
|
279 #define CCL_WriteRegister 0x11 /* Write registers:
|
|
280 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
281 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
282 ...
|
|
283 ------------------------------
|
|
284 while (CCC--)
|
|
285 write (reg[rrr]);
|
|
286 ...
|
|
287 */
|
|
288
|
|
289 /* Note: If the Nth write is suspended, the resumed execution
|
|
290 starts from the Nth code. */
|
|
291
|
|
292 #define CCL_WriteExprRegister 0x12 /* Write result of expression
|
|
293 1:00000OPERATIONRrrRRR000XXXXX
|
|
294 ------------------------------
|
|
295 write (reg[RRR] OPERATION reg[Rrr]);
|
|
296 */
|
|
297
|
|
298 #define CCL_Call 0x13 /* Call the CCL program whose ID is
|
444
|
299 CC..C or cc..c.
|
|
300 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
|
|
301 [2:00000000cccccccccccccccccccc]
|
428
|
302 ------------------------------
|
444
|
303 if (FFF)
|
|
304 call (cc..c)
|
|
305 IC++;
|
|
306 else
|
|
307 call (CC..C)
|
428
|
308 */
|
|
309
|
|
310 #define CCL_WriteConstString 0x14 /* Write a constant or a string:
|
|
311 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
312 [2:0000STRIN[0]STRIN[1]STRIN[2]]
|
|
313 [...]
|
|
314 -----------------------------
|
|
315 if (!rrr)
|
|
316 write (CC..C)
|
|
317 else
|
|
318 write_string (STRING, CC..C);
|
|
319 IC += (CC..C + 2) / 3;
|
|
320 */
|
|
321
|
|
322 #define CCL_WriteArray 0x15 /* Write an element of array:
|
|
323 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
|
|
324 2:ELEMENT[0]
|
|
325 3:ELEMENT[1]
|
|
326 ...
|
|
327 ------------------------------
|
|
328 if (0 <= reg[rrr] < CC..C)
|
|
329 write (ELEMENT[reg[rrr]]);
|
|
330 IC += CC..C;
|
|
331 */
|
|
332
|
|
333 #define CCL_End 0x16 /* Terminate:
|
|
334 1:00000000000000000000000XXXXX
|
|
335 ------------------------------
|
|
336 terminate ();
|
|
337 */
|
|
338
|
|
339 /* The following two codes execute an assignment arithmetic/logical
|
|
340 operation. The form of the operation is like REG OP= OPERAND. */
|
|
341
|
|
342 #define CCL_ExprSelfConst 0x17 /* REG OP= constant:
|
|
343 1:00000OPERATION000000rrrXXXXX
|
|
344 2:CONSTANT
|
|
345 ------------------------------
|
|
346 reg[rrr] OPERATION= CONSTANT;
|
|
347 */
|
|
348
|
|
349 #define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
|
|
350 1:00000OPERATION000RRRrrrXXXXX
|
|
351 ------------------------------
|
|
352 reg[rrr] OPERATION= reg[RRR];
|
|
353 */
|
|
354
|
|
355 /* The following codes execute an arithmetic/logical operation. The
|
|
356 form of the operation is like REG_X = REG_Y OP OPERAND2. */
|
|
357
|
|
358 #define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
|
|
359 1:00000OPERATION000RRRrrrXXXXX
|
|
360 2:CONSTANT
|
|
361 ------------------------------
|
|
362 reg[rrr] = reg[RRR] OPERATION CONSTANT;
|
|
363 IC++;
|
|
364 */
|
|
365
|
|
366 #define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
|
|
367 1:00000OPERATIONRrrRRRrrrXXXXX
|
|
368 ------------------------------
|
|
369 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
|
|
370 */
|
|
371
|
|
372 #define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
|
|
373 an operation on constant:
|
|
374 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
375 2:OPERATION
|
|
376 3:CONSTANT
|
|
377 -----------------------------
|
|
378 reg[7] = reg[rrr] OPERATION CONSTANT;
|
|
379 if (!(reg[7]))
|
|
380 IC += ADDRESS;
|
|
381 else
|
|
382 IC += 2
|
|
383 */
|
|
384
|
|
385 #define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
|
|
386 an operation on register:
|
|
387 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
388 2:OPERATION
|
|
389 3:RRR
|
|
390 -----------------------------
|
|
391 reg[7] = reg[rrr] OPERATION reg[RRR];
|
|
392 if (!reg[7])
|
|
393 IC += ADDRESS;
|
|
394 else
|
|
395 IC += 2;
|
|
396 */
|
|
397
|
|
398 #define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
|
|
399 to an operation on constant:
|
|
400 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
401 2:OPERATION
|
|
402 3:CONSTANT
|
|
403 -----------------------------
|
|
404 read (reg[rrr]);
|
|
405 reg[7] = reg[rrr] OPERATION CONSTANT;
|
|
406 if (!reg[7])
|
|
407 IC += ADDRESS;
|
|
408 else
|
|
409 IC += 2;
|
|
410 */
|
|
411
|
|
412 #define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
|
|
413 to an operation on register:
|
|
414 1:A--D--D--R--E--S--S-rrrXXXXX
|
|
415 2:OPERATION
|
|
416 3:RRR
|
|
417 -----------------------------
|
|
418 read (reg[rrr]);
|
|
419 reg[7] = reg[rrr] OPERATION reg[RRR];
|
|
420 if (!reg[7])
|
|
421 IC += ADDRESS;
|
|
422 else
|
|
423 IC += 2;
|
|
424 */
|
|
425
|
456
|
426 #define CCL_Extension 0x1F /* Extended CCL code
|
428
|
427 1:ExtendedCOMMNDRrrRRRrrrXXXXX
|
444
|
428 2:ARGUMENT
|
428
|
429 3:...
|
|
430 ------------------------------
|
|
431 extended_command (rrr,RRR,Rrr,ARGS)
|
|
432 */
|
|
433
|
442
|
434 /*
|
428
|
435 Here after, Extended CCL Instructions.
|
|
436 Bit length of extended command is 14.
|
|
437 Therefore, the instruction code range is 0..16384(0x3fff).
|
|
438 */
|
|
439
|
|
440 /* Read a multibyte characeter.
|
|
441 A code point is stored into reg[rrr]. A charset ID is stored into
|
|
442 reg[RRR]. */
|
|
443
|
|
444 #define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
|
|
445 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
|
|
446
|
|
447 /* Write a multibyte character.
|
|
448 Write a character whose code point is reg[rrr] and the charset ID
|
|
449 is reg[RRR]. */
|
|
450
|
|
451 #define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
|
|
452 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
|
|
453
|
|
454 /* Translate a character whose code point is reg[rrr] and the charset
|
|
455 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
|
|
456
|
|
457 A translated character is set in reg[rrr] (code point) and reg[RRR]
|
|
458 (charset ID). */
|
|
459
|
|
460 #define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
|
|
461 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
|
|
462
|
|
463 /* Translate a character whose code point is reg[rrr] and the charset
|
|
464 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
|
|
465
|
|
466 A translated character is set in reg[rrr] (code point) and reg[RRR]
|
|
467 (charset ID). */
|
|
468
|
|
469 #define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
|
|
470 1:ExtendedCOMMNDRrrRRRrrrXXXXX
|
|
471 2:ARGUMENT(Translation Table ID)
|
|
472 */
|
|
473
|
|
474 /* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
|
|
475 reg[RRR]) MAP until some value is found.
|
|
476
|
|
477 Each MAP is a Lisp vector whose element is number, nil, t, or
|
|
478 lambda.
|
|
479 If the element is nil, ignore the map and proceed to the next map.
|
|
480 If the element is t or lambda, finish without changing reg[rrr].
|
|
481 If the element is a number, set reg[rrr] to the number and finish.
|
|
482
|
444
|
483 Detail of the map structure is described in the comment for
|
428
|
484 CCL_MapMultiple below. */
|
|
485
|
|
486 #define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
|
|
487 1:ExtendedCOMMNDXXXRRRrrrXXXXX
|
|
488 2:NUMBER of MAPs
|
|
489 3:MAP-ID1
|
|
490 4:MAP-ID2
|
|
491 ...
|
442
|
492 */
|
428
|
493
|
|
494 /* Map the code in reg[rrr] by MAPs starting from the Nth (N =
|
|
495 reg[RRR]) map.
|
|
496
|
|
497 MAPs are supplied in the succeeding CCL codes as follows:
|
|
498
|
|
499 When CCL program gives this nested structure of map to this command:
|
|
500 ((MAP-ID11
|
|
501 MAP-ID12
|
|
502 (MAP-ID121 MAP-ID122 MAP-ID123)
|
|
503 MAP-ID13)
|
|
504 (MAP-ID21
|
|
505 (MAP-ID211 (MAP-ID2111) MAP-ID212)
|
|
506 MAP-ID22)),
|
444
|
507 the compiled CCL code has this sequence:
|
428
|
508 CCL_MapMultiple (CCL code of this command)
|
|
509 16 (total number of MAPs and SEPARATORs)
|
|
510 -7 (1st SEPARATOR)
|
|
511 MAP-ID11
|
|
512 MAP-ID12
|
|
513 -3 (2nd SEPARATOR)
|
|
514 MAP-ID121
|
|
515 MAP-ID122
|
|
516 MAP-ID123
|
|
517 MAP-ID13
|
|
518 -7 (3rd SEPARATOR)
|
|
519 MAP-ID21
|
|
520 -4 (4th SEPARATOR)
|
|
521 MAP-ID211
|
|
522 -1 (5th SEPARATOR)
|
|
523 MAP_ID2111
|
|
524 MAP-ID212
|
|
525 MAP-ID22
|
|
526
|
|
527 A value of each SEPARATOR follows this rule:
|
|
528 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
|
|
529 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
|
|
530
|
|
531 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
|
|
532
|
|
533 When some map fails to map (i.e. it doesn't have a value for
|
|
534 reg[rrr]), the mapping is treated as identity.
|
|
535
|
|
536 The mapping is iterated for all maps in each map set (set of maps
|
|
537 separated by SEPARATOR) except in the case that lambda is
|
|
538 encountered. More precisely, the mapping proceeds as below:
|
|
539
|
|
540 At first, VAL0 is set to reg[rrr], and it is translated by the
|
|
541 first map to VAL1. Then, VAL1 is translated by the next map to
|
|
542 VAL2. This mapping is iterated until the last map is used. The
|
444
|
543 result of the mapping is the last value of VAL?. When the mapping
|
|
544 process reached to the end of the map set, it moves to the next
|
|
545 map set. If the next does not exit, the mapping process terminates,
|
|
546 and regard the last value as a result.
|
428
|
547
|
|
548 But, when VALm is mapped to VALn and VALn is not a number, the
|
444
|
549 mapping proceeds as follows:
|
428
|
550
|
|
551 If VALn is nil, the lastest map is ignored and the mapping of VALm
|
444
|
552 proceeds to the next map.
|
428
|
553
|
|
554 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
|
444
|
555 proceeds to the next map.
|
428
|
556
|
444
|
557 If VALn is lambda, move to the next map set like reaching to the
|
|
558 end of the current map set.
|
|
559
|
|
560 If VALn is a symbol, call the CCL program refered by it.
|
|
561 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
|
|
562 Such special values are regarded as nil, t, and lambda respectively.
|
428
|
563
|
|
564 Each map is a Lisp vector of the following format (a) or (b):
|
|
565 (a)......[STARTPOINT VAL1 VAL2 ...]
|
|
566 (b)......[t VAL STARTPOINT ENDPOINT],
|
|
567 where
|
|
568 STARTPOINT is an offset to be used for indexing a map,
|
|
569 ENDPOINT is a maximum index number of a map,
|
442
|
570 VAL and VALn is a number, nil, t, or lambda.
|
428
|
571
|
|
572 Valid index range of a map of type (a) is:
|
|
573 STARTPOINT <= index < STARTPOINT + map_size - 1
|
|
574 Valid index range of a map of type (b) is:
|
|
575 STARTPOINT <= index < ENDPOINT */
|
|
576
|
|
577 #define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
|
|
578 1:ExtendedCOMMNDXXXRRRrrrXXXXX
|
|
579 2:N-2
|
|
580 3:SEPARATOR_1 (< 0)
|
|
581 4:MAP-ID_1
|
|
582 5:MAP-ID_2
|
|
583 ...
|
|
584 M:SEPARATOR_x (< 0)
|
|
585 M+1:MAP-ID_y
|
|
586 ...
|
|
587 N:SEPARATOR_z (< 0)
|
|
588 */
|
|
589
|
444
|
590 #define MAX_MAP_SET_LEVEL 30
|
428
|
591
|
|
592 typedef struct
|
|
593 {
|
|
594 int rest_length;
|
|
595 int orig_val;
|
|
596 } tr_stack;
|
|
597
|
|
598 static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
|
|
599 static tr_stack *mapping_stack_pointer;
|
444
|
600
|
|
601 /* If this variable is non-zero, it indicates the stack_idx
|
|
602 of immediately called by CCL_MapMultiple. */
|
450
|
603 static int stack_idx_of_map_multiple;
|
444
|
604
|
|
605 #define PUSH_MAPPING_STACK(restlen, orig) \
|
|
606 do { \
|
|
607 mapping_stack_pointer->rest_length = (restlen); \
|
|
608 mapping_stack_pointer->orig_val = (orig); \
|
|
609 mapping_stack_pointer++; \
|
|
610 } while (0)
|
|
611
|
|
612 #define POP_MAPPING_STACK(restlen, orig) \
|
|
613 do { \
|
|
614 mapping_stack_pointer--; \
|
|
615 (restlen) = mapping_stack_pointer->rest_length; \
|
|
616 (orig) = mapping_stack_pointer->orig_val; \
|
|
617 } while (0)
|
428
|
618
|
444
|
619 #define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
|
|
620 do { \
|
|
621 struct ccl_program called_ccl; \
|
|
622 if (stack_idx >= 256 \
|
|
623 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
|
|
624 { \
|
|
625 if (stack_idx > 0) \
|
|
626 { \
|
|
627 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
|
|
628 ic = ccl_prog_stack_struct[0].ic; \
|
|
629 } \
|
|
630 CCL_INVALID_CMD; \
|
|
631 } \
|
|
632 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
|
|
633 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
|
|
634 stack_idx++; \
|
|
635 ccl_prog = called_ccl.prog; \
|
|
636 ic = CCL_HEADER_MAIN; \
|
456
|
637 /* The "if (1)" prevents warning \
|
|
638 "end-of loop code not reached" */ \
|
|
639 if (1) goto ccl_repeat; \
|
444
|
640 } while (0)
|
428
|
641
|
|
642 #define CCL_MapSingle 0x12 /* Map by single code conversion map
|
|
643 1:ExtendedCOMMNDXXXRRRrrrXXXXX
|
|
644 2:MAP-ID
|
|
645 ------------------------------
|
|
646 Map reg[rrr] by MAP-ID.
|
|
647 If some valid mapping is found,
|
|
648 set reg[rrr] to the result,
|
|
649 else
|
|
650 set reg[RRR] to -1.
|
|
651 */
|
|
652
|
|
653 /* CCL arithmetic/logical operators. */
|
|
654 #define CCL_PLUS 0x00 /* X = Y + Z */
|
|
655 #define CCL_MINUS 0x01 /* X = Y - Z */
|
|
656 #define CCL_MUL 0x02 /* X = Y * Z */
|
|
657 #define CCL_DIV 0x03 /* X = Y / Z */
|
|
658 #define CCL_MOD 0x04 /* X = Y % Z */
|
|
659 #define CCL_AND 0x05 /* X = Y & Z */
|
|
660 #define CCL_OR 0x06 /* X = Y | Z */
|
|
661 #define CCL_XOR 0x07 /* X = Y ^ Z */
|
|
662 #define CCL_LSH 0x08 /* X = Y << Z */
|
|
663 #define CCL_RSH 0x09 /* X = Y >> Z */
|
|
664 #define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
|
|
665 #define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
|
|
666 #define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
|
|
667 #define CCL_LS 0x10 /* X = (X < Y) */
|
|
668 #define CCL_GT 0x11 /* X = (X > Y) */
|
|
669 #define CCL_EQ 0x12 /* X = (X == Y) */
|
|
670 #define CCL_LE 0x13 /* X = (X <= Y) */
|
|
671 #define CCL_GE 0x14 /* X = (X >= Y) */
|
|
672 #define CCL_NE 0x15 /* X = (X != Y) */
|
|
673
|
|
674 #define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
|
|
675 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
|
|
676 #define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
|
|
677 r[7] = LOWER_BYTE (SJIS (Y, Z) */
|
|
678
|
444
|
679 /* Terminate CCL program successfully. */
|
462
|
680 #define CCL_SUCCESS \
|
|
681 do { \
|
|
682 ccl->status = CCL_STAT_SUCCESS; \
|
456
|
683 /* The "if (1)" inhibits the warning \
|
|
684 "end-of loop code not reached" */ \
|
|
685 if (1) goto ccl_finish; \
|
462
|
686 } while (0)
|
444
|
687
|
428
|
688 /* Suspend CCL program because of reading from empty input buffer or
|
|
689 writing to full output buffer. When this program is resumed, the
|
444
|
690 same I/O command is executed. */
|
462
|
691 #define CCL_SUSPEND(stat) \
|
|
692 do { \
|
|
693 ic--; \
|
456
|
694 ccl->status = (stat); \
|
|
695 /* The "if (1)" inhibits the warning \
|
|
696 "end-of loop code not reached" */ \
|
|
697 if (1) goto ccl_finish; \
|
462
|
698 } while (0)
|
428
|
699
|
|
700 /* Terminate CCL program because of invalid command. Should not occur
|
444
|
701 in the normal case. */
|
462
|
702 #define CCL_INVALID_CMD \
|
|
703 do { \
|
|
704 ccl->status = CCL_STAT_INVALID_CMD; \
|
456
|
705 /* The "if (1)" inhibits the warning \
|
|
706 "end-of loop code not reached" */ \
|
|
707 if (1) goto ccl_error_handler; \
|
462
|
708 } while (0)
|
428
|
709
|
|
710 /* Encode one character CH to multibyte form and write to the current
|
444
|
711 output buffer. At encoding time, if CH is less than 256, CH is
|
|
712 written as is. At decoding time, if CH cannot be regarded as an
|
|
713 ASCII character, write it in multibyte form. */
|
|
714 #define CCL_WRITE_CHAR(ch) \
|
|
715 do { \
|
|
716 if (!destination) \
|
|
717 CCL_INVALID_CMD; \
|
|
718 if (conversion_mode == CCL_MODE_ENCODING) \
|
|
719 { \
|
456
|
720 if ((ch) == '\n') \
|
444
|
721 { \
|
|
722 if (ccl->eol_type == CCL_CODING_EOL_CRLF) \
|
|
723 { \
|
|
724 Dynarr_add (destination, '\r'); \
|
|
725 Dynarr_add (destination, '\n'); \
|
|
726 } \
|
|
727 else if (ccl->eol_type == CCL_CODING_EOL_CR) \
|
|
728 Dynarr_add (destination, '\r'); \
|
|
729 else \
|
|
730 Dynarr_add (destination, '\n'); \
|
|
731 } \
|
456
|
732 else if ((ch) < 0x100) \
|
444
|
733 { \
|
|
734 Dynarr_add (destination, ch); \
|
|
735 } \
|
|
736 else \
|
|
737 { \
|
|
738 Bufbyte work[MAX_EMCHAR_LEN]; \
|
|
739 int len; \
|
|
740 len = non_ascii_set_charptr_emchar (work, ch); \
|
|
741 Dynarr_add_many (destination, work, len); \
|
|
742 } \
|
|
743 } \
|
|
744 else \
|
|
745 { \
|
|
746 if (!CHAR_MULTIBYTE_P(ch)) \
|
|
747 { \
|
|
748 Dynarr_add (destination, ch); \
|
|
749 } \
|
|
750 else \
|
|
751 { \
|
|
752 Bufbyte work[MAX_EMCHAR_LEN]; \
|
|
753 int len; \
|
|
754 len = non_ascii_set_charptr_emchar (work, ch); \
|
|
755 Dynarr_add_many (destination, work, len); \
|
|
756 } \
|
|
757 } \
|
|
758 } while (0)
|
428
|
759
|
|
760 /* Write a string at ccl_prog[IC] of length LEN to the current output
|
444
|
761 buffer. But this macro treat this string as a binary. Therefore,
|
|
762 cannot handle a multibyte string except for Control-1 characters. */
|
|
763 #define CCL_WRITE_STRING(len) \
|
|
764 do { \
|
|
765 Bufbyte work[MAX_EMCHAR_LEN]; \
|
|
766 int ch, bytes; \
|
|
767 if (!destination) \
|
|
768 CCL_INVALID_CMD; \
|
|
769 else if (conversion_mode == CCL_MODE_ENCODING) \
|
|
770 { \
|
456
|
771 for (i = 0; i < (len); i++) \
|
444
|
772 { \
|
|
773 ch = ((XINT (ccl_prog[ic + (i / 3)])) \
|
|
774 >> ((2 - (i % 3)) * 8)) & 0xFF; \
|
|
775 if (ch == '\n') \
|
|
776 { \
|
|
777 if (ccl->eol_type == CCL_CODING_EOL_CRLF) \
|
|
778 { \
|
|
779 Dynarr_add (destination, '\r'); \
|
|
780 Dynarr_add (destination, '\n'); \
|
|
781 } \
|
|
782 else if (ccl->eol_type == CCL_CODING_EOL_CR) \
|
|
783 Dynarr_add (destination, '\r'); \
|
|
784 else \
|
|
785 Dynarr_add (destination, '\n'); \
|
|
786 } \
|
|
787 if (ch < 0x100) \
|
|
788 { \
|
|
789 Dynarr_add (destination, ch); \
|
|
790 } \
|
|
791 else \
|
|
792 { \
|
|
793 bytes = non_ascii_set_charptr_emchar (work, ch); \
|
|
794 Dynarr_add_many (destination, work, len); \
|
|
795 } \
|
|
796 } \
|
|
797 } \
|
|
798 else \
|
|
799 { \
|
456
|
800 for (i = 0; i < (len); i++) \
|
444
|
801 { \
|
|
802 ch = ((XINT (ccl_prog[ic + (i / 3)])) \
|
|
803 >> ((2 - (i % 3)) * 8)) & 0xFF; \
|
|
804 if (!CHAR_MULTIBYTE_P(ch)) \
|
|
805 { \
|
|
806 Dynarr_add (destination, ch); \
|
|
807 } \
|
|
808 else \
|
|
809 { \
|
|
810 bytes = non_ascii_set_charptr_emchar (work, ch); \
|
|
811 Dynarr_add_many (destination, work, len); \
|
|
812 } \
|
|
813 } \
|
|
814 } \
|
|
815 } while (0)
|
428
|
816
|
|
817 /* Read one byte from the current input buffer into Rth register. */
|
444
|
818 #define CCL_READ_CHAR(r) \
|
|
819 do { \
|
|
820 if (!src) \
|
|
821 CCL_INVALID_CMD; \
|
|
822 if (src < src_end) \
|
456
|
823 (r) = *src++; \
|
444
|
824 else \
|
|
825 { \
|
|
826 if (ccl->last_block) \
|
|
827 { \
|
|
828 ic = ccl->eof_ic; \
|
|
829 goto ccl_repeat; \
|
|
830 } \
|
|
831 else \
|
|
832 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
|
|
833 } \
|
|
834 } while (0)
|
|
835
|
|
836
|
|
837 /* Set C to the character code made from CHARSET and CODE. This is
|
|
838 like MAKE_CHAR but check the validity of CHARSET and CODE. If they
|
|
839 are not valid, set C to (CODE & 0xFF) because that is usually the
|
|
840 case that CCL_ReadMultibyteChar2 read an invalid code and it set
|
|
841 CODE to that invalid byte. */
|
|
842
|
|
843 /* On XEmacs, TranslateCharacter is not supported. Thus, this
|
|
844 macro is not used. */
|
|
845 #if 0
|
|
846 #define CCL_MAKE_CHAR(charset, code, c) \
|
|
847 do { \
|
456
|
848 if ((charset) == CHARSET_ASCII) \
|
|
849 (c) = (code) & 0xFF; \
|
444
|
850 else if (CHARSET_DEFINED_P (charset) \
|
456
|
851 && ((code) & 0x7F) >= 32 \
|
|
852 && ((code) < 256 || ((code >> 7) & 0x7F) >= 32)) \
|
444
|
853 { \
|
456
|
854 int c1 = (code) & 0x7F, c2 = 0; \
|
444
|
855 \
|
456
|
856 if ((code) >= 256) \
|
|
857 c2 = c1, c1 = ((code) >> 7) & 0x7F; \
|
|
858 (c) = MAKE_CHAR (charset, c1, c2); \
|
444
|
859 } \
|
|
860 else \
|
456
|
861 (c) = (code) & 0xFF; \
|
444
|
862 } while (0)
|
|
863 #endif
|
428
|
864
|
|
865
|
|
866 /* Execute CCL code on SRC_BYTES length text at SOURCE. The resulting
|
444
|
867 text goes to a place pointed by DESTINATION, the length of which
|
|
868 should not exceed DST_BYTES. The bytes actually processed is
|
|
869 returned as *CONSUMED. The return value is the length of the
|
|
870 resulting text. As a side effect, the contents of CCL registers
|
428
|
871 are updated. If SOURCE or DESTINATION is NULL, only operations on
|
|
872 registers are permitted. */
|
|
873
|
|
874 #ifdef CCL_DEBUG
|
|
875 #define CCL_DEBUG_BACKTRACE_LEN 256
|
|
876 int ccl_backtrace_table[CCL_BACKTRACE_TABLE];
|
|
877 int ccl_backtrace_idx;
|
|
878 #endif
|
|
879
|
|
880 struct ccl_prog_stack
|
|
881 {
|
|
882 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
|
|
883 int ic; /* Instruction Counter. */
|
|
884 };
|
|
885
|
442
|
886 /* For the moment, we only support depth 256 of stack. */
|
428
|
887 static struct ccl_prog_stack ccl_prog_stack_struct[256];
|
|
888
|
|
889 int
|
444
|
890 ccl_driver (struct ccl_program *ccl,
|
|
891 const unsigned char *source,
|
|
892 unsigned_char_dynarr *destination,
|
|
893 int src_bytes,
|
|
894 int *consumed,
|
|
895 int conversion_mode)
|
428
|
896 {
|
444
|
897 register int *reg = ccl->reg;
|
|
898 register int ic = ccl->ic;
|
|
899 register int code = -1;
|
|
900 register int field1, field2;
|
|
901 register Lisp_Object *ccl_prog = ccl->prog;
|
442
|
902 const unsigned char *src = source, *src_end = src + src_bytes;
|
444
|
903 int jump_address;
|
428
|
904 int i, j, op;
|
|
905 int stack_idx = ccl->stack_idx;
|
|
906 /* Instruction counter of the current CCL code. */
|
|
907 int this_ic = 0;
|
|
908
|
|
909 if (ic >= ccl->eof_ic)
|
|
910 ic = CCL_HEADER_MAIN;
|
|
911
|
|
912 if (ccl->buf_magnification ==0) /* We can't produce any bytes. */
|
444
|
913 destination = NULL;
|
|
914
|
|
915 /* Set mapping stack pointer. */
|
|
916 mapping_stack_pointer = mapping_stack;
|
428
|
917
|
|
918 #ifdef CCL_DEBUG
|
|
919 ccl_backtrace_idx = 0;
|
|
920 #endif
|
|
921
|
|
922 for (;;)
|
|
923 {
|
|
924 ccl_repeat:
|
|
925 #ifdef CCL_DEBUG
|
|
926 ccl_backtrace_table[ccl_backtrace_idx++] = ic;
|
|
927 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
|
|
928 ccl_backtrace_idx = 0;
|
|
929 ccl_backtrace_table[ccl_backtrace_idx] = 0;
|
|
930 #endif
|
|
931
|
|
932 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
|
|
933 {
|
|
934 /* We can't just signal Qquit, instead break the loop as if
|
|
935 the whole data is processed. Don't reset Vquit_flag, it
|
|
936 must be handled later at a safer place. */
|
|
937 if (consumed)
|
|
938 src = source + src_bytes;
|
|
939 ccl->status = CCL_STAT_QUIT;
|
|
940 break;
|
|
941 }
|
|
942
|
|
943 this_ic = ic;
|
|
944 code = XINT (ccl_prog[ic]); ic++;
|
|
945 field1 = code >> 8;
|
|
946 field2 = (code & 0xFF) >> 5;
|
|
947
|
|
948 #define rrr field2
|
|
949 #define RRR (field1 & 7)
|
|
950 #define Rrr ((field1 >> 3) & 7)
|
|
951 #define ADDR field1
|
|
952 #define EXCMD (field1 >> 6)
|
|
953
|
|
954 switch (code & 0x1F)
|
|
955 {
|
|
956 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
|
|
957 reg[rrr] = reg[RRR];
|
|
958 break;
|
|
959
|
|
960 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
961 reg[rrr] = field1;
|
|
962 break;
|
|
963
|
|
964 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
|
|
965 reg[rrr] = XINT (ccl_prog[ic]);
|
|
966 ic++;
|
|
967 break;
|
|
968
|
|
969 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
|
|
970 i = reg[RRR];
|
|
971 j = field1 >> 3;
|
|
972 if ((unsigned int) i < j)
|
|
973 reg[rrr] = XINT (ccl_prog[ic + i]);
|
|
974 ic += j;
|
|
975 break;
|
|
976
|
|
977 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
|
|
978 ic += ADDR;
|
|
979 break;
|
|
980
|
|
981 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
982 if (!reg[rrr])
|
|
983 ic += ADDR;
|
|
984 break;
|
|
985
|
|
986 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
987 i = reg[rrr];
|
|
988 CCL_WRITE_CHAR (i);
|
|
989 ic += ADDR;
|
|
990 break;
|
|
991
|
|
992 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
993 i = reg[rrr];
|
|
994 CCL_WRITE_CHAR (i);
|
|
995 ic++;
|
|
996 CCL_READ_CHAR (reg[rrr]);
|
|
997 ic += ADDR - 1;
|
|
998 break;
|
|
999
|
|
1000 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
|
|
1001 i = XINT (ccl_prog[ic]);
|
|
1002 CCL_WRITE_CHAR (i);
|
|
1003 ic += ADDR;
|
|
1004 break;
|
|
1005
|
|
1006 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
1007 i = XINT (ccl_prog[ic]);
|
|
1008 CCL_WRITE_CHAR (i);
|
|
1009 ic++;
|
|
1010 CCL_READ_CHAR (reg[rrr]);
|
|
1011 ic += ADDR - 1;
|
|
1012 break;
|
|
1013
|
|
1014 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
|
|
1015 j = XINT (ccl_prog[ic]);
|
|
1016 ic++;
|
|
1017 CCL_WRITE_STRING (j);
|
|
1018 ic += ADDR - 1;
|
|
1019 break;
|
|
1020
|
|
1021 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
1022 i = reg[rrr];
|
|
1023 j = XINT (ccl_prog[ic]);
|
|
1024 if ((unsigned int) i < j)
|
|
1025 {
|
|
1026 i = XINT (ccl_prog[ic + 1 + i]);
|
|
1027 CCL_WRITE_CHAR (i);
|
|
1028 }
|
|
1029 ic += j + 2;
|
|
1030 CCL_READ_CHAR (reg[rrr]);
|
|
1031 ic += ADDR - (j + 2);
|
|
1032 break;
|
|
1033
|
|
1034 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
|
|
1035 CCL_READ_CHAR (reg[rrr]);
|
|
1036 ic += ADDR;
|
|
1037 break;
|
|
1038
|
|
1039 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
1040 CCL_READ_CHAR (reg[rrr]);
|
|
1041 /* fall through ... */
|
|
1042 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
1043 if ((unsigned int) reg[rrr] < field1)
|
|
1044 ic += XINT (ccl_prog[ic + reg[rrr]]);
|
|
1045 else
|
|
1046 ic += XINT (ccl_prog[ic + field1]);
|
|
1047 break;
|
|
1048
|
|
1049 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
|
|
1050 while (1)
|
|
1051 {
|
|
1052 CCL_READ_CHAR (reg[rrr]);
|
|
1053 if (!field1) break;
|
|
1054 code = XINT (ccl_prog[ic]); ic++;
|
|
1055 field1 = code >> 8;
|
|
1056 field2 = (code & 0xFF) >> 5;
|
|
1057 }
|
|
1058 break;
|
|
1059
|
|
1060 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
|
|
1061 rrr = 7;
|
|
1062 i = reg[RRR];
|
|
1063 j = XINT (ccl_prog[ic]);
|
|
1064 op = field1 >> 6;
|
444
|
1065 jump_address = ic + 1;
|
428
|
1066 goto ccl_set_expr;
|
|
1067
|
|
1068 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
1069 while (1)
|
|
1070 {
|
|
1071 i = reg[rrr];
|
|
1072 CCL_WRITE_CHAR (i);
|
|
1073 if (!field1) break;
|
|
1074 code = XINT (ccl_prog[ic]); ic++;
|
|
1075 field1 = code >> 8;
|
|
1076 field2 = (code & 0xFF) >> 5;
|
|
1077 }
|
|
1078 break;
|
|
1079
|
|
1080 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
|
|
1081 rrr = 7;
|
|
1082 i = reg[RRR];
|
|
1083 j = reg[Rrr];
|
|
1084 op = field1 >> 6;
|
444
|
1085 jump_address = ic;
|
428
|
1086 goto ccl_set_expr;
|
|
1087
|
444
|
1088 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
|
428
|
1089 {
|
|
1090 Lisp_Object slot;
|
444
|
1091 int prog_id;
|
|
1092
|
|
1093 /* If FFF is nonzero, the CCL program ID is in the
|
|
1094 following code. */
|
|
1095 if (rrr)
|
|
1096 {
|
|
1097 prog_id = XINT (ccl_prog[ic]);
|
|
1098 ic++;
|
|
1099 }
|
|
1100 else
|
|
1101 prog_id = field1;
|
428
|
1102
|
|
1103 if (stack_idx >= 256
|
444
|
1104 || prog_id < 0
|
|
1105 || prog_id >= XVECTOR (Vccl_program_table)->size
|
|
1106 || (slot = XVECTOR (Vccl_program_table)->contents[prog_id],
|
|
1107 !VECTORP (slot))
|
|
1108 || !VECTORP (XVECTOR (slot)->contents[1]))
|
428
|
1109 {
|
|
1110 if (stack_idx > 0)
|
|
1111 {
|
|
1112 ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
|
|
1113 ic = ccl_prog_stack_struct[0].ic;
|
|
1114 }
|
444
|
1115 CCL_INVALID_CMD;
|
428
|
1116 }
|
|
1117
|
|
1118 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
|
|
1119 ccl_prog_stack_struct[stack_idx].ic = ic;
|
|
1120 stack_idx++;
|
444
|
1121 ccl_prog = XVECTOR (XVECTOR (slot)->contents[1])->contents;
|
428
|
1122 ic = CCL_HEADER_MAIN;
|
|
1123 }
|
|
1124 break;
|
|
1125
|
|
1126 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
1127 if (!rrr)
|
|
1128 CCL_WRITE_CHAR (field1);
|
|
1129 else
|
|
1130 {
|
|
1131 CCL_WRITE_STRING (field1);
|
|
1132 ic += (field1 + 2) / 3;
|
|
1133 }
|
|
1134 break;
|
|
1135
|
|
1136 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
|
|
1137 i = reg[rrr];
|
|
1138 if ((unsigned int) i < field1)
|
|
1139 {
|
|
1140 j = XINT (ccl_prog[ic + i]);
|
|
1141 CCL_WRITE_CHAR (j);
|
|
1142 }
|
|
1143 ic += field1;
|
|
1144 break;
|
|
1145
|
|
1146 case CCL_End: /* 0000000000000000000000XXXXX */
|
444
|
1147 if (stack_idx > 0)
|
428
|
1148 {
|
444
|
1149 stack_idx--;
|
428
|
1150 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
|
|
1151 ic = ccl_prog_stack_struct[stack_idx].ic;
|
|
1152 break;
|
|
1153 }
|
|
1154 if (src)
|
|
1155 src = src_end;
|
|
1156 /* ccl->ic should points to this command code again to
|
|
1157 suppress further processing. */
|
|
1158 ic--;
|
444
|
1159 CCL_SUCCESS;
|
428
|
1160
|
|
1161 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
|
|
1162 i = XINT (ccl_prog[ic]);
|
|
1163 ic++;
|
|
1164 op = field1 >> 6;
|
|
1165 goto ccl_expr_self;
|
|
1166
|
|
1167 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
|
|
1168 i = reg[RRR];
|
|
1169 op = field1 >> 6;
|
|
1170
|
|
1171 ccl_expr_self:
|
|
1172 switch (op)
|
|
1173 {
|
|
1174 case CCL_PLUS: reg[rrr] += i; break;
|
|
1175 case CCL_MINUS: reg[rrr] -= i; break;
|
|
1176 case CCL_MUL: reg[rrr] *= i; break;
|
|
1177 case CCL_DIV: reg[rrr] /= i; break;
|
|
1178 case CCL_MOD: reg[rrr] %= i; break;
|
|
1179 case CCL_AND: reg[rrr] &= i; break;
|
|
1180 case CCL_OR: reg[rrr] |= i; break;
|
|
1181 case CCL_XOR: reg[rrr] ^= i; break;
|
|
1182 case CCL_LSH: reg[rrr] <<= i; break;
|
|
1183 case CCL_RSH: reg[rrr] >>= i; break;
|
|
1184 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
|
|
1185 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
|
|
1186 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
|
|
1187 case CCL_LS: reg[rrr] = reg[rrr] < i; break;
|
|
1188 case CCL_GT: reg[rrr] = reg[rrr] > i; break;
|
|
1189 case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
|
|
1190 case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
|
|
1191 case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
|
|
1192 case CCL_NE: reg[rrr] = reg[rrr] != i; break;
|
444
|
1193 default: CCL_INVALID_CMD;
|
428
|
1194 }
|
|
1195 break;
|
|
1196
|
|
1197 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
|
|
1198 i = reg[RRR];
|
|
1199 j = XINT (ccl_prog[ic]);
|
|
1200 op = field1 >> 6;
|
|
1201 jump_address = ++ic;
|
|
1202 goto ccl_set_expr;
|
|
1203
|
|
1204 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
|
|
1205 i = reg[RRR];
|
|
1206 j = reg[Rrr];
|
|
1207 op = field1 >> 6;
|
|
1208 jump_address = ic;
|
|
1209 goto ccl_set_expr;
|
|
1210
|
|
1211 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
1212 CCL_READ_CHAR (reg[rrr]);
|
|
1213 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
1214 i = reg[rrr];
|
|
1215 op = XINT (ccl_prog[ic]);
|
|
1216 jump_address = ic++ + ADDR;
|
|
1217 j = XINT (ccl_prog[ic]);
|
|
1218 ic++;
|
|
1219 rrr = 7;
|
|
1220 goto ccl_set_expr;
|
|
1221
|
|
1222 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
|
|
1223 CCL_READ_CHAR (reg[rrr]);
|
|
1224 case CCL_JumpCondExprReg:
|
|
1225 i = reg[rrr];
|
|
1226 op = XINT (ccl_prog[ic]);
|
|
1227 jump_address = ic++ + ADDR;
|
|
1228 j = reg[XINT (ccl_prog[ic])];
|
|
1229 ic++;
|
|
1230 rrr = 7;
|
|
1231
|
|
1232 ccl_set_expr:
|
|
1233 switch (op)
|
|
1234 {
|
|
1235 case CCL_PLUS: reg[rrr] = i + j; break;
|
|
1236 case CCL_MINUS: reg[rrr] = i - j; break;
|
|
1237 case CCL_MUL: reg[rrr] = i * j; break;
|
|
1238 case CCL_DIV: reg[rrr] = i / j; break;
|
|
1239 case CCL_MOD: reg[rrr] = i % j; break;
|
|
1240 case CCL_AND: reg[rrr] = i & j; break;
|
|
1241 case CCL_OR: reg[rrr] = i | j; break;
|
444
|
1242 case CCL_XOR: reg[rrr] = i ^ j;; break;
|
428
|
1243 case CCL_LSH: reg[rrr] = i << j; break;
|
|
1244 case CCL_RSH: reg[rrr] = i >> j; break;
|
|
1245 case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
|
|
1246 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
|
|
1247 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
|
|
1248 case CCL_LS: reg[rrr] = i < j; break;
|
|
1249 case CCL_GT: reg[rrr] = i > j; break;
|
|
1250 case CCL_EQ: reg[rrr] = i == j; break;
|
|
1251 case CCL_LE: reg[rrr] = i <= j; break;
|
|
1252 case CCL_GE: reg[rrr] = i >= j; break;
|
|
1253 case CCL_NE: reg[rrr] = i != j; break;
|
444
|
1254 case CCL_DECODE_SJIS:
|
|
1255 /* DECODE_SJIS set MSB for internal format
|
|
1256 as opposed to Emacs. */
|
|
1257 DECODE_SJIS (i, j, reg[rrr], reg[7]);
|
|
1258 reg[rrr] &= 0x7F;
|
|
1259 reg[7] &= 0x7F;
|
|
1260 break;
|
|
1261 case CCL_ENCODE_SJIS:
|
|
1262 /* ENCODE_SJIS assumes MSB of SJIS-char is set
|
|
1263 as opposed to Emacs. */
|
|
1264 ENCODE_SJIS (i | 0x80, j | 0x80, reg[rrr], reg[7]);
|
|
1265 break;
|
|
1266 default: CCL_INVALID_CMD;
|
428
|
1267 }
|
|
1268 code &= 0x1F;
|
|
1269 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
|
|
1270 {
|
|
1271 i = reg[rrr];
|
|
1272 CCL_WRITE_CHAR (i);
|
444
|
1273 ic = jump_address;
|
428
|
1274 }
|
|
1275 else if (!reg[rrr])
|
|
1276 ic = jump_address;
|
|
1277 break;
|
|
1278
|
456
|
1279 case CCL_Extension:
|
428
|
1280 switch (EXCMD)
|
|
1281 {
|
|
1282 case CCL_ReadMultibyteChar2:
|
|
1283 if (!src)
|
|
1284 CCL_INVALID_CMD;
|
|
1285
|
462
|
1286 if (src >= src_end)
|
|
1287 {
|
|
1288 src++;
|
456
|
1289 goto ccl_read_multibyte_character_suspend;
|
462
|
1290 }
|
|
1291
|
|
1292 i = *src++;
|
|
1293 if (i < 0x80)
|
|
1294 {
|
|
1295 /* ASCII */
|
|
1296 reg[rrr] = i;
|
|
1297 reg[RRR] = LEADING_BYTE_ASCII;
|
|
1298 }
|
|
1299 else if (i <= MAX_LEADING_BYTE_OFFICIAL_1)
|
|
1300 {
|
|
1301 if (src >= src_end)
|
|
1302 goto ccl_read_multibyte_character_suspend;
|
|
1303 reg[RRR] = i;
|
|
1304 reg[rrr] = (*src++ & 0x7F);
|
|
1305 }
|
|
1306 else if (i <= MAX_LEADING_BYTE_OFFICIAL_2)
|
|
1307 {
|
|
1308 if ((src + 1) >= src_end)
|
|
1309 goto ccl_read_multibyte_character_suspend;
|
|
1310 reg[RRR] = i;
|
|
1311 i = (*src++ & 0x7F);
|
|
1312 reg[rrr] = ((i << 7) | (*src & 0x7F));
|
|
1313 src++;
|
|
1314 }
|
|
1315 else if (i == PRE_LEADING_BYTE_PRIVATE_1)
|
|
1316 {
|
|
1317 if ((src + 1) >= src_end)
|
|
1318 goto ccl_read_multibyte_character_suspend;
|
|
1319 reg[RRR] = *src++;
|
|
1320 reg[rrr] = (*src++ & 0x7F);
|
|
1321 }
|
|
1322 else if (i == PRE_LEADING_BYTE_PRIVATE_2)
|
|
1323 {
|
|
1324 if ((src + 2) >= src_end)
|
|
1325 goto ccl_read_multibyte_character_suspend;
|
|
1326 reg[RRR] = *src++;
|
|
1327 i = (*src++ & 0x7F);
|
|
1328 reg[rrr] = ((i << 7) | (*src & 0x7F));
|
|
1329 src++;
|
|
1330 }
|
|
1331 else
|
|
1332 {
|
|
1333 /* INVALID CODE. Return a single byte character. */
|
|
1334 reg[RRR] = LEADING_BYTE_ASCII;
|
|
1335 reg[rrr] = i;
|
|
1336 }
|
428
|
1337 break;
|
|
1338
|
|
1339 ccl_read_multibyte_character_suspend:
|
|
1340 src--;
|
|
1341 if (ccl->last_block)
|
|
1342 {
|
|
1343 ic = ccl->eof_ic;
|
|
1344 goto ccl_repeat;
|
|
1345 }
|
|
1346 else
|
|
1347 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC);
|
|
1348
|
|
1349 break;
|
|
1350
|
|
1351 case CCL_WriteMultibyteChar2:
|
|
1352 i = reg[RRR]; /* charset */
|
|
1353 if (i == LEADING_BYTE_ASCII)
|
|
1354 i = reg[rrr] & 0xFF;
|
|
1355 else if (XCHARSET_DIMENSION (CHARSET_BY_LEADING_BYTE (i)) == 1)
|
444
|
1356 i = (((i - FIELD2_TO_OFFICIAL_LEADING_BYTE) << 7)
|
|
1357 | (reg[rrr] & 0x7F));
|
|
1358 else if (i < MAX_LEADING_BYTE_OFFICIAL_2)
|
428
|
1359 i = ((i - FIELD1_TO_OFFICIAL_LEADING_BYTE) << 14) | reg[rrr];
|
|
1360 else
|
|
1361 i = ((i - FIELD1_TO_PRIVATE_LEADING_BYTE) << 14) | reg[rrr];
|
|
1362
|
|
1363 CCL_WRITE_CHAR (i);
|
|
1364
|
|
1365 break;
|
|
1366
|
444
|
1367 case CCL_TranslateCharacter:
|
428
|
1368 #if 0
|
444
|
1369 /* XEmacs does not have translate_char, and its
|
|
1370 equivalent nor. We do nothing on this operation. */
|
|
1371 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
|
428
|
1372 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]),
|
|
1373 i, -1, 0, 0);
|
|
1374 SPLIT_CHAR (op, reg[RRR], i, j);
|
|
1375 if (j != -1)
|
|
1376 i = (i << 7) | j;
|
442
|
1377
|
428
|
1378 reg[rrr] = i;
|
444
|
1379 #endif
|
428
|
1380 break;
|
|
1381
|
|
1382 case CCL_TranslateCharacterConstTbl:
|
444
|
1383 #if 0
|
|
1384 /* XEmacs does not have translate_char, and its
|
|
1385 equivalent nor. We do nothing on this operation. */
|
428
|
1386 op = XINT (ccl_prog[ic]); /* table */
|
|
1387 ic++;
|
444
|
1388 CCL_MAKE_CHAR (reg[RRR], reg[rrr], i);
|
428
|
1389 op = translate_char (GET_TRANSLATION_TABLE (op), i, -1, 0, 0);
|
|
1390 SPLIT_CHAR (op, reg[RRR], i, j);
|
|
1391 if (j != -1)
|
|
1392 i = (i << 7) | j;
|
442
|
1393
|
428
|
1394 reg[rrr] = i;
|
444
|
1395 #endif
|
428
|
1396 break;
|
|
1397
|
|
1398 case CCL_IterateMultipleMap:
|
|
1399 {
|
|
1400 Lisp_Object map, content, attrib, value;
|
|
1401 int point, size, fin_ic;
|
|
1402
|
|
1403 j = XINT (ccl_prog[ic++]); /* number of maps. */
|
|
1404 fin_ic = ic + j;
|
|
1405 op = reg[rrr];
|
|
1406 if ((j > reg[RRR]) && (j >= 0))
|
|
1407 {
|
|
1408 ic += reg[RRR];
|
|
1409 i = reg[RRR];
|
|
1410 }
|
|
1411 else
|
|
1412 {
|
|
1413 reg[RRR] = -1;
|
|
1414 ic = fin_ic;
|
|
1415 break;
|
|
1416 }
|
|
1417
|
|
1418 for (;i < j;i++)
|
|
1419 {
|
|
1420
|
|
1421 size = XVECTOR (Vcode_conversion_map_vector)->size;
|
|
1422 point = XINT (ccl_prog[ic++]);
|
|
1423 if (point >= size) continue;
|
|
1424 map =
|
|
1425 XVECTOR (Vcode_conversion_map_vector)->contents[point];
|
|
1426
|
444
|
1427 /* Check map validity. */
|
428
|
1428 if (!CONSP (map)) continue;
|
444
|
1429 map = XCDR (map);
|
428
|
1430 if (!VECTORP (map)) continue;
|
|
1431 size = XVECTOR (map)->size;
|
|
1432 if (size <= 1) continue;
|
|
1433
|
|
1434 content = XVECTOR (map)->contents[0];
|
|
1435
|
|
1436 /* check map type,
|
|
1437 [STARTPOINT VAL1 VAL2 ...] or
|
444
|
1438 [t ELEMENT STARTPOINT ENDPOINT] */
|
|
1439 if (INTP (content))
|
428
|
1440 {
|
|
1441 point = XUINT (content);
|
|
1442 point = op - point + 1;
|
|
1443 if (!((point >= 1) && (point < size))) continue;
|
|
1444 content = XVECTOR (map)->contents[point];
|
|
1445 }
|
|
1446 else if (EQ (content, Qt))
|
|
1447 {
|
|
1448 if (size != 4) continue;
|
|
1449 if ((op >= XUINT (XVECTOR (map)->contents[2]))
|
|
1450 && (op < XUINT (XVECTOR (map)->contents[3])))
|
|
1451 content = XVECTOR (map)->contents[1];
|
|
1452 else
|
|
1453 continue;
|
|
1454 }
|
442
|
1455 else
|
428
|
1456 continue;
|
|
1457
|
|
1458 if (NILP (content))
|
|
1459 continue;
|
444
|
1460 else if (INTP (content))
|
428
|
1461 {
|
|
1462 reg[RRR] = i;
|
|
1463 reg[rrr] = XINT(content);
|
|
1464 break;
|
|
1465 }
|
|
1466 else if (EQ (content, Qt) || EQ (content, Qlambda))
|
|
1467 {
|
|
1468 reg[RRR] = i;
|
|
1469 break;
|
|
1470 }
|
|
1471 else if (CONSP (content))
|
|
1472 {
|
444
|
1473 attrib = XCAR (content);
|
|
1474 value = XCDR (content);
|
|
1475 if (!INTP (attrib) || !INTP (value))
|
428
|
1476 continue;
|
|
1477 reg[RRR] = i;
|
|
1478 reg[rrr] = XUINT (value);
|
|
1479 break;
|
|
1480 }
|
444
|
1481 else if (SYMBOLP (content))
|
|
1482 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
|
|
1483 else
|
|
1484 CCL_INVALID_CMD;
|
428
|
1485 }
|
|
1486 if (i == j)
|
|
1487 reg[RRR] = -1;
|
|
1488 ic = fin_ic;
|
|
1489 }
|
|
1490 break;
|
442
|
1491
|
428
|
1492 case CCL_MapMultiple:
|
|
1493 {
|
|
1494 Lisp_Object map, content, attrib, value;
|
|
1495 int point, size, map_vector_size;
|
|
1496 int map_set_rest_length, fin_ic;
|
444
|
1497 int current_ic = this_ic;
|
|
1498
|
|
1499 /* inhibit recursive call on MapMultiple. */
|
|
1500 if (stack_idx_of_map_multiple > 0)
|
|
1501 {
|
|
1502 if (stack_idx_of_map_multiple <= stack_idx)
|
|
1503 {
|
|
1504 stack_idx_of_map_multiple = 0;
|
|
1505 mapping_stack_pointer = mapping_stack;
|
|
1506 CCL_INVALID_CMD;
|
|
1507 }
|
|
1508 }
|
|
1509 else
|
|
1510 mapping_stack_pointer = mapping_stack;
|
|
1511 stack_idx_of_map_multiple = 0;
|
428
|
1512
|
|
1513 map_set_rest_length =
|
|
1514 XINT (ccl_prog[ic++]); /* number of maps and separators. */
|
|
1515 fin_ic = ic + map_set_rest_length;
|
444
|
1516 op = reg[rrr];
|
|
1517
|
428
|
1518 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
|
|
1519 {
|
|
1520 ic += reg[RRR];
|
|
1521 i = reg[RRR];
|
|
1522 map_set_rest_length -= i;
|
|
1523 }
|
|
1524 else
|
|
1525 {
|
|
1526 ic = fin_ic;
|
|
1527 reg[RRR] = -1;
|
444
|
1528 mapping_stack_pointer = mapping_stack;
|
428
|
1529 break;
|
|
1530 }
|
444
|
1531
|
|
1532 if (mapping_stack_pointer <= (mapping_stack + 1))
|
428
|
1533 {
|
444
|
1534 /* Set up initial state. */
|
|
1535 mapping_stack_pointer = mapping_stack;
|
|
1536 PUSH_MAPPING_STACK (0, op);
|
|
1537 reg[RRR] = -1;
|
|
1538 }
|
|
1539 else
|
|
1540 {
|
|
1541 /* Recover after calling other ccl program. */
|
|
1542 int orig_op;
|
428
|
1543
|
444
|
1544 POP_MAPPING_STACK (map_set_rest_length, orig_op);
|
|
1545 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
1546 switch (op)
|
428
|
1547 {
|
444
|
1548 case -1:
|
|
1549 /* Regard it as Qnil. */
|
|
1550 op = orig_op;
|
|
1551 i++;
|
|
1552 ic++;
|
|
1553 map_set_rest_length--;
|
|
1554 break;
|
|
1555 case -2:
|
|
1556 /* Regard it as Qt. */
|
|
1557 op = reg[rrr];
|
|
1558 i++;
|
|
1559 ic++;
|
|
1560 map_set_rest_length--;
|
|
1561 break;
|
|
1562 case -3:
|
|
1563 /* Regard it as Qlambda. */
|
|
1564 op = orig_op;
|
428
|
1565 i += map_set_rest_length;
|
444
|
1566 ic += map_set_rest_length;
|
|
1567 map_set_rest_length = 0;
|
|
1568 break;
|
|
1569 default:
|
|
1570 /* Regard it as normal mapping. */
|
428
|
1571 i += map_set_rest_length;
|
444
|
1572 ic += map_set_rest_length;
|
428
|
1573 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
1574 break;
|
|
1575 }
|
|
1576 }
|
444
|
1577 map_vector_size = XVECTOR (Vcode_conversion_map_vector)->size;
|
|
1578
|
|
1579 do {
|
|
1580 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
|
|
1581 {
|
|
1582 point = XINT(ccl_prog[ic]);
|
|
1583 if (point < 0)
|
|
1584 {
|
|
1585 /* +1 is for including separator. */
|
|
1586 point = -point + 1;
|
|
1587 if (mapping_stack_pointer
|
460
|
1588 >= mapping_stack + countof (mapping_stack))
|
444
|
1589 CCL_INVALID_CMD;
|
|
1590 PUSH_MAPPING_STACK (map_set_rest_length - point,
|
|
1591 reg[rrr]);
|
|
1592 map_set_rest_length = point;
|
|
1593 reg[rrr] = op;
|
|
1594 continue;
|
|
1595 }
|
|
1596
|
|
1597 if (point >= map_vector_size) continue;
|
|
1598 map = (XVECTOR (Vcode_conversion_map_vector)
|
|
1599 ->contents[point]);
|
|
1600
|
|
1601 /* Check map validity. */
|
|
1602 if (!CONSP (map)) continue;
|
|
1603 map = XCDR (map);
|
|
1604 if (!VECTORP (map)) continue;
|
|
1605 size = XVECTOR (map)->size;
|
|
1606 if (size <= 1) continue;
|
|
1607
|
|
1608 content = XVECTOR (map)->contents[0];
|
|
1609
|
|
1610 /* check map type,
|
|
1611 [STARTPOINT VAL1 VAL2 ...] or
|
|
1612 [t ELEMENT STARTPOINT ENDPOINT] */
|
|
1613 if (INTP (content))
|
|
1614 {
|
|
1615 point = XUINT (content);
|
|
1616 point = op - point + 1;
|
|
1617 if (!((point >= 1) && (point < size))) continue;
|
|
1618 content = XVECTOR (map)->contents[point];
|
|
1619 }
|
|
1620 else if (EQ (content, Qt))
|
|
1621 {
|
|
1622 if (size != 4) continue;
|
|
1623 if ((op >= XUINT (XVECTOR (map)->contents[2])) &&
|
|
1624 (op < XUINT (XVECTOR (map)->contents[3])))
|
|
1625 content = XVECTOR (map)->contents[1];
|
|
1626 else
|
|
1627 continue;
|
|
1628 }
|
|
1629 else
|
|
1630 continue;
|
|
1631
|
|
1632 if (NILP (content))
|
|
1633 continue;
|
|
1634
|
|
1635 reg[RRR] = i;
|
|
1636 if (INTP (content))
|
|
1637 {
|
|
1638 op = XINT (content);
|
|
1639 i += map_set_rest_length - 1;
|
|
1640 ic += map_set_rest_length - 1;
|
|
1641 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
1642 map_set_rest_length++;
|
|
1643 }
|
|
1644 else if (CONSP (content))
|
|
1645 {
|
|
1646 attrib = XCAR (content);
|
|
1647 value = XCDR (content);
|
|
1648 if (!INTP (attrib) || !INTP (value))
|
|
1649 continue;
|
|
1650 op = XUINT (value);
|
|
1651 i += map_set_rest_length - 1;
|
|
1652 ic += map_set_rest_length - 1;
|
|
1653 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
1654 map_set_rest_length++;
|
|
1655 }
|
|
1656 else if (EQ (content, Qt))
|
|
1657 {
|
|
1658 op = reg[rrr];
|
|
1659 }
|
|
1660 else if (EQ (content, Qlambda))
|
|
1661 {
|
|
1662 i += map_set_rest_length;
|
|
1663 ic += map_set_rest_length;
|
|
1664 break;
|
|
1665 }
|
|
1666 else if (SYMBOLP (content))
|
|
1667 {
|
|
1668 if (mapping_stack_pointer
|
460
|
1669 >= mapping_stack + countof (mapping_stack))
|
444
|
1670 CCL_INVALID_CMD;
|
|
1671 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
1672 PUSH_MAPPING_STACK (map_set_rest_length, op);
|
|
1673 stack_idx_of_map_multiple = stack_idx + 1;
|
|
1674 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
|
|
1675 }
|
|
1676 else
|
|
1677 CCL_INVALID_CMD;
|
|
1678 }
|
|
1679 if (mapping_stack_pointer <= (mapping_stack + 1))
|
|
1680 break;
|
|
1681 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
1682 i += map_set_rest_length;
|
|
1683 ic += map_set_rest_length;
|
|
1684 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
|
|
1685 } while (1);
|
|
1686
|
428
|
1687 ic = fin_ic;
|
|
1688 }
|
|
1689 reg[rrr] = op;
|
|
1690 break;
|
|
1691
|
|
1692 case CCL_MapSingle:
|
|
1693 {
|
|
1694 Lisp_Object map, attrib, value, content;
|
|
1695 int size, point;
|
|
1696 j = XINT (ccl_prog[ic++]); /* map_id */
|
|
1697 op = reg[rrr];
|
|
1698 if (j >= XVECTOR (Vcode_conversion_map_vector)->size)
|
|
1699 {
|
|
1700 reg[RRR] = -1;
|
|
1701 break;
|
|
1702 }
|
|
1703 map = XVECTOR (Vcode_conversion_map_vector)->contents[j];
|
|
1704 if (!CONSP (map))
|
|
1705 {
|
|
1706 reg[RRR] = -1;
|
|
1707 break;
|
|
1708 }
|
444
|
1709 map = XCDR (map);
|
428
|
1710 if (!VECTORP (map))
|
|
1711 {
|
|
1712 reg[RRR] = -1;
|
|
1713 break;
|
|
1714 }
|
|
1715 size = XVECTOR (map)->size;
|
|
1716 point = XUINT (XVECTOR (map)->contents[0]);
|
|
1717 point = op - point + 1;
|
|
1718 reg[RRR] = 0;
|
|
1719 if ((size <= 1) ||
|
|
1720 (!((point >= 1) && (point < size))))
|
|
1721 reg[RRR] = -1;
|
|
1722 else
|
|
1723 {
|
444
|
1724 reg[RRR] = 0;
|
428
|
1725 content = XVECTOR (map)->contents[point];
|
|
1726 if (NILP (content))
|
|
1727 reg[RRR] = -1;
|
444
|
1728 else if (INTP (content))
|
428
|
1729 reg[rrr] = XINT (content);
|
444
|
1730 else if (EQ (content, Qt));
|
428
|
1731 else if (CONSP (content))
|
|
1732 {
|
444
|
1733 attrib = XCAR (content);
|
|
1734 value = XCDR (content);
|
|
1735 if (!INTP (attrib) || !INTP (value))
|
428
|
1736 continue;
|
|
1737 reg[rrr] = XUINT(value);
|
|
1738 break;
|
|
1739 }
|
444
|
1740 else if (SYMBOLP (content))
|
|
1741 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
|
428
|
1742 else
|
|
1743 reg[RRR] = -1;
|
|
1744 }
|
|
1745 }
|
|
1746 break;
|
442
|
1747
|
428
|
1748 default:
|
|
1749 CCL_INVALID_CMD;
|
|
1750 }
|
|
1751 break;
|
|
1752
|
|
1753 default:
|
444
|
1754 CCL_INVALID_CMD;
|
428
|
1755 }
|
|
1756 }
|
|
1757
|
|
1758 ccl_error_handler:
|
|
1759 if (destination)
|
|
1760 {
|
|
1761 /* We can insert an error message only if DESTINATION is
|
|
1762 specified and we still have a room to store the message
|
|
1763 there. */
|
|
1764 char msg[256];
|
|
1765
|
|
1766 switch (ccl->status)
|
|
1767 {
|
|
1768 case CCL_STAT_INVALID_CMD:
|
|
1769 sprintf(msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
|
|
1770 code & 0x1F, code, this_ic);
|
|
1771 #ifdef CCL_DEBUG
|
|
1772 {
|
|
1773 int i = ccl_backtrace_idx - 1;
|
|
1774 int j;
|
|
1775
|
|
1776 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg));
|
|
1777
|
|
1778 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
|
|
1779 {
|
|
1780 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
|
|
1781 if (ccl_backtrace_table[i] == 0)
|
|
1782 break;
|
|
1783 sprintf(msg, " %d", ccl_backtrace_table[i]);
|
|
1784 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg));
|
|
1785 }
|
|
1786 goto ccl_finish;
|
|
1787 }
|
|
1788 #endif
|
|
1789 break;
|
|
1790
|
|
1791 case CCL_STAT_QUIT:
|
444
|
1792 sprintf(msg, "\nCCL: Exited.");
|
428
|
1793 break;
|
|
1794
|
|
1795 default:
|
|
1796 sprintf(msg, "\nCCL: Unknown error type (%d).", ccl->status);
|
|
1797 }
|
|
1798
|
|
1799 Dynarr_add_many (destination, (unsigned char *) msg, strlen (msg));
|
|
1800 }
|
|
1801
|
|
1802 ccl_finish:
|
|
1803 ccl->ic = ic;
|
|
1804 ccl->stack_idx = stack_idx;
|
|
1805 ccl->prog = ccl_prog;
|
|
1806 if (consumed) *consumed = src - source;
|
444
|
1807 if (!destination)
|
428
|
1808 return 0;
|
444
|
1809 return Dynarr_length (destination);
|
|
1810 }
|
|
1811
|
|
1812 /* Resolve symbols in the specified CCL code (Lisp vector). This
|
|
1813 function converts symbols of code conversion maps and character
|
|
1814 translation tables embedded in the CCL code into their ID numbers.
|
|
1815
|
|
1816 The return value is a vector (CCL itself or a new vector in which
|
|
1817 all symbols are resolved), Qt if resolving of some symbol failed,
|
|
1818 or nil if CCL contains invalid data. */
|
|
1819
|
|
1820 static Lisp_Object
|
|
1821 resolve_symbol_ccl_program (Lisp_Object ccl)
|
|
1822 {
|
|
1823 int i, veclen, unresolved = 0;
|
|
1824 Lisp_Object result, contents, val;
|
|
1825
|
|
1826 result = ccl;
|
|
1827 veclen = XVECTOR (result)->size;
|
|
1828
|
|
1829 for (i = 0; i < veclen; i++)
|
|
1830 {
|
|
1831 contents = XVECTOR (result)->contents[i];
|
|
1832 if (INTP (contents))
|
|
1833 continue;
|
|
1834 else if (CONSP (contents)
|
|
1835 && SYMBOLP (XCAR (contents))
|
|
1836 && SYMBOLP (XCDR (contents)))
|
|
1837 {
|
|
1838 /* This is the new style for embedding symbols. The form is
|
|
1839 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
|
|
1840 an index number. */
|
|
1841
|
|
1842 if (EQ (result, ccl))
|
|
1843 result = Fcopy_sequence (ccl);
|
|
1844
|
|
1845 val = Fget (XCAR (contents), XCDR (contents), Qnil);
|
|
1846 if (NATNUMP (val))
|
|
1847 XVECTOR (result)->contents[i] = val;
|
|
1848 else
|
|
1849 unresolved = 1;
|
|
1850 continue;
|
|
1851 }
|
|
1852 else if (SYMBOLP (contents))
|
|
1853 {
|
|
1854 /* This is the old style for embedding symbols. This style
|
|
1855 may lead to a bug if, for instance, a translation table
|
|
1856 and a code conversion map have the same name. */
|
|
1857 if (EQ (result, ccl))
|
|
1858 result = Fcopy_sequence (ccl);
|
|
1859
|
|
1860 val = Fget (contents, Qcode_conversion_map_id, Qnil);
|
|
1861 if (NATNUMP (val))
|
|
1862 XVECTOR (result)->contents[i] = val;
|
|
1863 else
|
|
1864 {
|
|
1865 val = Fget (contents, Qccl_program_idx, Qnil);
|
|
1866 if (NATNUMP (val))
|
|
1867 XVECTOR (result)->contents[i] = val;
|
|
1868 else
|
|
1869 unresolved = 1;
|
|
1870 }
|
|
1871 continue;
|
|
1872 }
|
|
1873 return Qnil;
|
|
1874 }
|
|
1875
|
|
1876 return (unresolved ? Qt : result);
|
|
1877 }
|
|
1878
|
|
1879 /* Return the compiled code (vector) of CCL program CCL_PROG.
|
|
1880 CCL_PROG is a name (symbol) of the program or already compiled
|
|
1881 code. If necessary, resolve symbols in the compiled code to index
|
|
1882 numbers. If we failed to get the compiled code or to resolve
|
|
1883 symbols, return Qnil. */
|
|
1884
|
|
1885 static Lisp_Object
|
|
1886 ccl_get_compiled_code (Lisp_Object ccl_prog)
|
|
1887 {
|
|
1888 Lisp_Object val, slot;
|
|
1889
|
|
1890 if (VECTORP (ccl_prog))
|
|
1891 {
|
|
1892 val = resolve_symbol_ccl_program (ccl_prog);
|
|
1893 return (VECTORP (val) ? val : Qnil);
|
|
1894 }
|
|
1895 if (!SYMBOLP (ccl_prog))
|
|
1896 return Qnil;
|
|
1897
|
|
1898 val = Fget (ccl_prog, Qccl_program_idx, Qnil);
|
|
1899 if (! NATNUMP (val)
|
|
1900 || XINT (val) >= XVECTOR_LENGTH (Vccl_program_table))
|
|
1901 return Qnil;
|
|
1902 slot = XVECTOR_DATA (Vccl_program_table)[XINT (val)];
|
|
1903 if (! VECTORP (slot)
|
|
1904 || XVECTOR (slot)->size != 3
|
|
1905 || ! VECTORP (XVECTOR_DATA (slot)[1]))
|
|
1906 return Qnil;
|
|
1907 if (NILP (XVECTOR_DATA (slot)[2]))
|
|
1908 {
|
|
1909 val = resolve_symbol_ccl_program (XVECTOR_DATA (slot)[1]);
|
|
1910 if (! VECTORP (val))
|
|
1911 return Qnil;
|
|
1912 XVECTOR_DATA (slot)[1] = val;
|
|
1913 XVECTOR_DATA (slot)[2] = Qt;
|
|
1914 }
|
|
1915 return XVECTOR_DATA (slot)[1];
|
428
|
1916 }
|
|
1917
|
|
1918 /* Setup fields of the structure pointed by CCL appropriately for the
|
444
|
1919 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
|
|
1920 of the CCL program or the already compiled code (vector).
|
|
1921 Return 0 if we succeed this setup, else return -1.
|
|
1922
|
|
1923 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
|
|
1924 int
|
|
1925 setup_ccl_program (struct ccl_program *ccl, Lisp_Object ccl_prog)
|
428
|
1926 {
|
|
1927 int i;
|
|
1928
|
444
|
1929 if (! NILP (ccl_prog))
|
428
|
1930 {
|
444
|
1931 ccl_prog = ccl_get_compiled_code (ccl_prog);
|
|
1932 if (! VECTORP (ccl_prog))
|
|
1933 return -1;
|
|
1934 ccl->size = XVECTOR_LENGTH (ccl_prog);
|
|
1935 ccl->prog = XVECTOR_DATA (ccl_prog);
|
|
1936 ccl->eof_ic = XINT (XVECTOR_DATA (ccl_prog)[CCL_HEADER_EOF]);
|
|
1937 ccl->buf_magnification = XINT (XVECTOR_DATA (ccl_prog)[CCL_HEADER_BUF_MAG]);
|
428
|
1938 }
|
|
1939 ccl->ic = CCL_HEADER_MAIN;
|
|
1940 for (i = 0; i < 8; i++)
|
|
1941 ccl->reg[i] = 0;
|
|
1942 ccl->last_block = 0;
|
|
1943 ccl->private_state = 0;
|
|
1944 ccl->status = 0;
|
|
1945 ccl->stack_idx = 0;
|
444
|
1946 ccl->eol_type = CCL_CODING_EOL_LF;
|
|
1947 return 0;
|
428
|
1948 }
|
|
1949
|
444
|
1950 #ifdef emacs
|
428
|
1951
|
444
|
1952 DEFUN ("ccl-program-p", Fccl_program_p, 1, 1, 0, /*
|
|
1953 Return t if OBJECT is a CCL program name or a compiled CCL program code.
|
|
1954 See the documentation of `define-ccl-program' for the detail of CCL program.
|
|
1955 */
|
|
1956 (object))
|
|
1957 {
|
|
1958 Lisp_Object val;
|
428
|
1959
|
444
|
1960 if (VECTORP (object))
|
|
1961 {
|
|
1962 val = resolve_symbol_ccl_program (object);
|
|
1963 return (VECTORP (val) ? Qt : Qnil);
|
428
|
1964 }
|
444
|
1965 if (!SYMBOLP (object))
|
|
1966 return Qnil;
|
428
|
1967
|
444
|
1968 val = Fget (object, Qccl_program_idx, Qnil);
|
|
1969 return ((! NATNUMP (val)
|
|
1970 || XINT (val) >= XVECTOR_LENGTH (Vccl_program_table))
|
|
1971 ? Qnil : Qt);
|
428
|
1972 }
|
|
1973
|
|
1974 DEFUN ("ccl-execute", Fccl_execute, 2, 2, 0, /*
|
|
1975 Execute CCL-PROGRAM with registers initialized by REGISTERS.
|
|
1976
|
444
|
1977 CCL-PROGRAM is a CCL program name (symbol)
|
428
|
1978 or a compiled code generated by `ccl-compile' (for backward compatibility,
|
444
|
1979 in this case, the overhead of the execution is bigger than the former case).
|
428
|
1980 No I/O commands should appear in CCL-PROGRAM.
|
|
1981
|
|
1982 REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
|
|
1983 of Nth register.
|
|
1984
|
444
|
1985 As side effect, each element of REGISTERS holds the value of
|
428
|
1986 corresponding register after the execution.
|
444
|
1987
|
|
1988 See the documentation of `define-ccl-program' for the detail of CCL program.
|
428
|
1989 */
|
444
|
1990 (ccl_prog, reg))
|
428
|
1991 {
|
|
1992 struct ccl_program ccl;
|
|
1993 int i;
|
|
1994
|
444
|
1995 if (setup_ccl_program (&ccl, ccl_prog) < 0)
|
|
1996 error ("Invalid CCL program");
|
428
|
1997
|
|
1998 CHECK_VECTOR (reg);
|
|
1999 if (XVECTOR_LENGTH (reg) != 8)
|
444
|
2000 error ("Length of vector REGISTERS is not 8");
|
428
|
2001
|
|
2002 for (i = 0; i < 8; i++)
|
|
2003 ccl.reg[i] = (INTP (XVECTOR_DATA (reg)[i])
|
|
2004 ? XINT (XVECTOR_DATA (reg)[i])
|
|
2005 : 0);
|
|
2006
|
444
|
2007 ccl_driver (&ccl, (const unsigned char *)0,
|
|
2008 (unsigned_char_dynarr *)0, 0, (int *)0,
|
|
2009 CCL_MODE_ENCODING);
|
428
|
2010 QUIT;
|
|
2011 if (ccl.status != CCL_STAT_SUCCESS)
|
|
2012 error ("Error in CCL program at %dth code", ccl.ic);
|
|
2013
|
|
2014 for (i = 0; i < 8; i++)
|
444
|
2015 XSETINT (XVECTOR (reg)->contents[i], ccl.reg[i]);
|
428
|
2016 return Qnil;
|
|
2017 }
|
|
2018
|
444
|
2019 DEFUN ("ccl-execute-on-string", Fccl_execute_on_string,
|
|
2020 3, 4, 0, /*
|
428
|
2021 Execute CCL-PROGRAM with initial STATUS on STRING.
|
|
2022
|
|
2023 CCL-PROGRAM is a symbol registered by register-ccl-program,
|
|
2024 or a compiled code generated by `ccl-compile' (for backward compatibility,
|
|
2025 in this case, the execution is slower).
|
|
2026
|
|
2027 Read buffer is set to STRING, and write buffer is allocated automatically.
|
|
2028
|
|
2029 STATUS is a vector of [R0 R1 ... R7 IC], where
|
|
2030 R0..R7 are initial values of corresponding registers,
|
|
2031 IC is the instruction counter specifying from where to start the program.
|
|
2032 If R0..R7 are nil, they are initialized to 0.
|
|
2033 If IC is nil, it is initialized to head of the CCL program.
|
|
2034
|
|
2035 If optional 4th arg CONTINUE is non-nil, keep IC on read operation
|
444
|
2036 when read buffer is exhausted, else, IC is always set to the end of
|
428
|
2037 CCL-PROGRAM on exit.
|
|
2038
|
|
2039 It returns the contents of write buffer as a string,
|
|
2040 and as side effect, STATUS is updated.
|
444
|
2041
|
|
2042 See the documentation of `define-ccl-program' for the detail of CCL program.
|
428
|
2043 */
|
444
|
2044 (ccl_prog, status, string, continue_))
|
428
|
2045 {
|
|
2046 Lisp_Object val;
|
|
2047 struct ccl_program ccl;
|
|
2048 int i, produced;
|
|
2049 unsigned_char_dynarr *outbuf;
|
444
|
2050 struct gcpro gcpro1, gcpro2;
|
428
|
2051
|
444
|
2052 if (setup_ccl_program (&ccl, ccl_prog) < 0)
|
|
2053 error ("Invalid CCL program");
|
428
|
2054
|
|
2055 CHECK_VECTOR (status);
|
444
|
2056 if (XVECTOR (status)->size != 9)
|
|
2057 error ("Length of vector STATUS is not 9");
|
|
2058 CHECK_STRING (string);
|
428
|
2059
|
444
|
2060 GCPRO2 (status, string);
|
|
2061
|
428
|
2062 for (i = 0; i < 8; i++)
|
|
2063 {
|
|
2064 if (NILP (XVECTOR_DATA (status)[i]))
|
|
2065 XSETINT (XVECTOR_DATA (status)[i], 0);
|
|
2066 if (INTP (XVECTOR_DATA (status)[i]))
|
|
2067 ccl.reg[i] = XINT (XVECTOR_DATA (status)[i]);
|
|
2068 }
|
444
|
2069 if (INTP (XVECTOR (status)->contents[i]))
|
428
|
2070 {
|
|
2071 i = XINT (XVECTOR_DATA (status)[8]);
|
|
2072 if (ccl.ic < i && i < ccl.size)
|
|
2073 ccl.ic = i;
|
|
2074 }
|
|
2075 outbuf = Dynarr_new (unsigned_char);
|
444
|
2076 ccl.last_block = NILP (continue_);
|
|
2077 produced = ccl_driver (&ccl, XSTRING_DATA (string), outbuf,
|
|
2078 XSTRING_LENGTH (string),
|
|
2079 (int *) 0,
|
|
2080 CCL_MODE_DECODING);
|
428
|
2081 for (i = 0; i < 8; i++)
|
444
|
2082 XSETINT (XVECTOR_DATA (status)[i], ccl.reg[i]);
|
428
|
2083 XSETINT (XVECTOR_DATA (status)[8], ccl.ic);
|
|
2084 UNGCPRO;
|
|
2085
|
|
2086 val = make_string (Dynarr_atp (outbuf, 0), produced);
|
|
2087 Dynarr_free (outbuf);
|
|
2088 QUIT;
|
444
|
2089 if (ccl.status == CCL_STAT_SUSPEND_BY_DST)
|
|
2090 error ("Output buffer for the CCL programs overflow");
|
428
|
2091 if (ccl.status != CCL_STAT_SUCCESS
|
444
|
2092 && ccl.status != CCL_STAT_SUSPEND_BY_SRC)
|
428
|
2093 error ("Error in CCL program at %dth code", ccl.ic);
|
|
2094
|
|
2095 return val;
|
|
2096 }
|
|
2097
|
444
|
2098 DEFUN ("register-ccl-program", Fregister_ccl_program,
|
|
2099 2, 2, 0, /*
|
|
2100 Register CCL program CCL-PROG as NAME in `ccl-program-table'.
|
|
2101 CCL-PROG should be a compiled CCL program (vector), or nil.
|
|
2102 If it is nil, just reserve NAME as a CCL program name.
|
428
|
2103 Return index number of the registered CCL program.
|
|
2104 */
|
444
|
2105 (name, ccl_prog))
|
428
|
2106 {
|
|
2107 int len = XVECTOR_LENGTH (Vccl_program_table);
|
444
|
2108 int idx;
|
|
2109 Lisp_Object resolved;
|
428
|
2110
|
|
2111 CHECK_SYMBOL (name);
|
444
|
2112 resolved = Qnil;
|
428
|
2113 if (!NILP (ccl_prog))
|
|
2114 {
|
|
2115 CHECK_VECTOR (ccl_prog);
|
444
|
2116 resolved = resolve_symbol_ccl_program (ccl_prog);
|
|
2117 if (! NILP (resolved))
|
428
|
2118 {
|
444
|
2119 ccl_prog = resolved;
|
|
2120 resolved = Qt;
|
428
|
2121 }
|
|
2122 }
|
|
2123
|
444
|
2124 for (idx = 0; idx < len; idx++)
|
428
|
2125 {
|
444
|
2126 Lisp_Object slot;
|
|
2127
|
|
2128 slot = XVECTOR_DATA (Vccl_program_table)[idx];
|
|
2129 if (!VECTORP (slot))
|
|
2130 /* This is the first unused slot. Register NAME here. */
|
|
2131 break;
|
|
2132
|
|
2133 if (EQ (name, XVECTOR_DATA (slot)[0]))
|
|
2134 {
|
|
2135 /* Update this slot. */
|
|
2136 XVECTOR_DATA (slot)[1] = ccl_prog;
|
|
2137 XVECTOR_DATA (slot)[2] = resolved;
|
|
2138 return make_int (idx);
|
|
2139 }
|
|
2140 }
|
|
2141
|
|
2142 if (idx == len)
|
|
2143 {
|
|
2144 /* Extend the table. */
|
|
2145 Lisp_Object new_table;
|
428
|
2146 int j;
|
|
2147
|
444
|
2148 new_table = Fmake_vector (make_int (len * 2), Qnil);
|
428
|
2149 for (j = 0; j < len; j++)
|
|
2150 XVECTOR_DATA (new_table)[j]
|
|
2151 = XVECTOR_DATA (Vccl_program_table)[j];
|
|
2152 Vccl_program_table = new_table;
|
|
2153 }
|
|
2154
|
444
|
2155 {
|
|
2156 Lisp_Object elt;
|
|
2157
|
|
2158 elt = Fmake_vector (make_int (3), Qnil);
|
|
2159 XVECTOR_DATA (elt)[0] = name;
|
|
2160 XVECTOR_DATA (elt)[1] = ccl_prog;
|
|
2161 XVECTOR_DATA (elt)[2] = resolved;
|
|
2162 XVECTOR_DATA (Vccl_program_table)[idx] = elt;
|
|
2163 }
|
|
2164
|
|
2165 Fput (name, Qccl_program_idx, make_int (idx));
|
|
2166 return make_int (idx);
|
428
|
2167 }
|
|
2168
|
|
2169 /* Register code conversion map.
|
|
2170 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
|
|
2171 The first element is start code point.
|
|
2172 The rest elements are mapped numbers.
|
|
2173 Symbol t means to map to an original number before mapping.
|
|
2174 Symbol nil means that the corresponding element is empty.
|
442
|
2175 Symbol lambda means to terminate mapping here.
|
428
|
2176 */
|
|
2177
|
|
2178 DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
|
444
|
2179 2, 2, 0, /*
|
|
2180 Register SYMBOL as code conversion map MAP.
|
|
2181 Return index number of the registered map.
|
|
2182 */
|
|
2183 (symbol, map))
|
428
|
2184 {
|
444
|
2185 int len = XVECTOR_LENGTH (Vcode_conversion_map_vector);
|
428
|
2186 int i;
|
444
|
2187 Lisp_Object idx;
|
428
|
2188
|
444
|
2189 CHECK_SYMBOL (symbol);
|
|
2190 CHECK_VECTOR (map);
|
442
|
2191
|
428
|
2192 for (i = 0; i < len; i++)
|
|
2193 {
|
444
|
2194 Lisp_Object slot = XVECTOR_DATA (Vcode_conversion_map_vector)[i];
|
428
|
2195
|
|
2196 if (!CONSP (slot))
|
|
2197 break;
|
|
2198
|
444
|
2199 if (EQ (symbol, XCAR (slot)))
|
428
|
2200 {
|
444
|
2201 idx = make_int (i);
|
|
2202 XCDR (slot) = map;
|
428
|
2203 Fput (symbol, Qcode_conversion_map, map);
|
444
|
2204 Fput (symbol, Qcode_conversion_map_id, idx);
|
|
2205 return idx;
|
428
|
2206 }
|
|
2207 }
|
|
2208
|
|
2209 if (i == len)
|
|
2210 {
|
|
2211 Lisp_Object new_vector = Fmake_vector (make_int (len * 2), Qnil);
|
|
2212 int j;
|
|
2213
|
|
2214 for (j = 0; j < len; j++)
|
444
|
2215 XVECTOR_DATA (new_vector)[j]
|
|
2216 = XVECTOR_DATA (Vcode_conversion_map_vector)[j];
|
428
|
2217 Vcode_conversion_map_vector = new_vector;
|
|
2218 }
|
|
2219
|
444
|
2220 idx = make_int (i);
|
428
|
2221 Fput (symbol, Qcode_conversion_map, map);
|
444
|
2222 Fput (symbol, Qcode_conversion_map_id, idx);
|
|
2223 XVECTOR_DATA (Vcode_conversion_map_vector)[i] = Fcons (symbol, map);
|
|
2224 return idx;
|
428
|
2225 }
|
|
2226
|
|
2227
|
|
2228 void
|
|
2229 syms_of_mule_ccl (void)
|
|
2230 {
|
444
|
2231 DEFSUBR (Fccl_program_p);
|
428
|
2232 DEFSUBR (Fccl_execute);
|
|
2233 DEFSUBR (Fccl_execute_on_string);
|
|
2234 DEFSUBR (Fregister_ccl_program);
|
444
|
2235 DEFSUBR (Fregister_code_conversion_map);
|
428
|
2236 }
|
|
2237
|
|
2238 void
|
|
2239 vars_of_mule_ccl (void)
|
|
2240 {
|
|
2241 staticpro (&Vccl_program_table);
|
|
2242 Vccl_program_table = Fmake_vector (make_int (32), Qnil);
|
|
2243
|
444
|
2244 defsymbol (&Qccl_program, "ccl-program");
|
|
2245 defsymbol (&Qccl_program_idx, "ccl-program-idx");
|
|
2246 defsymbol (&Qcode_conversion_map, "code-conversion-map");
|
|
2247 defsymbol (&Qcode_conversion_map_id, "code-conversion-map-id");
|
428
|
2248
|
|
2249 DEFVAR_LISP ("code-conversion-map-vector", &Vcode_conversion_map_vector /*
|
444
|
2250 Vector of code conversion maps.
|
|
2251 */ );
|
428
|
2252 Vcode_conversion_map_vector = Fmake_vector (make_int (16), Qnil);
|
|
2253
|
|
2254 DEFVAR_LISP ("font-ccl-encoder-alist", &Vfont_ccl_encoder_alist /*
|
|
2255 Alist of fontname patterns vs corresponding CCL program.
|
|
2256 Each element looks like (REGEXP . CCL-CODE),
|
|
2257 where CCL-CODE is a compiled CCL program.
|
|
2258 When a font whose name matches REGEXP is used for displaying a character,
|
|
2259 CCL-CODE is executed to calculate the code point in the font
|
|
2260 from the charset number and position code(s) of the character which are set
|
|
2261 in CCL registers R0, R1, and R2 before the execution.
|
|
2262 The code point in the font is set in CCL registers R1 and R2
|
|
2263 when the execution terminated.
|
|
2264 If the font is single-byte font, the register R2 is not used.
|
|
2265 */ );
|
|
2266 Vfont_ccl_encoder_alist = Qnil;
|
|
2267 }
|
|
2268
|
|
2269 #endif /* emacs */
|