Mercurial > hg > python
view hmm/semiSup.py @ 32:4d9778ade7b2
python3, add sd and mean caching
author | Henry S. Thompson <ht@inf.ed.ac.uk> |
---|---|
date | Thu, 29 Jul 2021 12:44:47 +0100 |
parents | 26d9c0308fcf |
children |
line wrap: on
line source
'''Exploring the claim that a small dictionary can seed an otherwise unsupervised HMM to learn a decent POS-tagger''' import nltk, random from nltk.corpus import brown from nltk.tag.hmm import HiddenMarkovModelTagger, HiddenMarkovModelTrainer from nltk.probability import FreqDist,ConditionalFreqDist from nltk.probability import MLEProbDist, RandomProbDist, DictionaryConditionalProbDist trainTagsPercent=0.99 trainHMMPercent=0.9 knownWordsPercent=0.99 TAGSETS={ 'univ': [u'ADJ', u'ADP', u'ADV', u'CONJ', u'DET', u'NOUN', u'NUM', u'PRON', u'PRT', u'VERB', u'X', u'.'], 'brown': [u"ABL", u"ABN", u"ABX", u"AP", u"AP$", u"AP+AP", u"AT", u"BE", u"BED", u"BED*", u"BEDZ", u"BEDZ*", u"BEG", u"BEM", u"BEM*", u"BEN", u"BER", u"BER*", u"BEZ", u"BEZ*", u"CC", u"CD", u"CD$", u"CS", u"DO", u"DO*", u"DO+PPSS", u"DOD", u"DOD*", u"DOZ", u"DOZ*", u"DT", u"DT$", u"DT+BEZ", u"DT+MD", u"DTI", u"DTS", u"DTS+BEZ", u"DTX", u"EX", u"EX+BEZ", u"EX+HVD", u"EX+HVZ", u"EX+MD", u"FW-*", u"FW-AT", u"FW-AT+NN", u"FW-AT+NP", u"FW-BE", u"FW-BER", u"FW-BEZ", u"FW-CC", u"FW-CD", u"FW-CS", u"FW-DT", u"FW-DT+BEZ", u"FW-DTS", u"FW-HV", u"FW-IN", u"FW-IN+AT", u"FW-IN+NN", u"FW-IN+NP", u"FW-JJ", u"FW-JJR", u"FW-JJT", u"FW-NN", u"FW-NN$", u"FW-NNS", u"FW-NP", u"FW-NPS", u"FW-NR", u"FW-OD", u"FW-PN", u"FW-PP$", u"FW-PPL", u"FW-PPL+VBZ", u"FW-PPO", u"FW-PPO+IN", u"FW-PPS", u"FW-PPSS", u"FW-PPSS+HV", u"FW-QL", u"FW-RB", u"FW-RB+CC", u"FW-TO+VB", u"FW-UH", u"FW-VB", u"FW-VBD", u"FW-VBG", u"FW-VBN", u"FW-VBZ", u"FW-WDT", u"FW-WPO", u"FW-WPS", u"HV", u"HV*", u"HV+TO", u"HVD", u"HVD*", u"HVG", u"HVN", u"HVZ", u"HVZ*", u"IN", u"IN+IN", u"IN+PPO", u"JJ", u"JJ$", u"JJ+JJ", u"JJR", u"JJR+CS", u"JJS", u"JJT", u"MD", u"MD*", u"MD+HV", u"MD+PPSS", u"MD+TO", u"NN", u"NN$", u"NN+BEZ", u"NN+HVD", u"NN+HVZ", u"NN+IN", u"NN+MD", u"NN+NN", u"NNS", u"NNS$", u"NNS+MD", u"NP", u"NP$", u"NP+BEZ", u"NP+HVZ", u"NP+MD", u"NPS", u"NPS$", u"NR", u"NR$", u"NR+MD", u"NRS", u"OD", u"PN", u"PN$", u"PN+BEZ", u"PN+HVD", u"PN+HVZ", u"PN+MD", u"PP$", u"PP$$", u"PPL", u"PPLS", u"PPO", u"PPS", u"PPS+BEZ", u"PPS+HVD", u"PPS+HVZ", u"PPS+MD", u"PPSS", u"PPSS+BEM", u"PPSS+BER", u"PPSS+BEZ", u"PPSS+BEZ*", u"PPSS+HV", u"PPSS+HVD", u"PPSS+MD", u"PPSS+VB", u"QL", u"QLP", u"RB", u"RB$", u"RB+BEZ", u"RB+CS", u"RBR", u"RBR+CS", u"RBT", u"RN", u"RP", u"RP+IN", u"TO", u"TO+VB", u"UH", u"VB", u"VB+AT", u"VB+IN", u"VB+JJ", u"VB+PPO", u"VB+RP", u"VB+TO", u"VB+VB", u"VBD", u"VBG", u"VBG+TO", u"VBN", u"VBN+TO", u"VBZ", u"WDT", u"WDT+BER", u"WDT+BER+PP", u"WDT+BEZ", u"WDT+DO+PPS", u"WDT+DOD", u"WDT+HVZ", u"WP$", u"WPO", u"WPS", u"WPS+BEZ", u"WPS+HVD", u"WPS+HVZ", u"WPS+MD", u"WQL", u"WRB", u"WRB+BER", u"WRB+BEZ", u"WRB+DO", u"WRB+DOD", u"WRB+DOD*", u"WRB+DOZ", u"WRB+IN", u"WRB+MD", u"(", u")", u"*", u",", u"--", u".", u":"], 'upenn': [u"CC", u"CD", u"DT", u"EX", u"FW", u"IN", u"JJ", u"JJR", u"JJS", u"LS", u"MD", u"NN", u"NNP", u"NNPS", u"NNS", u"PDT", u"POS", u"PRP", u"PRP$", u"RB", u"RBR", u"RBS", u"RP", u"SYM", u"TO", u"UH", u"VB", u"VBD", u"VBG", u"VBN", u"VBP", u"VBZ", u"WDT", u"WP", u"WP$", u"WRB", u"``", u"$", u"''", u"(", u")", u",", u"--", u".", u":"]} TAGSETS['universal']=TAGSETS['univ'] TAGSETS['penn']=TAGSETS['upenn'] def setup(cat='news',tagset='brown',corpus=brown): return ([[(word.lower(),tag) for (word,tag) in s] for s in corpus.tagged_sents(categories=cat,tagset=tagset)], [(word.lower(),tag) for (word,tag) in corpus.tagged_words(categories=cat,tagset=tagset)], TAGSETS[tagset]) def notCurrent(s,missList): global i,n,done if done or (missList[i] is not s): return True else: i+=1 if i==n: done=True return False def splitData(words,wordPercent,sentences,sentPercent): global i,n, done trainWords=random.sample(words,int(wordPercent*len(words))) # random.sample(sentences,int(sentPercent*len(sentences))) trainSents=[s for s in sentences if random.random()<sentPercent] # hack! i=0 n=len(trainSents) done=False testSents=[s for s in sentences if notCurrent(s,trainSents)] return trainWords, trainSents, testSents def pickWords(tagged,percent): #wToT=ConditionalFreqDist(tagged) tToW=ConditionalFreqDist((t,w) for (w,t) in tagged) #print len(tToW[u'ADV']) return dict((tag,(lambda wl,p=percent:\ wl[:int(p*len(wl))])( sorted(tToW[tag].items(),key=lambda (k,v):v,reverse=True))) for tag in tToW.keys()) (tagged_s,tagged_w,tagset)=setup(tagset='universal') wordTokens=FreqDist(word for word,tag in tagged_w) print len(wordTokens), wordTokens.N() (trainTags,trainHMM,testHMM)=splitData(tagged_w,trainTagsPercent, tagged_s,trainHMMPercent) knownWords=pickWords(trainTags,knownWordsPercent) class SubsetFreqDist(FreqDist): def __init__(self,pairs,baseset,basecount=.05): dict.update(self,pairs) self._baseset=baseset self._basecount=basecount pn=sum(n for w,n in pairs) self._N=pn+((len(baseset)-len(pairs))*basecount) def __getitem__(self,key): return dict.__getitem__(self,key) def __missing__(self,key): if key in self._baseset: return self._basecount else: return 0 def N(self): return self._N class Tag: def __init__(self,tag,wordsAndCounts): self._tag=tag self._wordsAndCounts=wordsAndCounts self._words=set(w for w,n in wordsAndCounts) self._nTokens=sum(n for w,n in wordsAndCounts) self._nTypes=len(self._words) def words(self): return self._words def buildPD(self,tokens): self._sfd=SubsetFreqDist(self._wordsAndCounts,tokens) self._pd=MLEProbDist(self._sfd) def getSFD(self): return self._sfd def getPD(self): return self._pd tags=dict((tagName,Tag(tagName,wl)) for tagName,wl in knownWords.items()) kws=dict((tagName,tag.words()) for tagName,tag in tags.items()) t2=list(filter(None, ((lambda i:False if not i[1] else i) (((tagset[i],tagset[j]), kws[tagset[i]].intersection(kws[tagset[j]])),) for i in xrange(0,len(tagset)) for j in xrange(i+1,len(tagset))))) for tag in tags.values(): tag.buildPD(wordTokens) priors = RandomProbDist(tagset) transitions = DictionaryConditionalProbDist( dict((state, RandomProbDist(tagset)) for state in tagset)) outputs = DictionaryConditionalProbDist( dict((state, tags[state].getPD()) for state in tagset)) model = HiddenMarkovModelTagger(wordTokens, tagset, transitions, outputs, priors) print model.evaluate(testHMM) nm=HiddenMarkovModelTrainer(states=tagset,symbols=wordTokens) # Note that contrary to naive reading of the documentation, # train_unsupervised expects a sequence of sequences of word/tag pairs, # it just ignores the tags nnm=nm.train_unsupervised(trainHMM,model=model,max_iterations=15,updateOutputs=False) print nnm.evaluate(testHMM)