Mercurial > hg > python
diff ngram_3.0.py @ 0:fee51ab07d09
blanket publication of all existing python files in lib/python on maritain
author | Henry S. Thompson <ht@inf.ed.ac.uk> |
---|---|
date | Mon, 09 Mar 2020 14:58:04 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/ngram_3.0.py Mon Mar 09 14:58:04 2020 +0000 @@ -0,0 +1,300 @@ +# Natural Language Toolkit: Language Models +# +# Copyright (C) 2001-2014 NLTK Project +# Authors: Steven Bird <stevenbird1@gmail.com> +# Daniel Blanchard <dblanchard@ets.org> +# Ilia Kurenkov <ilia.kurenkov@gmail.com> +# URL: <http://nltk.org/> +# For license information, see LICENSE.TXT +######## Copied from http://www.nltk.org/_modules/nltk/model/ngram.html 2017-01-14 +######## Not actually part of 3.0 release +######## "© Copyright 2015, NLTK Project. Last updated on Feb 26, 2015. Created using Sphinx 1.2.3" +from __future__ import unicode_literals + +from itertools import chain +from math import log + +from nltk.probability import (FreqDist, + ConditionalProbDist, + ConditionalFreqDist, + LidstoneProbDist) +from nltk.util import ngrams +from nltk.model.api import ModelI + +from nltk import compat + + +def _estimator(fdist, *estimator_args, **estimator_kwargs): + """ + Default estimator function using a SimpleGoodTuringProbDist. + """ + # can't be an instance method of NgramModel as they + # can't be pickled either. + return LidstoneProbDist(fdist, *estimator_args, **estimator_kwargs) + + +@compat.python_2_unicode_compatible +class NgramModel(ModelI): + """ + A processing interface for assigning a probability to the next word. + """ + + def __init__(self, n, train, pad_left=True, pad_right=False, + estimator=None, *estimator_args, **estimator_kwargs): + """ + Create an ngram language model to capture patterns in n consecutive + words of training text. An estimator smooths the probabilities derived + from the text and may allow generation of ngrams not seen during + training. + + >>> from nltk.corpus import brown + >>> from nltk.probability import LidstoneProbDist + >>> est = lambda fdist, bins: LidstoneProbDist(fdist, 0.2) + >>> lm = NgramModel(3, brown.words(categories='news'), estimator=est) + >>> lm + <NgramModel with 91603 3-grams> + >>> lm._backoff + <NgramModel with 62888 2-grams> + >>> lm.entropy(['The', 'Fulton', 'County', 'Grand', 'Jury', 'said', + ... 'Friday', 'an', 'investigation', 'of', "Atlanta's", 'recent', + ... 'primary', 'election', 'produced', '``', 'no', 'evidence', + ... "''", 'that', 'any', 'irregularities', 'took', 'place', '.']) + ... # doctest: +ELLIPSIS + 0.5776... + + :param n: the order of the language model (ngram size) + :type n: int + :param train: the training text + :type train: list(str) or list(list(str)) + :param pad_left: whether to pad the left of each sentence with an (n-1)-gram of empty strings + :type pad_left: bool + :param pad_right: whether to pad the right of each sentence with an (n-1)-gram of empty strings + :type pad_right: bool + :param estimator: a function for generating a probability distribution + :type estimator: a function that takes a ConditionalFreqDist and + returns a ConditionalProbDist + :param estimator_args: Extra arguments for estimator. + These arguments are usually used to specify extra + properties for the probability distributions of individual + conditions, such as the number of bins they contain. + Note: For backward-compatibility, if no arguments are specified, the + number of bins in the underlying ConditionalFreqDist are passed to + the estimator as an argument. + :type estimator_args: (any) + :param estimator_kwargs: Extra keyword arguments for the estimator + :type estimator_kwargs: (any) + """ + + # protection from cryptic behavior for calling programs + # that use the pre-2.0.2 interface + assert(isinstance(pad_left, bool)) + assert(isinstance(pad_right, bool)) + + # make sure n is greater than zero, otherwise print it + assert (n > 0), n + + # For explicitness save the check whether this is a unigram model + self.is_unigram_model = (n == 1) + # save the ngram order number + self._n = n + # save left and right padding + self._lpad = ('',) * (n - 1) if pad_left else () + self._rpad = ('',) * (n - 1) if pad_right else () + + if estimator is None: + estimator = _estimator + + cfd = ConditionalFreqDist() + + # set read-only ngrams set (see property declaration below to reconfigure) + self._ngrams = set() + + # If given a list of strings instead of a list of lists, create enclosing list + if (train is not None) and isinstance(train[0], compat.string_types): + train = [train] + + for sent in train: + raw_ngrams = ngrams(sent, n, pad_left, pad_right, pad_symbol='') + for ngram in raw_ngrams: + self._ngrams.add(ngram) + context = tuple(ngram[:-1]) + token = ngram[-1] + cfd[(context, token)] += 1 + + self._probdist = estimator(cfd, *estimator_args, **estimator_kwargs) + + # recursively construct the lower-order models + if not self.is_unigram_model: + self._backoff = NgramModel(n-1, train, + pad_left, pad_right, + estimator, + *estimator_args, + **estimator_kwargs) + + self._backoff_alphas = dict() + # For each condition (or context) + for ctxt in cfd.conditions(): + backoff_ctxt = ctxt[1:] + backoff_total_pr = 0.0 + total_observed_pr = 0.0 + + # this is the subset of words that we OBSERVED following + # this context. + # i.e. Count(word | context) > 0 + for word in self._words_following(ctxt, cfd): + total_observed_pr += self.prob(word, ctxt) + # we also need the total (n-1)-gram probability of + # words observed in this n-gram context + backoff_total_pr += self._backoff.prob(word, backoff_ctxt) + + assert (0 <= total_observed_pr <= 1), total_observed_pr + # beta is the remaining probability weight after we factor out + # the probability of observed words. + # As a sanity check, both total_observed_pr and backoff_total_pr + # must be GE 0, since probabilities are never negative + beta = 1.0 - total_observed_pr + + # backoff total has to be less than one, otherwise we get + # an error when we try subtracting it from 1 in the denominator + assert (0 <= backoff_total_pr < 1), backoff_total_pr + alpha_ctxt = beta / (1.0 - backoff_total_pr) + + self._backoff_alphas[ctxt] = alpha_ctxt + + def _words_following(self, context, cond_freq_dist): + for ctxt, word in cond_freq_dist.iterkeys(): + if ctxt == context: + yield word + + def prob(self, word, context): + """ + Evaluate the probability of this word in this context using Katz Backoff. + + :param word: the word to get the probability of + :type word: str + :param context: the context the word is in + :type context: list(str) + """ + context = tuple(context) + if (context + (word,) in self._ngrams) or (self.is_unigram_model): + return self._probdist.prob((context, word)) + else: + return self._alpha(context) * self._backoff.prob(word, context[1:]) + + def _alpha(self, context): + """Get the backoff alpha value for the given context + """ + error_message = "Alphas and backoff are not defined for unigram models" + assert not self.is_unigram_model, error_message + + if context in self._backoff_alphas: + return self._backoff_alphas[context] + else: + return 1 + + def logprob(self, word, context): + """ + Evaluate the (negative) log probability of this word in this context. + + :param word: the word to get the probability of + :type word: str + :param context: the context the word is in + :type context: list(str) + """ + return -log(self.prob(word, context), 2) + + @property + def ngrams(self): + return self._ngrams + + @property + def backoff(self): + return self._backoff + + @property + def probdist(self): + return self._probdist + + def choose_random_word(self, context): + ''' + Randomly select a word that is likely to appear in this context. + + :param context: the context the word is in + :type context: list(str) + ''' + + return self.generate(1, context)[-1] + + # NB, this will always start with same word if the model + # was trained on a single text + + def generate(self, num_words, context=()): + ''' + Generate random text based on the language model. + + :param num_words: number of words to generate + :type num_words: int + :param context: initial words in generated string + :type context: list(str) + ''' + + text = list(context) + for i in range(num_words): + text.append(self._generate_one(text)) + return text + + def _generate_one(self, context): + context = (self._lpad + tuple(context))[- self._n + 1:] + if context in self: + return self[context].generate() + elif self._n > 1: + return self._backoff._generate_one(context[1:]) + else: + return '.' + + def entropy(self, text): + """ + Calculate the approximate cross-entropy of the n-gram model for a + given evaluation text. + This is the average log probability of each word in the text. + + :param text: words to use for evaluation + :type text: list(str) + """ + + e = 0.0 + text = list(self._lpad) + text + list(self._rpad) + for i in range(self._n - 1, len(text)): + context = tuple(text[i - self._n + 1:i]) + token = text[i] + e += self.logprob(token, context) + return e / float(len(text) - (self._n - 1)) + + def perplexity(self, text): + """ + Calculates the perplexity of the given text. + This is simply 2 ** cross-entropy for the text. + + :param text: words to calculate perplexity of + :type text: list(str) + """ + + return pow(2.0, self.entropy(text)) + + def __contains__(self, item): + return tuple(item) in self._probdist.freqdist + + def __getitem__(self, item): + return self._probdist[tuple(item)] + + def __repr__(self): + return '<NgramModel with %d %d-grams>' % (len(self._ngrams), self._n) + + +def teardown_module(module=None): + from nltk.corpus import brown + brown._unload() + +if __name__ == "__main__": + import doctest + doctest.testmod(optionflags=doctest.NORMALIZE_WHITESPACE)