comparison classify_tweets.py @ 69:157f012ffab7 default tip

from local
author Henry S Thompson <ht@inf.ed.ac.uk>
date Fri, 17 Jan 2025 15:45:26 +0000
parents
children
comparison
equal deleted inserted replaced
68:eb91fd5d49b3 69:157f012ffab7
1 from collections import defaultdict, Counter
2 from typing import Tuple, List, Any, Set, Dict, Callable
3
4 import numpy as np # for np.mean() and np.std()
5 import nltk, sys, inspect
6 import nltk.corpus.util
7 from nltk import MaxentClassifier
8 from nltk.corpus import brown, ppattach # import corpora
9
10 # Import LgramModel
11 from nltk_model import *
12
13 # Import the Twitter corpus
14 from twitter.twitter import *
15
16 twitter_file_ids = "20100128.txt"
17 assert twitter_file_ids in xtwc.fileids()
18
19
20 def train_LM(corpus: nltk.corpus.CorpusReader) -> LgramModel:
21 """
22 Build a bigram letter language model using LgramModel
23 based on the lower-cased all-alpha subset of the entire corpus
24
25 :param corpus: An NLTK corpus
26
27 :return: A padded letter bigram model based on nltk.model.NgramModel
28 """
29
30 # subset the corpus to only include all-alpha tokens,
31 # converted to lower-case (_after_ the all-alpha check)
32 corpus_tokens = [word.lower() for word in corpus.words() if word.isalpha()]
33
34 # Return the tokens and a smoothed (using the default estimator)
35 # padded bigram letter language model
36 return LgramModel(2, corpus_tokens, True, True)
37
38
39 lm = train_LM(brown)
40
41 def rtc(x):
42 counter = 0
43 last_char = None
44 o = []
45 for i, c in enumerate(x):
46 if c == last_char:
47 counter += 1
48 else:
49 counter = 0
50 if counter < 2:
51 o.append(c)
52 last_char = c
53 return "".join(o)
54
55
56 import re
57 def scoring_f(bigram_model: LgramModel, tweet: List[str]) -> bool:
58 """
59 Classify if the given tweet is written in English or not.
60
61 :param bigram_model: the bigram letter model trained on the Brown corpus
62 :param tweet: the tweet
63 :return: True if the tweet is classified as English, False otherwise
64 """
65 blacklist = {"rt", "smh", "hbu", "idk", "afaik","imho", "irl"}
66 blacklist_regex = ["lo+l+", "a+w+", "ya+y+", "o+m+g+","lma+o+"]
67 prepro = []
68 for token in tweet:
69 token = rtc(token)
70 if token in blacklist:
71 continue
72 elif any(re.fullmatch(regex, token) for regex in blacklist_regex):
73 continue
74 else:
75 prepro.append(token)
76 tweet = prepro
77 return sum([bigram_model.entropy(token, perItem=True) for token in tweet]) / len(tweet)
78
79 def boring_scoring(bigram_model, tweet):
80 return sum([bigram_model.entropy(token, perItem=True) for token in tweet]) / len(tweet)
81
82 def is_English(tweet,thresh=None):
83 #return boring_scoring(lm, tweet) <= 3.85
84 #return boring_scoring(lm, tweet) <= 3.31 # lower threshold needed to get dev data right
85 #return boring_scoring(lm, tweet) < 6.182 # upper threshold needed to get dev data right
86 return scoring_f(lm, tweet) < (3.85 if thresh == None else thresh) # well-tuned threshold
87
88 def get_tweets(fn: str,n):
89 """
90 :rtype list(tuple(list(str), bool))
91 :return: a list of tuples (tweet, a) where tweet is a tweet preprocessed by us,
92 and a is True, if the tweet is in English, and False otherwise.
93 """
94 f=open(fn)
95 i=0
96 for l in f:
97 if n>0 and i==n:
98 break
99 yield l.split()
100 i+=1
101 f.close()
102
103 def eval(n1=0,n2=0,thresh=None):
104 fp=tp=fn=tn=0
105 np=nn=0
106 for tweet in get_tweets("twitter/etweets.txt",n1):
107 np+=1
108 if is_English(tweet,thresh):
109 tp+=1
110 else:
111 fp+=1
112 for tweet in get_tweets("twitter/netweets.txt",n2):
113 nn+=1
114 if is_English(tweet,thresh):
115 fn+=1
116 else:
117 tn+=1
118 print("Testing on %s/%s tweets, threshhold %s"%('all' if n1==0 else n1,
119 'all' if n2==0 else n2,
120 'default' if thresh==None else thresh))
121 print("%6s %6s %6s %6s"%('','right','wrong','total'))
122 print("%6s %6d %6d %6d"%('pos',tp,fp,np))
123 print("%6s %6d %6d %6d"%('neg',tn,fn,nn))
124 print("%6s %6d %6d %6d"%('tot',tp+tn,fp+fn,np+nn))
125 print("Accuracy: %g"%(float(tp+tn)/float(np+nn)))
126
127 eval(100)
128
129
130