
Common Crawl: Data Collection and Use Cases for NLP

Sebastian Nagel
sebastian@commoncrawl.org

HPLT & NLPL Winter School on Large-Scale Language Modeling
and Neural Machine Translation with Web Data, Feb 6–8, 2023

About

• we’re a non-profit that makes web data accessible to programmers and data
scientists

• hosted as Open Data set on Amazon Web Services [1, 2]
• for natural language processing, web science, information retrieval, semantic web,

internet security research, …
• since 2008

240 billion web pages (HTML) captured
70 billion unique URLs
7 PiB of data

5 PiB WARC and ARC files
2 PiB derivative data

• sample crawls, not a comprehensive crawl

1

Data Collection – Web Crawler

Data Collection

Web Crawler 2008 – 2012

Seed Donations 2013 – 2018

Web Crawler 2013 – now

Nutch Default Crawler Workflow

Nutch at Common Crawl 2013 – 2016

Nutch at Common Crawl 2017 – now

Crawler Politeness

Crawler Politeness: robots.txt example

Crawler Politeness Implications

Nutch at Common Crawl – Good to know

Nutch at Common Crawl – Hadoop and hardware

Nutch at Common Crawl – Fetch list layout

News Crawler

Data Collection – Link Prioritization

Data Collection – Representativity, Geographical and Language Bias

Data – WARC and ARC Files

Data – Derivative Formats

Data – Usage

NLP Usage Examples

Summary

2

Data Collection

data is collected by a web crawler

• polite, respects robots.txt
• open source

three phases of data collection using different

• crawler implementations
• approaches to find and sample (prioritize) seeds and URLs

crawler seeds / link prioritization
2008–2012 in-house pagerank
2013–2016 Nutch blekko seed donation
2017– now Nutch harmonic centrality

3

Web Crawler 2008 – 2012

• in-house development by Ahad Rana [3, 4]

• batch-based (Hadoop Map-Reduce)

• pagerank calculation

• deduplication as post-processing step
• yearly data releases (after months of crawling)

• 3 datasets, ARC file format
• 130 TiB, 8.5 billion page captures, 6.7 billion unique URLs

4

Seed Donations 2013 – 2018

2013–2015 web search engine blekko [5] donates ranking and metadata of
140 million web sites and 22 billion pages

Common Crawl will use blekko’s metadata to improve its crawl quality,
while avoiding webspam, porn, and the influence of excessive SEO [6]

• focus on efficiently and politely fetching web pages
• no need to maintain a large URL frontier and to “steer” the crawl
• more frequent, ideally monthly data releases

2016–2018 occasional seed donations
• up to 400 million URLs
• not enough to “feed” the crawler

5

Web Crawler 2013 – now

Apache Nutch [7, 8, 9]

• scalable, batch-based (Hadoop Map-Reduce)

• extensible and modular (primary focus: feed search index)

• open source, community-based

• with few CC-specific modifications and extensions [10]

• used most notably as efficient, distributed but polite fetcher

6

Nutch Default Crawler Workflow

0. initialize CrawlDb (aka. “frontier”), inject seed URLs
repeat generate-fetch-update cycle n times:

1. generate fetch list(s): select URLs from CrawlDb for fetching
2. fetch URLs from fetch list(s)
3. parse documents: extract content, metadata and links
4. update CrawlDb (fetch status, score, signature), add links

inlined or at the end of one crawler run (once for multiple cycles):

5. invert links: map anchor texts to documents the links point to
6. deduplicate documents by signature
7. index document content, meta data, and anchor texts
8. (data exports)

7

Nutch at Common Crawl 2013 – 2016

0. convert list of donated URLs to CrawlDb

1. generate fetch lists

2. fetch URLs

8. export of content and capture metadata as WARC files

8

Nutch at Common Crawl 2017 – now

4. update CrawlDb with status from preceding crawl (no link additions)

6. flag dups in CrawlDb (by signature and redirect target)
0. inject URLs

• links sampled from preceding crawl (≈4 billion)
• “fresh” links from shallow, priority-first crawl (≈1.5 billion)

• seeded with homepages of 40 million host/domain names)
• 9 cycles in one day

• URLs sampled from 20 million sitemaps [11] (≈4 billion)

1. generate fetch list(s)

2. fetch URLs and write WARC files

9

Crawler Politeness

• slow crawling
• (current configuration) min. 5 seconds between successive requests to the same host
• further slow down (exponential backoff) if host responds with errors

• respect robots.txt rules and

• related metatags and attributes (eg. nofollow)

• CCBot identifies itself
• send user-agent string and contact information along with requests
• no (residential) proxies

10

Crawler Politeness: robots.txt example

User-agent: Googlebot-News
Disallow: /angebote/

User-agent: *
Disallow: /zeit/
Disallow: /templates/
Disallow: /hp_channels/
Disallow: /send/
Disallow: /suche/
Disallow: /rezepte/suche/
Disallow: */comment-thread?
Disallow: */liveblog-backend*
Disallow: /framebuilder/
Disallow: /campus/framebuilder/
Disallow: /cre-1.0/tracking/*.js$

User-agent: Baiduspider
Disallow: /

User-agent: Applebot
Allow: /
Disallow: /cre-1.0/

User-agent: GrapeshotCrawler
crawl-delay: 3

Sitemap: https://www.zeit.de/gsitemaps/index.xml

• https://www.zeit.de/robots.txt

• Googlebot-News and Applebot ev. preferred (more
paths allowed)

• Baiduspider penalized

• GrapeshotCrawler [12] to wait 3 seconds between
requests

• default rule set excludes templates, duplicated
dynamic content or user comments

• improve quality of crawled content and search
results!

• announced sitemap provides an up-to-date list of
crawlable URLs

11

https://www.zeit.de/robots.txt

Crawler Politeness Implications

• (with well-written robots.txt) less of
• private / personal content
• duplicated content

• significant parts of the web (eg. social media) are not included

• links in disallowed content are not visible to the crawler

• easy-to-adapt way to opt out from being crawled by “CCBot”
(or to opt in if default rules disallow crawling)

• crawler architecture is largely determined by politeness
• proper queuing to guarantee fetch delays
• minimize efforts to fetch, parse and cache robots.txt

12

Nutch at Common Crawl – Good to know

• fetcher job writes WARC files after shuffling the captures

every WARC file is a (pseudo-)random sample by its own

• 1 MiB content limit – longer payloads are truncated

• since Aug 2018: crawler identifies content language via CLD2

13

Nutch at Common Crawl – Hadoop and hardware

• Hadoop cluster running Apache Bigtop

• utilize cheap AWS EC2 spot instances

• fetching: 20 nodes (2 cores, 32 GB RAM)

• Nutch data structures persisted on S3

$40 per month to store CrawlDb of 25 billion URLs (1.6 TiB)

14

Nutch at Common Crawl – Fetch list layout

• 100 segments, processed sequentially over 14 days, each segment with
• 40 partitions (one partition is pass to one fetcher task)

• by host: all URLs of one host are in this partition
• weakly by domain: hosts of one domain are likely contained in one partition

• every partition is shuffled (URLs of the same host are distributed randomly)
• keep a certain number of URLs from one host/domain in one segment/partition

(reduce costly DNS lookups and robots.txt processing/caching)

• fetch list: 4 billion URLs from 45 million domains, 60 million hosts
• 3 billion URLs successfully fetched from 35 million domains, 45 million hosts
• reasons for fetch failures: HTTP status other than 200, robots.txt denied, network

issues, crawler node failures (using cheap but unreliable spot instances), dropped
from fetch list

15

News Crawler

• since 2016, continuously released [13, 14]

• monthly crawl and release schedule not optimal for the news genre

• crawler follows news feeds and sitemaps

• StormCrawler [15] – “streaming” crawler follows links more quickly (no wait for
next batch)

16

Data Collection – Web Crawler

Data Collection – Link Prioritization

Prioritization – Which Pages or Sites to Crawl

Link Prioritization – Web Graphs and rankings based on Common Crawl

Link Prioritization – Graph-based ranking example

Prioritization – A Deeper Look into the Current Implementation

Data Collection – Representativity, Geographical and Language Bias

Data – WARC and ARC Files

Data – Derivative Formats

Data – Usage

NLP Usage Examples

Summary

17

Prioritization – Which Pages or Sites to Crawl

Why prioritization is necessary? Why not just follow links?

• an average “monthly” crawl includes 3 billion page captures with
500+ billion links
25+ billion unique URLs linked

• a single sitemap (sitemap index) may list up to 2.5 billion URLs
• need to select a representative sample of web pages
• given limited resources and the requirements reg. crawler politeness

18

Link Prioritization – Web Graphs and rankings based on Common Crawl

2013—2015 Web Data Commons, University of Mannheim: hyperlink graphs and
rankings [16, 17, 18]

• page/host/domain-level hyper-link graphs
• host-level site ranking by harmonic centrality, pagerank, indegree centrality, Katz’s

index

2016 Common Search: host-level webgraph and pagerank [19, 20]
2017—now host/domain-level webgraphs and rankings (harmonic centrality and

pagerank) based on 3 monthly crawls
• publicly released webgraph datasets
• used to “steer” the crawler for the next three crawls
• harmonic centrality more robust against link spam than page rank [21]

19

Link Prioritization – Graph-based ranking example

top-N .edu domains ranked by harmonic centrality [22]

hc-rank pagerank hc-rank pagerank

78 337 edu.stanford 297 795 edu.umich
96 302 edu.mit 321 964 edu.jhu
98 295 edu.harvard 322 940 edu.umn

136 510 edu.berkeley 332 1505 edu.indiana
177 506 edu.cornell 334 1079 edu.uchicago
180 523 edu.yale 344 1663 edu.gatech
184 747 edu.upenn 348 1042 edu.utexas
212 809 edu.washington 381 1121 edu.nyu
231 876 edu.asu 394 2736 edu.byu
253 875 edu.wisc 405 955 edu.si
268 1181 edu.umd 438 593 edu.cmu
271 1144 edu.purdue 445 1767 edu.tufts
286 1007 edu.princeton 449 1371 edu.duke

20

Prioritization – A Deeper Look into the Current Implementation i

Domain-level harmonic centrality ranks are used

• to define a “budget” [23] for every domain how many URLs/pages are sampled or
fetched

• to sample sitemaps or home pages for URL discovery (always for top-ranking
domains, sometimes for lower ranks)

• as domain-level scores “projected” to the page-level by OPIC [24] or inlink counts

Per-domain limits (2022)

• top domains: 35 million URLs, 150k URLs per host, 500k subdomains
• long tail (below rank 64M or yet unseen): 1k URLs, 800 per host, 6 subdomains
• log distribution between top and tail

21

Data Collection – Web Crawler

Data Collection – Link Prioritization

Data Collection – Representativity, Geographical and Language Bias

Are the Common Crawls Representative?

New URLs and Domain Coverage

Geographical Coverage

Language Coverage

Reasons why English Content is potentially overrepresented

Fetch time by top-level domain

Link Spam – Challenging the crawler

Link Spam Detection i

Link Spam Detection ii

Data – WARC and ARC Files

Data – Derivative Formats

Data – Usage

NLP Usage Examples

Summary

22

Are the Common Crawls Representative?

Aspects of representativity:

• breadth: coverage of unique domains (web sites)

• depth: per-site coverage

• regional coverage (top-level domains, content languages)

• amount of (near-)duplicates (both per crawl and over multiple crawl datasets)

23

New URLs and Domain Coverage

24

Geographical Coverage

… by country-code top-level domain (percent of pages)

25

Language Coverage

% 2018 2019 2020 2021 2022

ces 1.033 1.037 1.051 1.060 1.031
deu 5.149 5.471 5.573 5.632 5.603
eng 43.958 43.835 43.200 44.981 46.639
fin 0.361 0.386 0.403 0.390 0.397
fra 4.530 4.560 4.527 4.456 4.500
jpn 5.469 4.808 4.784 4.665 4.685
mal 0.018 0.018 0.019 0.020 0.021
nno 0.013 0.019 0.019 0.018 0.016
nor 0.298 0.321 0.348 0.346 0.329
rus 9.274 7.406 7.113 7.067 5.897
spa 4.179 4.160 4.248 4.330 4.356
swe 0.746 0.762 0.755 0.718 0.679
zho 4.978 6.763 6.914 5.067 4.733

• percentage of pages by
language and year

• language identified by
CLD2 since Aug 2018

• few languages shown,
source [25]

26

Reasons why English Content is potentially overrepresented

Accept-Language HTTP header: en-US,en;q=0.5

• multi-lingual sites may show English content first

• or redirect to English (sub)site

crawler is operated from data center located in the US (Northern Virginia)

• multi-lingual sites may show or redirect to language/region-specific site based on
geo-located request IP address

• content from sites hosted nearby (given network topology) are favored because of
shorter fetch times

27

Fetch time by top-level domain

tld ms/100kiB avg. page kiB ms/page

ca 596.2 148.0 882.1
us 651.2 137.5 895.1
co 664.2 146.3 971.9
dk 667.8 146.1 975.4
com 671.5 152.9 1026.7
ar 720.8 175.6 1265.6
ch 724.9 153.7 1114.1
gov 725.7 122.8 891.4
no 727.2 134.0 974.3
fi 754.0 131.1 988.1
ru 769.7 123.9 953.8
be 785.5 133.6 1049.1
org 793.5 113.5 900.8
edu 810.7 83.3 675.2
gr 818.3 165.0 1350.3
se 819.1 132.0 1080.8
ie 834.6 162.1 1352.9
ua 842.7 124.4 1048.5
at 845.2 132.4 1118.7
fr 849.0 131.0 1111.8
ro 854.7 134.3 1147.5

pl 864.3 123.6 1068.1
sk 870.6 135.4 1179.0
in 877.1 157.6 1381.9
de 891.5 125.0 1114.5
hu 892.6 134.0 1196.3
net 894.2 112.2 1003.0
pt 931.9 137.4 1280.7
cz 964.0 104.3 1005.0
nl 978.7 121.5 1189.3
es 979.3 130.5 1277.8
uk 980.9 91.3 895.7
cl 985.2 141.9 1398.2
eu 1023.4 122.8 1256.9
it 1068.1 130.9 1397.9
info 1107.0 96.5 1068.4
br 1121.1 112.6 1262.1
kr 1256.2 107.9 1355.7
jp 1356.4 91.8 1244.7
id 1538.7 112.9 1737.4
vn 1543.5 126.6 1954.0
ir 1652.8 115.9 1916.3
cn 1838.2 62.9 1156.5

28

Link Spam – Challenging the crawler

• spam is part of the web, it’s ok if some is contained in the data
• October 2017: the crawler hit a spam cluster

• crawled: 56 million pages (1.5% of the crawl), 70,000 domains
• known from links: 320,000 domains, 2.5 billion subdomains

• highly branching spam clusters expensive for a crawler: every subdomain requires
DNS look-up and robots.txt fetch/caching

• measures: set limit of crawled subdomains per domain and try to detect and block
the worst link spam clusters

29

Link Spam Detection i

• spam clusters are volatile

• must detect spam with (almost) no training data

• need binary rule (is a spam domain or not)
• simple heuristics proved to work with little supervision based on imbalances

between
• centrality score
• outgoing links
• number of subdomains

low-ranking domains with too many outlinks or subdomains are suspicious

• once some nodes of a spam cluster are identified, other nodes are easily found by
looking for a strongly connected subcluster in the graph

30

Link Spam Detection ii

Example based on the Jun/Jul/Sep 2021 domain-level graph, taking as spam indicator an exceptionally high
product of harmonic centrality rank and number of known subdomains

sort log2(r · n) hc rank r n subdomains domain
1 44.93 33827380 993576 6suqmv2.site
2 44.34 50162956 445037 1st-muscle-guide.com
3 44.25 34012364 616681 wcpeoxt.icu
4 44.16 60683905 323917 ehime-di.com
5 44.09 36323509 515162 7ikoqnp.site
6 44.06 34195171 536038 m85g3vs.site
7 44.04 33824385 536460 5esg5j6.site
8 44.02 34925230 509545 mqv4s31.icu
9 43.90 33701024 487860 dcw7v3.xyz

10 43.81 35522472 433766 8s60fy.xyz
11 43.81 36357152 423051 76m30o.xyz
12 43.80 34202757 448281 x80u6n.xyz

…
2371148 26.89 24 5176495 blogspot.com

…
2767418 26.67 18 5913686 wordpress.com

…
31

Data Collection – Web Crawler

Data Collection – Link Prioritization

Data Collection – Representativity, Geographical and Language Bias

Data – WARC and ARC Files

The WARC format (Web ARChive)

The WARC format (example record)

The ARC format

The ARC format (example record)

Common Crawl WARC Specifics

Data – Derivative Formats

Data – Usage

NLP Usage Examples

Summary

32

The WARC format (Web ARChive)

• ”freezes” the internet traffic between a client (web crawler or browser) and web
servers at the HTTP protocol level

• content payload
• HTTP headers
• connection metadata (datetime, IP address)

• WARC I/O modules for many programming languages [26]
• ISO standard since 2009 [27, 28]
• per-record gzipped: extract single records if offsets are known

curl -s -r56202708-$((56202708+7445-1)) \

"https://data.commoncrawl.org/crawl-data/CC-MAIN-2022-49/segments/"\

"1669446711390.55/warc/CC-MAIN-20221209043931-20221209073931-00615.warc.gz" \

| gzip -dc

33

The WARC format (example record)

WARC/1.0
WARC-Type: response
WARC-Date: 2022-12-09T06:54:33Z
Content-Length: 21810
WARC-IP-Address: 129.240.189.181
WARC-Target-URI: http://wiki.nlpl.eu/Home
WARC-Payload-Digest: sha1:3VWAF5JIDC46G5OYZGO6YI4ZVFTSDC45
WARC-Identified-Payload-Type: text/html

HTTP/1.1 200 OK
Date: Fri, 09 Dec 2022 06:54:32 GMT
Server: Apache/2.4.37 (Red Hat Enterprise Linux) SVN/1.10.2
X-Powered-By: PHP/7.2.24
Content-language: en
Last-Modified: Tue, 12 Jan 2021 18:42:52 GMT
X-Crawler-Transfer-Encoding: chunked
Content-Type: text/html; charset=UTF-8
Content-Length: 21223

<!DOCTYPE html>
<html class="client-nojs" lang="en" dir="ltr">
<head>
<meta charset="UTF-8"/>
<title>Home - Nordic Language Processing Laboratory</title>
<meta name="generator" content="MediaWiki 1.31.10"/>
<link rel="license" href="https://creativecommons.org/licenses/by/4.0/"/>
...

34

The ARC format

• until 2012 (legacy format)

• similar to WARC but

• capture metadata in single line

curl -s -r8067801-$((8067801+5288-1)) \

"https://data.commoncrawl.org/parse-output/segment/"\

"1346823846150/1346838136740_5172.arc.gz" \

| gzip -dc

35

The ARC format (example record)

http://www.commoncrawl.org/ 184.73.222.157 20120204064938 text/html 19468
HTTP/1.1 200 OK
Date:Sat, 04 Feb 2012 06:50:18 GMT
Server:Apache/2.2.17 (Ubuntu)
X-Powered-By:PHP/5.3.5-1ubuntu7
Last-Modified:Sat, 04 Feb 2012 06:50:18 GMT
Content-Type:text/html; charset=UTF-8
x-commoncrawl-DetectedCharset:UTF-8

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" dir="ltr" lang="en-US">
<head profile="http://gmpg.org/xfn/11">
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<title>CommonCrawl | | CommonCrawl</title>
...

36

Common Crawl WARC Specifics

Specifics of Common Crawl WARC and ARC collections (in difference to other web
archivers)

• keep successful fetches (HTTP status 200) only
• separate subsets provided since autumn 2016 [29]

• robots.txt
• responses with HTTP status other than 200

404 Not Found, 304 Not Modified, redirects, etc.

• removed HTTP content and transfer encoding (decompress, unchunk)

• page dependencies (images, CSS, etc.) not captured

37

Data Collection – Web Crawler

Data Collection – Link Prioritization

Data Collection – Representativity, Geographical and Language Bias

Data – WARC and ARC Files

Data – Derivative Formats

WAT and WET

URL Index

Data – Usage

NLP Usage Examples

Summary

38

WAT and WET

WAT

• WARC and HTTP header fields
• HTML meta data
• links and attributes, eg. alt text

WET

• extracted plain text
• no markup or removal of boilerplate content (navigation, header, footer)

WAT and WET

• derivatives of the WARC file format

• WARC headers
• payload: JSON or text

• legacy code base [30, 31]
• planned replacement by columnar

data format in the long term

39

URL Index

• captures are (randomly) distributed over WARC files
• index to look up URL to get location of WARC capture plus metadata

• index.commoncrawl.org
• format: ZipNum Sharded CDX [32]
• main crawls 2008 – now

• index in columnar format (Parquet) [33, 34]
• SQL queries and aggregations using big data tools (Spark, Hive, Presto/Trino/Athena)
• main crawls 2013 – now

40

https://index.commoncrawl.org

Data Collection – Web Crawler

Data Collection – Link Prioritization

Data Collection – Representativity, Geographical and Language Bias

Data – WARC and ARC Files

Data – Derivative Formats

Data – Usage

Data Size and Usage By Format

Data usage by capture time and format

NLP Usage Examples

Summary

41

Data Size and Usage By Format

• percentage of occupied storage and
request volume by format in 2022

• “reads”: ratio request / storage volume
(≈ times volume of provided data is read)

• users prefer text extracts and indexes
(processed, condensed, small)

• WAT metadata extracts less popular
despite the smaller size (compared to
WARC)

• columnar Parquet index heavily used

format % data % requ. reads

WARC/ARC 69.0 63.0 23
WAT 21.3 8.3 10
WET 9.1 16.8 46
CDX Index 0.4 0.7 24
Parq. Index 0.3 11.6 1045

42

Data usage by capture time and format

• users generally prefer to use recently
harvested web data

• data captured years ago: text extracts and
indexes more popular

• challenges (given our mission is to enable
web data usage)

• better tooling and documentation for the
ARC format (2008 – 2012)

• replacement for the WAT format
(metadata and hyperlinks)

43

Data Collection – Web Crawler

Data Collection – Link Prioritization

Data Collection – Representativity, Geographical and Language Bias

Data – WARC and ARC Files

Data – Derivative Formats

Data – Usage

NLP Usage Examples

NLP Usage Examples

Bulk Processing WARC, WAT or WET

Bulk Processing – Index Fun by Philippe Suter

Bulk Processing: z-index example

Bulk Processing: Spark job definition

Bulk Processing: z-index value counts

Bulk Processing: Spark job explained

Exploration on URL and Metadata Index

Exploration: top-level domains hosting Malayalam content

Exploration: discovery of sites hosting Malayalam content

Exploration: discovery of sites hosting Malayalam content

Exploration: examples of Malayalam sites

The Vertical Use Case

The Vertical Use Case: Malayalam Text Corpus

Summary

44

NLP Usage Examples

• utilize existing examples, tools, libraries [35, 36]

• select the right data set and format

• is there already a third-party dataset easier to use?

• ask for help https://groups.google.com/g/common-crawl

45

Bulk Processing WARC, WAT or WET

Requirements and recommendations

• use a WARC parser library
• WAT or WET are WARC derivatives

• processing of files easy to parallelize
• Hadop Map-Reduce, Spark, or any other framework
• which one to choose determined by how data is further consumed (complex reducer

or filter pipeline, etc.)

46

Bulk Processing – Index Fun by Philippe Suter

example by Philippe Suter [37]

• z-index – CSS property to set the z-order of a positioned element in the web
browser

• elements with a higher z-index are “on top” of the overlay stack, not hidden by
elements with lower z-index

• which z-index values are chosen by web developers?
< s c r i p t >

(f u n c t i o n () {
window . loadAndOpenZendeskChat () ;
/ / v a r btnHtml = ’ < i f r a m e i d = ” zdbutton ” . . . t i t l e = ” Support Chat ” t a b i n d e x = ” 0 ”

s t y l e = ” width : 110px ; h e i g h t : 50px ; padd ing : 0px ; margin : 10px 20px ;
p o s i t i o n : f i x e d ; bottom : 0px ; o v e r f l o w : v i s i b l e ; o p a c i t y : 1 ; b o r d e r : 0px
none ; z− i n d e x : 999998; . . . ” ></ i f r a m e > ’ ;

} ()) ;
</ s c r i p t >

47

Bulk Processing: z-index example

z-index usage in a sample of web pages

• define a regular expression to extract z-index values
re.compile(b'z-index *: *(-?[0-9]+|auto|inherit|initial|unset)')

• find the right example to build upon [38, 39]

• implement the Spark job and run it
spark-submit z_index_count.py --output_format json .../path/to/input-warc.paths zindex_count

48

Bulk Processing: Spark job definition

import re
from collections import Counter
from sparkcc import CCSparkJob

class ZIndexCountJob(CCSparkJob):
"""Count z-index values in Common Crawl WARC files,

cf. https://psuter.net/2019/07/07/z-index"""

name = "ZIndexCount"

match z-index values on binary HTML data (in embedded CSS)
zindex_pattern = re.compile(b'z-index *: *(-?[0-9]+|auto|inherit|initial|unset)')

def process_record(self, record):
if record.rec_type != 'response':

skip over WARC request or metadata records
return

if not self.is_html(record):
skip non-HTML or unknown content types
return

data = record.content_stream().read()
counts = Counter(ZIndexCountJob.zindex_pattern.findall(data))
for val, count in counts.items():

yield val.decode('ascii'), count

if __name__ == '__main__':
job = ZIndexCountJob()
job.run() 49

Bulk Processing: z-index value counts

50

Bulk Processing: Spark job explained

… behinde the scenes

• Spark reads the input list of WARC paths and distributes it to workers

• the mapper function (called by the worker, implemented in CCSparkJob) opens a
WARC file

• the WARC input stream is passed to warcio (WARC parser module)

• iterating over WARC records, the method process_record is called

• output tuples are grouped by key and passed to the default reducer (sum values)

51

Exploration on URL and Metadata Index

the columnar index [33, 40, 34] includes

• URL and parts (host name, registered domain, top-level domain, path, query)

• capture metadata (fetch time, size, WARC record location)

• content metadata (MIME type, charset, content languages detected by CLD2)

• see the table schema [41, 42] for details

the following example queries were run with Amazon Athena [43] engine v3

52

Exploration: top-level domains hosting Malayalam content

SELECT COUNT(*) AS n_captures,
COUNT(DISTINCT url_host_registered_domain)
AS n_domains,

url_host_tld
FROM "ccindex"."ccindex"

WHERE crawl = 'CC-MAIN-2022-49'
AND subset = 'warc'
-- primary language: Malayalam

AND content_languages LIKE 'mal%'
GROUP BY url_host_tld
ORDER BY n_captures DESC;

509602 3243 com
111051 805 in

82183 427 org
8592 133 net
6909 13 news
5098 5 tw
3466 41 info
1746 10 co
1717 4 media
1265 2 cyou
1007 8 blog

843 10 online
798 9 live
730 16 me
594 9 app
499 6 xyz
434 15 tv
360 3 ml
342 5 ae
333 10 de
283 3 xn--rvc1e0am3e

53

Exploration: discovery of sites hosting Malayalam content

WITH tmp AS (
SELECT COUNT(*) AS num_pages,

regexp_extract(content_languages, '^([a-z]{3})') AS primary_content_language,
url_host_name,
SUM(COUNT(*)) OVER (PARTITION BY regexp_extract(content_languages, '^([a-z]{3})'))

AS total_pages_lang,
SUM(COUNT(*)) OVER (PARTITION BY url_host_name) AS total_pages_host,
array_agg(regexp_extract(content_languages, '^([a-z]{3})')) OVER (PARTITION BY url_host_name)

AS host_primary_content_languages
FROM ccindex.ccindex

WHERE crawl = 'CC-MAIN-2022-49'
AND subset = 'warc'

GROUP BY regexp_extract(content_languages, '^([a-z]{3})'),
url_host_tld,
url_host_name)

SELECT num_pages,
url_host_name,
(100.0*num_pages/total_pages_lang) AS perc_of_lang,
total_pages_host,
(100.0*num_pages/total_pages_host) AS perc_of_host,
host_primary_content_languages

FROM tmp
WHERE primary_content_language = 'mal'
AND num_pages >= 5
AND (100.0*num_pages/total_pages_host) >= 5.0

ORDER BY num_pages DESC;

54

Exploration: discovery of sites hosting Malayalam content

• see also site-discovery-by-language.sql

• next slide: sample out of 2 478 results

55

https://github.com/commoncrawl/cc-index-table/blob/main/src/sql/examples/cc-index/site-discovery-by-language.sql

Exploration: examples of Malayalam sites

pages host %lang phost %phost primary languages

29856 ml.wikipedia.org 4.030 30161 98.99 [lat, mal, eng]
17873 malayalam.news18.com 2.413 17875 99.99 [eng, mal]
14528 malayalam.indianexpress.com 1.961 14528 100.00 [mal]

8169 fanport.in 1.103 8762 93.23 [mal, null, eng]
1835 celebrity.astrosage.com 0.248 13192 13.91 [ben, eng, mar, hin, guj, tel, mal]

969 onlinepeeps.co 0.131 1001 96.80 [eng, mal]
225 sapnageorge.com 0.030 364 61.81 [eng, mal]
207 kambistories.co*** 0.028 207 100.00 [mal]
136 www.mahzooz.ae 0.018 672 20.24 [ara, urd, mal, hin, eng]

30 myday.code.blog 0.004 30 100.00 [mal]
18 www.myjar.app 0.002 287 6.27 [lat, hin, mar, mal, tel, eng, kan]
12 malayalambible.app 0.002 15 80.00 [mal, eng]
11 www.malayalambible.app 0.001 16 68.75 [eng, mal]

(*** adult content)
56

The Vertical Use Case

• URL index holds WARC record locations
• WARC file path
• record offset and length (response record)

• fetch a given WARC record by sending a HTTP range request using the offsets
• any query to the (columnar) URL index to select records

• by content language, top-level domain, MIME type, keyword in URL path, …
• for a given list of host/domain names or URLs

use SQL JOIN for any larger list (see [44])
• how to proceed with the returned gzipped WARC record(s)?

• process the WARC records on-the-fly (see [34, 39] or [45])
• concatenate compressed records into WARC file

57

The Vertical Use Case: Malayalam Text Corpus

example by Athul Jayson [46, 47]

• get WARC record locations SELECT url,
warc_filename,
warc_record_offset,
warc_record_length

FROM "ccindex"."ccindex"
WHERE crawl = 'CC-MAIN-2020-05'

AND subset = 'warc'
AND content_languages LIKE '%mal%'

• (distributed) fetching of WARC records and export into WARC files
• Spark job defined in [47, 40]
• run on AWS, us-east-1 where CC data is stored (low network latency, cf. [48])

• local processing of WARC files: parse HTML and extract Malayalam text [47]

58

Data Collection – Web Crawler

Data Collection – Link Prioritization

Data Collection – Representativity, Geographical and Language Bias

Data – WARC and ARC Files

Data – Derivative Formats

Data – Usage

NLP Usage Examples

Summary

Summary

Questions?

References

59

Summary

data collection

• simple and polite crawler
substantial parts of the web are missing

• sample crawls, not exhaustive (not every domain, not every page from a site)
• not free of collection bias
•

data usage

• have a look at example projects
• take time to select the best data format and tool
• stay in touch

60

Questions?

61

References i

[1] Amazon Web Services. Open Data Sponsorship Program.
https://aws.amazon.com/opendata/open-data-sponsorship-program/.

[2] Amazon Web Services. Registry of Open Data on AWS. https://registry.opendata.aws/.

[3] Ahad Rana. Common Crawl – Building an open web-scale crawl using Hadoop. 2010.
https://www.slideshare.net/hadoopusergroup/common-crawlpresentation.

[4] The Common Crawl Crawler Engine and Related MapReduce code (2008-2012).
https://github.com/commoncrawl/commoncrawl-crawler.

[5] blekko. https://en.wikipedia.org/wiki/Blekko.

[6] blekko donates search data to Common Crawl. 2012.
https://commoncrawl.org/2012/12/blekko-donates-search-data-to-common-crawl/.

[7] Apache Nutch. https://nutch.apache.org/.

[8] Jordan Mendelson 2014: Common Crawl’s Move to Nutch.
https://commoncrawl.org/2014/02/common-crawl-move-to-nutch/.

62

https://aws.amazon.com/opendata/open-data-sponsorship-program/
https://registry.opendata.aws/
https://www.slideshare.net/hadoopusergroup/common-crawlpresentation
https://github.com/commoncrawl/commoncrawl-crawler
https://en.wikipedia.org/wiki/Blekko
https://commoncrawl.org/2012/12/blekko-donates-search-data-to-common-crawl/
https://nutch.apache.org/
https://commoncrawl.org/2014/02/common-crawl-move-to-nutch/

References ii

[9] Andrzej Białecki. “Nutch Search Engine”. In: Hadoop: The Definitive Guide. Ed. by Tom White. O’Reilly, 2012,
pp. 565–579.

[10] Common Crawl Fork of Apache Nutch. https://github.com/commoncrawl/nutch.

[11] sitemaps.org. https://www.sitemaps.org/protocol.html.

[12] Oracle Data Cloud Crawler. https://www.oracle.com/corporate/acquisitions/grapeshot/crawler.html.

[13] News Dataset Available. 2016. https://commoncrawl.org/2016/10/news-dataset-available/.

[14] News-Crawl. https://github.com/commoncrawl/news-crawl.

[15] StormCrawler. https://stormcrawler.net/.

[16] Web Data Commons - Hyperlink Graphs. 2013. https://webdatacommons.org/hyperlinkgraph/index.html.

[17] Robert Meusel et al. “The Graph Structure in the Web – Analyzed on Different Aggregation Levels”. In: The
Journal of Web Science 1.1 (2015), pp. 33–47. DOI: http://dx.doi.org/10.1561/106.00000003.
https://pdfs.semanticscholar.org/b5d5/88298e6845b4bfd40ea779ce21e628239ef3.pdf.

[18] The Common Crawl WWW Ranking. http://wwwranking.webdatacommons.org/.

63

https://github.com/commoncrawl/nutch
https://www.sitemaps.org/protocol.html
https://www.oracle.com/corporate/acquisitions/grapeshot/crawler.html
https://commoncrawl.org/2016/10/news-dataset-available/
https://github.com/commoncrawl/news-crawl
https://stormcrawler.net/
https://webdatacommons.org/hyperlinkgraph/index.html
https://doi.org/http://dx.doi.org/10.1561/106.00000003
https://pdfs.semanticscholar.org/b5d5/88298e6845b4bfd40ea779ce21e628239ef3.pdf
http://wwwranking.webdatacommons.org/

References iii

[19] Common Search: Our first public datasets: Host-level WebGraph and PageRank.
https://web.archive.org/web/20170729110709/https://about.commonsearch.org/2016/07/our-first-

public-datasets-host-level-webgraph-and-pagerank/.

[20] https://github.com/commonsearch/cosr-back/blob/master/spark/jobs/pagerank.py.

[21] Paolo Boldi. A modern view of centrality measures. 2013.
https://events.yandex.ru/events/science-seminars/boldi-23sep.

[22] Host- and Domain-Level Web Graphs May, June/July and August 2022.
https://commoncrawl.org/2022/09/host-and-domain-level-web-graphs-may-jun-aug-2022/.

[23] Hsin-Tsang Lee et al. “IRLbot: Scaling to 6 Billion Pages and Beyond”. In: ACM Trans. Web 3.3 (July 2009). ISSN:
1559-1131. DOI: 10.1145/1541822.1541823. https://doi.org/10.1145/1541822.1541823.

[24] Serge Abiteboul, Mihai Preda, and Gregory Cobena. “Adaptive on-line page importance computation”. In: (2003).
https://dx.doi.org/10.1145/775152.775192.

[25] Statistics of Common Crawl Monthly Archives. https://commoncrawl.github.io/cc-crawl-statistics/.

64

https://web.archive.org/web/20170729110709/https://about.commonsearch.org/2016/07/our-first-public-datasets-host-level-webgraph-and-pagerank/
https://web.archive.org/web/20170729110709/https://about.commonsearch.org/2016/07/our-first-public-datasets-host-level-webgraph-and-pagerank/
https://github.com/commonsearch/cosr-back/blob/master/spark/jobs/pagerank.py
https://events.yandex.ru/events/science-seminars/boldi-23sep
https://commoncrawl.org/2022/09/host-and-domain-level-web-graphs-may-jun-aug-2022/
https://doi.org/10.1145/1541822.1541823
https://doi.org/10.1145/1541822.1541823
https://dx.doi.org/10.1145/775152.775192
https://commoncrawl.github.io/cc-crawl-statistics/

References iv

[26] Awesome Web Archiving.

[27] Wikipedia contributors. Web ARChive — Wikipedia, The Free Encyclopedia. 2021.
https://en.wikipedia.org/wiki/Web_ARChive.

[28] The WARC Format 1.1.
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/.

[29] Data Sets Containing Robots.txt Files and Non-200 Responses.
https://commoncrawl.org/2016/09/robotstxt-and-404-redirect-data-sets/.

[30] IIPC Web Archive Commons (Common Crawl Fork). https://github.com/commoncrawl/ia-web-commons.

[31] IIPC Web Archive Commons. https://github.com/iipc/webarchive-commons.

[32] PyWB: CDX Index Format – ZipNum Sharded CDX.
https://github.com/webrecorder/pywb/wiki/CDX-Index-Format#zipnum-sharded-cdx.

[33] Index to WARC Files and URLs in Columnar Format. 2018.
https://commoncrawl.org/2018/03/index-to-warc-files-and-urls-in-columnar-format/.

65

https://en.wikipedia.org/wiki/Web_ARChive
https://iipc.github.io/warc-specifications/specifications/warc-format/warc-1.1/
https://commoncrawl.org/2016/09/robotstxt-and-404-redirect-data-sets/
https://github.com/commoncrawl/ia-web-commons
https://github.com/iipc/webarchive-commons
https://github.com/webrecorder/pywb/wiki/CDX-Index-Format#zipnum-sharded-cdx
https://commoncrawl.org/2018/03/index-to-warc-files-and-urls-in-columnar-format/

References v

[34] Sebastian Nagel. Accessing WARC files via SQL. Poster at IIPC Web Archiving Conference, 6–7 June 2019, Zagreb,
Croatia. 2019. https://digital.library.unt.edu/ark:/67531/metadc1608961/.

[35] Examples using Common Crawl Data. https://commoncrawl.org/the-data/examples/.

[36] So you’re ready to get started. https://commoncrawl.org/the-data/get-started/.

[37] Philippe Suter. Index fun. 2019. https://psuter.net/2019/07/07/z-index.

[38] Mark Litwintschik. Analysing Petabytes of Websites. 2017.
https://tech.marksblogg.com/petabytes-of-website-data-spark-emr.html.

[39] Common Crawl PySpark Examples. https://github.com/commoncrawl/cc-pyspark.

[40] Common Crawl Index Table. https://github.com/commoncrawl/cc-index-table.

[41] Common Crawl Index Table (Data). https://data.commoncrawl.org/cc-index/table/cc-main/index.html.

[42] Common Crawl Index Table, table schema flat. https://github.com/commoncrawl/cc-index-
table/blob/main/src/main/resources/schema/cc-index-schema-flat.json.

[43] Interactive SQL - Serverless Query Service - Amazon Athena - AWS. https://aws.amazon.com/athena/.

66

https://digital.library.unt.edu/ark:/67531/metadc1608961/
https://commoncrawl.org/the-data/examples/
https://commoncrawl.org/the-data/get-started/
https://psuter.net/2019/07/07/z-index
https://tech.marksblogg.com/petabytes-of-website-data-spark-emr.html
https://github.com/commoncrawl/cc-pyspark
https://github.com/commoncrawl/cc-index-table
https://data.commoncrawl.org/cc-index/table/cc-main/index.html
https://github.com/commoncrawl/cc-index-table/blob/main/src/main/resources/schema/cc-index-schema-flat.json
https://github.com/commoncrawl/cc-index-table/blob/main/src/main/resources/schema/cc-index-schema-flat.json
https://aws.amazon.com/athena/

References vi

[44] Table Joins to Look Up Large Lists of URLs in the Common Crawl. https://github.com/commoncrawl/cc-
notebooks/blob/main/cc-index-table/bulk-url-lookups-by-table-joins.ipynb.

[45] Jader Dias. One click to download all the web pages you may want. 2022. https://medium.com/@jaderd/one-
click-to-download-exactly-the-web-pages-you-may-want-no-matter-how-many-they-are-d4834265a0a3.

[46] Athul Jayson. Extracting Data from Common Crawl, QBurst Blog. 2020.
https://blog.qburst.com/2020/07/extracting-data-from-common-crawl-dataset/.

[47] Common Crawl - Malayalam. https://github.com/qburst/common-crawl-malayalam.

[48] S3 Throughput: Scans vs Indexes. 2019. https://code402.com/blog/s3-scans-vs-index/.

67

https://github.com/commoncrawl/cc-notebooks/blob/main/cc-index-table/bulk-url-lookups-by-table-joins.ipynb
https://github.com/commoncrawl/cc-notebooks/blob/main/cc-index-table/bulk-url-lookups-by-table-joins.ipynb
https://medium.com/@jaderd/one-click-to-download-exactly-the-web-pages-you-may-want-no-matter-how-many-they-are-d4834265a0a3
https://medium.com/@jaderd/one-click-to-download-exactly-the-web-pages-you-may-want-no-matter-how-many-they-are-d4834265a0a3
https://blog.qburst.com/2020/07/extracting-data-from-common-crawl-dataset/
https://github.com/qburst/common-crawl-malayalam
https://code402.com/blog/s3-scans-vs-index/

	About Common Crawl
	Data Collection – Web Crawler
	
	Data Collection
	Web Crawler 2008 – 2012
	Seed Donations 2013 – 2018
	Web Crawler 2013 – now
	Nutch Default Crawler Workflow
	Nutch at Common Crawl 2013 – 2016
	Nutch at Common Crawl 2017 – now
	Crawler Politeness
	Crawler Politeness: robots.txt example
	Crawler Politeness Implications
	Nutch at Common Crawl – Good to know
	Nutch at Common Crawl – Hadoop and hardware
	Nutch at Common Crawl – Fetch list layout
	News Crawler

	Data Collection – Link Prioritization
	
	Prioritization – Which Pages or Sites to Crawl
	Link Prioritization – Web Graphs and rankings based on Common Crawl
	Link Prioritization – Graph-based ranking example
	Prioritization – A Deeper Look into the Current Implementation

	Data Collection – Representativity, Geographical and Language Bias
	
	Are the Common Crawls Representative?
	New URLs and Domain Coverage
	Geographical Coverage
	Language Coverage
	Reasons why English Content is potentially overrepresented
	Fetch time by top-level domain
	Link Spam – Challenging the crawler
	Link Spam Detection i
	Link Spam Detection ii

	Data – WARC and ARC Files
	
	The WARC format (Web ARChive)
	The WARC format (example record)
	The ARC format
	The ARC format (example record)
	Common Crawl WARC Specifics

	Data – Derivative Formats
	
	WAT and WET
	URL Index

	Data – Usage
	
	Data Size and Usage By Format
	Data usage by capture time and format

	NLP Usage Examples
	
	NLP Usage Examples
	Bulk Processing WARC, WAT or WET
	Bulk Processing – Index Fun by Philippe Suter
	Bulk Processing: z-index example
	Bulk Processing: Spark job definition
	Bulk Processing: z-index value counts
	Bulk Processing: Spark job explained
	Exploration on URL and Metadata Index
	Exploration: top-level domains hosting Malayalam content
	Exploration: discovery of sites hosting Malayalam content
	Exploration: discovery of sites hosting Malayalam content
	Exploration: examples of Malayalam sites
	The Vertical Use Case
	The Vertical Use Case: Malayalam Text Corpus

	Summary
	
	Summary
	Questions?
	References

	References
	References
	References
	References
	References
	References

