comparison bin/spearman.py @ 29:669a0b120d34

start work on ranking, lose faith in getting row vs. column correct every time
author Henry S. Thompson <ht@inf.ed.ac.uk>
date Wed, 16 Nov 2022 19:52:50 +0000
parents 21da4d6521db
children c73ec9deabbe
comparison
equal deleted inserted replaced
28:7ffb686ca060 29:669a0b120d34
65 sdax.set_ylim(hax.get_ylim()) 65 sdax.set_ylim(hax.get_ylim())
66 sdax.set_xticks([v for s,v in sdd]) 66 sdax.set_xticks([v for s,v in sdd])
67 sdax.set_xticklabels([str(s) for s,v in sdd]) 67 sdax.set_xticklabels([str(s) for s,v in sdd])
68 plt.show() 68 plt.show()
69 69
70 def first_diff(ranks):
71 # first disagreement with baseline == {1,2,...}
72 for i in range(len(ranks)):
73 if ranks[i]!=i+1.0:
74 return i
75 return i+1
76
77 def ranks():
78 # Combine segment measures:
79 # segID,rank corr. wrt all,inverse variance, mean cross rank corr.,first disagreement
80 return np.array([i,all[i],1.0/xd[i].variance,xd[i].mean,first_diff(ranks[i])])
81
70 counts=loadtxt(sys.argv[1]+".csv",delimiter=',') 82 counts=loadtxt(sys.argv[1]+".csv",delimiter=',')
71 o=stats.spearmanr(counts,nan_policy='omit') 83 # "If axis=0 (default), then each column represents a variable, with
84 # observations in the rows"
85 ranks=[stats.rankdata(-counts[i],method='average') for for i in range(1,100)]
86 corr=stats.spearmanr(counts,nan_policy='omit').correlation
72 87
73 all=o.correlation[0][1:] 88 all=corr[0][1:]
74 all_s=stats.describe(all) 89 all_s=stats.describe(all)
75 all_m=all_s.mean 90 all_m=all_s.mean
76 # Should get the confidence interval for this, so we can
77 # use it in plot_x
78 91
79 x=np.array([np.concatenate((o.correlation[i][1:i],o.correlation[i][i+1:])) for i in range(1,101)]) 92 x=np.array([np.concatenate((corr[i][1:i],
93 corr[i][i+1:])) for i in range(1,101)])
80 xd=[stats.describe(x[i]) for i in range(100)] 94 xd=[stats.describe(x[i]) for i in range(100)]
81 xs=stats.describe(np.array([xd[i].mean for i in range(100)])) 95 xs=stats.describe(np.array([xd[i].mean for i in range(100)]))
82 xm=xs.mean 96 xm=xs.mean
83 xsd=np.sqrt(xs.variance) 97 xsd=np.sqrt(xs.variance)
98
99 ### I need to review rows, e.g. counts[0] is an array of 101 counts
100 ### for the most common label in the complete crawl,
101 ### from the complete crawl and all the segments
102 ### versus columns, e.g. counts[:,0] is an array of 100 decreasing counts
103 ### for all the labels in the complete crawl