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Foreword 

It is a distinct pleasure to have been asked to write a forward to 
Brian Cantwell Smith’s remarkable book, Computational Re-
flections. I count myself one of Brian’s oldest friends and col-
leagues, having known him since the late 1970s when we were 
both in our twenties, computer zealots working at Xerox Palo 
Alto Research Center (PARC).  

This volume is ambitious but Brian’s lead up to the work 
laid out in these pages supports his ambitions. He started un-
dergraduate study at Oberlin College in Ohio in 1967, where 
his interests included both physics and religion. Leaving after 
only two years, he became employed as a programmer at the 
Division of Physics Laboratory of the National Research 
Council of Canada (Ottawa); his project involved both the Fer-
milab (Chicago) and the Lawrence Research Laboratory 
(Berkeley). At all three sites he “programmed like crazy” in ma-
chine language on PDP 9 and PDP 15 microcomputers, build-
ing systems for experimental control and data gathering. 

After a few years, Brian moved to Cambridge, MA to take 
classes at the Massachusetts Institute of Technology (MIT), 
studying what was then known as Social Inquiry; in particular 
the politics of high technology. But Brian soon realized that the 
understanding of computing the social scientists were critiqu-
ing was not the understanding of programmers, the latter of 
which he described as, as “computation in the wild”. 

“What drove me out of Social Inquiry and back to [Com-
puter Science] was needing to be back in the practice. That skill 
was not something that people on the outside understood. I 
had to go back into the heart of the beast, as it were.”  

To return to his “computation in the wild”, he began taking 
classes geared toward applying to the Ph.D. program in Elec-
trical Engineering and Computer Science. 
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There was one small hitch, however, to his continuing edu-
cation; when the MIT administration discovered Brian had not 
completed an undergraduate degree, they determined he could 
not be registered for graduate study. However, he so impressed 
the newly-appointed head of the Artificial Intelligence Labora-
tory, Patrick Winston, that Winston gave Brian an informal 
oral exam in topics from the MIT undergraduate computer sci-
ence curriculum and based on Brian’s performance, awarded 
him the credits necessary for an MIT undergraduate degree. 
This cleared the way for Brian’s admission to the MIT Com-
puter Science graduate program. Brian’s unusual depth in both 
the technical and synthetic were unsurprisingly recognized 
early; this remarkable intellectual combination has continued 
to this day.  

At MIT, Brian met Terry Winograd, who in 1976 left 
MIT for Stanford. Terry invited Brian to spend the summer in 
the Understander Group at PARC, where Brian joined in the 
development of a Knowledge Representation Language 
(KRL), which came to embody some of the ideas that Brian 
later developed in his Masters and Ph.D. dissertations [refs]. 

These biographical details bring us to the time and place 
where he and I first met: PARC. It was really, from this mo-
ment that Brian began to build the expertise necessary for the 
profound but radical thesis of this book: 

• Member of the Scientific Staff, Xerox PARC 
• Director, Xerox PARC System Sciences Lab 
• Adjunct Professor of Philosophy, Stanford Univer-

sity 
• Founding member of Stanford University’s Center for 

the Study of Language and Information 
• Founding member and first president, Computer 

Professionals for Social Responsibility 
• President of the Society for Philosophy and Psychol-

ogy 
• Professor of Cognitive Science, Computer Science, 

and Philosophy, Indiana University 
• Kimberly J. Jenkins University Distinguished 
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Professor of Philosophy and New Technologies, 
Duke University 

• Dean of the Faculty of Information, University of To-
ronto 

• Professor of Information, Philosophy, Cognitive Sci-
ence, and the History and Philosophy of Science and 
Technology, University of Toronto 

• Senior Fellow, Massey College, University of Toronto 
• Reid Hoffman Professor of Artificial Intelligence and 

the Human, University of Toronto 
Working at PARC, “As an exercise in using KRL represen-

tational structures, Brian Smith tried to describe the KRL data 
structures themselves in KRL-0. A brief sketch was completed, 
and in doing it we were made much more aware of the ways in 
which the language was inconsistent and irregular. This initial 
sketch was the basis for much of the development in KRL-1.”1 
(emphasis added) 

In addition, Brian’s input into the (never completed) KRL-
1 meant that not only could some parts of a system’s data be 
about other parts, but that these data would be more than just 
commentary. They would actually play a role in the system’s 
operation. For Brian, working on KRL-1, this use of data was 
motivated by a desire to formulate aspects of knowledge repre-
sentation – negation and disjunction – intensionally as 
knowledge about knowledge, rather than extensionally as prim-
itives built into the vocabulary of the representation language 
itself.  

Brian called this set of ideas idea reflection 
There was an assumption at the heart of Brian’s reflective 

architectures started in KRL-1 but which occupied just one 
section of one chapter in his proposed Ph.D.; its resolution has 

 
 
1Bobrow and Winograd, 1978, “Experience with KRL-O: One Cycle of 
a Knowledge Representation Language”, in Proceedings of the Fifth Inter-
national Joint Conference on Artificial Intelligence, Morgan Kaufmann Pub-
lishers, Burlington, MA. Available online at https://www.ijcai.org/Pro-
ceedings/77-1/Papers/032.pdf. 
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been a lifetime of intellectual thought and work for Brian. 
Looking back, it seems that any difficulties in the resolution 

acted rather like the grit in the oyster, stimulating Brian’s 
wholesale reconsideration of the nature of computation, and 
Computer Science as currently practiced, which is, at its heart, 
what this book is about. 

I daresay that from my vantage point as a career computer 
scientist, Brian has accurately diagnosed a problem that the 
whole field of computing has missed. Brian convincingly argues 
that this has led the field to be altogether stuck, but unable to 
see that. He believes that seeing the problem will unstick the 
field.  

As Brian himself revealed to me in a recent conversation, 
“That this is important needs to be said.” As computer scien-
tists as well as philosophers of computing who care about the 
field, this claim deserves our attention. 

A word to the wise: because the discussion is not only in-
terdisciplinary but also relentlessly foundational, it cannot as-
sume a particular starting place. So it is not generally an option 
to say that this or that term will be used as in one or another 
field. And this will especially affect the use of standard terms in 
computer science. The best interpretive strategy is probably to 
hold definitions in abeyance, and let the ensuing discussion and 
argument do the work of gradually fixing the meaning of the 
book’s terminology. 

The ideas put forward in this book are dense and at times, 
highly technical, but so very important. Brian has described it 
to me as written rather like a detective story, in which the same 
set of problems is explored repeatedly, getting closer each time 
to a complete and self-consistent picture. As he said, “…what 
I’ve written should be read more like novel than like a manual. 
What things mean will gradually take shape. Be patient”. 

As Brian says, be patient, dear reader. If you care about 
computer science, as a practitioner, theorist, or concerned citi-
zen, this book matters for you. Its conclusions matter, even if 
parts of it are obtuse to you. So even if, as a programmer, you 
find it difficult to see why you should care if the theorists have 
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got it wrong, be patient. If you’re a theorist, and you find Brian’s 
critique at times irrelevant or founded in misunderstanding, be 
patient. If you’re a citizen, and the technical details are off-put-
ting, be patient.  

If you are patient, and stay the course, when you get to the 
end you will be well rewarded by arguments elegantly made, 
important fissures in our understanding of computing spot-
lighted, and the way forward, clearer than before. You will 
surely have learned what a subtle and committed mind finds 
important. There is a vision presented in these pages; I know 
that I as a practitioner am asking myself what I can do to realize 
this vision. As citizens, we need to cheer from the sidelines, and 
keep asking these fundamental questions about computing, es-
pecially in our contemporary era of machine learning and AI. 
Our future depends on it. 

 
Henry S. Thompson 

Toronto and Edinburgh 
November 2024 



  

 



 

 

 1 Overview 

This is a book about the foundations of computing—about 
what computing is, and how we understand it. It starts by iden-
tifying several problems in our current understanding that 
came to my attention in the early s, in the course of devel-
oping what I called a reflective programming language. Though 
I made some effort to repair the difficulties then, the proposed 
reconstructions did not go deep enough. Cracks remained: con-
fusions about what is sign and what is signified, what is con-
crete and what is abstract, what is model and what is modeled. 
The issues have permeated computer science since the outset, 
going back at least to the  Turing paper that launched 
computer science. 

The story told here builds on the s investigation, but 
deepens the analysis and broadens the scope, ultimately grow-
ing into a systematic critique of the field as a whole. In the end 
I argue for reconstituting the theoretical framework on which 
present-day computer science rests. Conceptual clarity, intel-
lectual coverage, and doing justice to programmers’ intuitions 
require a foundation that is semantically clearer, ontologically 
less ambiguous, and more conceptually rigorous. Among other 
things, building such a framework means not taking ‘compu-
ting’ or ‘computation’ as a basic conceptual category, since the 
very notion of computing something is murky. Instead, a whole-
sale reconstruction is recommended, covering the full spectrum 
of active, intentional, physically embodied systems. No part of 
this edifice is co-extensive with computer science as we know it, 
though everything we have learned about computing has a nat-
ural place within it. 

Strong conclusions, in need of strong defense. 
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A — Introduction 

 1 Meaning and Mechanism 
Computation involves a dialectical interplay of meaning and 
mechanism. 

The realm of meaning—or intentionality, to use the philo-
sophical term—includes representation, language, symbolism, 
expression, signification, models, reference, theory, and so on: 
the general category of phenomena that are directed towards or 
“about” other things. Meaning is essential to computing—to 
any symbolic or intentional system, including all the infor-
mation-processing machines we have built and programmed to 
do our bidding. Meaning in this broad sense is not limited to 
that which we have called computational. It is equally funda-
mental to our human ability to think, talk, calculate, reason, 
and imagine. To have a thought is to be in a state “about” (in-
tentionally directed towards) some situation or state of affairs 
in the world—a knock on the door, the demise of the democ-
racy, an inner pain. Similarly, to say that a machine computes a 
sum or calculates a trajectory, that an algorithm can determine 
whether a proposed distribution of resources is equitable, or 
that a computer is monitoring someone’s blood pressure, re-
quires interpreting a pattern of bits in or produced by a ma-
chine as meaning something. 

In the case of digital computers, we use patterns of ‘’ and 
‘’ to classify the states and configurations of the devices that 
perform these computations—the states and configurations 
that are in turn about the computation’s subject matter. The 
numbers themselves are not the states; numbers are abstract, 
and there is only one number ; states are numerous, and con-
crete (their occurrences have causal consequence). Per se, unin-
terpreted arrangements of bits are legion, and boring. What 
matters about those configurations—whether they denote 
numbers, represent answers to decision problems, can be taken 
as evidence of flight delays, or have any other significance, re-
quire acts of intentional interpretation. If we take the output of 
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a program to indicate that some route is the shortest, or that a 
particular refugee should be granted asylum, or that a given 
number is prime—all these things are interpretations. Even to 
say that a given set of bits is an instruction for a machine is an 
intentional claim, transcending the brute mechanical facts 
about machine’s physical makeup and behavior.1 

If meaning is essential, the realm of mechanism is if any-
thing even more fundamental. It too has much wider scope 
than computation. Read broadly, the idea of mechanism, or of 
mechanical workings, along with associated concepts of causal-
ity and effectiveness, underlies our understanding of the entire 
physical world. Issues of mechanism have to do with the inter-
actions of concrete physical configurations, with time and dy-
namics, with temporal evolution, with impact and action, with 
whether it is possible for a device to trigger an action or respond 
to an input—with whether it can be impinged upon by an an-
tecedent cause or have a consequent effect.2 

Issues of meaning and mechanism are identified front and cen-
ter by Turing himself. “The computable numbers,” he says in 
the very first line of his classic paper, are “real numbers whose 
expressions as a decimal are calculable by finite means.”3 The 

 
 
1Suppose the memory M of a digital computer C is divided into two parts: 
one (M1) taken to contain the program, and the other (M2) to contain 
data. If the contents of M1 are held constant, as assumed in this interpre-
tive division, and those of M2 varied, C’s behaviour will in general change. 
But if the contents of M2 are held constant, and those of M1 varied, C’s 
behaviour is also liable to change. That the first constitutes running the 
same program on different data, and the second running a different pro-
gram on the same data, are acts of external interpretation; nothing about 
the bit patterns per se warrants making such a distinction. 
2Someone might suggest that a computer must be such as to be capable of 
“responding to a signal.” That characterization combines both dimen-
sions: responding is an issue of mechanical capacity; whether an impinging 
causal disturbance is a signal is a question of meaning or intentionality. 
3Turing (/); p. . By ‘decimal,’ as becomes clear in the course of 
his paper, Turing means numbers represented in any positional notation, 
not specifically those with a radix of ten. Issues of radix, binary vs decimal, 
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notion of expression implicates meaning and representation; 
that of calculation, mechanisms to achieve certain ends. Because 
numbers are abstract, they cannot be touched by mechanisms 
per se. What Turing machines demonstrate are mechanisms to 
manipulate concrete, effective representations or proxies of 
numbers—numerals, to be precise. On a classical view, that is, 
computers should be understood as numeral crunchers, not as 
number crunchers—though it has been a long time since the 
domains represented by configurations of computation-inter-
nal bits has been restricted to the arithmetical or mathematical. 

Informally, the ends to which we put computational mech-
anisms are typically not formulated mechanically, but in terms 
of the entities that their symbols represent or mean: adding 
numbers, deciding problems, drawing inferences. This practice 
of classifying computational structures and phenomena indi-
rectly via the interpretations of their symbols and states4 is not 
restricted to describing their inputs and outputs, or to stating 
the goals they are devised to meet. We also routinely use such 
indirect classifications in describing their inner states and what 
they are doing overall. Without assuming a numeral-number 
relation, you could not say that computers so much as add or 
count, let alone calculate distances or solve equations. Without 
assuming a relation between configurations of bits and employ-
ees you could not say that a program had developed a schedule 
for part-time workers. Without adverting to (or at least assum-
ing) representation you could not describe an internal proce-
dure as calculating a square root, or as verifying a user’s identity, 
or as translating English into Japanese. 

Reference to such interpretations are crucial in order for 
programmers to know what software to build, to figure out 

 
 
etc., are all facts about representations of numbers, not about numbers 
themselves. 
4‘Interpretation’ in its logical and lay sense, meaning something like refer-
ence or denotation, not the sense that the term ‘interpretation’ has been 
given in computer science—e.g., in claims that Python or Java are inter-
preted languages. 
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how to build what they select, and to interpret their results. 
Programming, in fact, can be understood as an exploration in 
the space of meaningful or signifying mechanisms—a search 
for mechanically (physically) implementable designs that meet 
meaningful (semantic or intentional) goals. Sans semantic in-
terpretation, all we could claim about computers is that they are 
machines that rearrange stupefyingly complex uninterpreted 
inner states, which produce and respond to bewilderingly com-
plex physical flutterings at their boundaries. 

The emphasis on the interplay of meaning and mechanism has 
permeated computer science from beginning. The devices we 
take to be the earliest examples of computing or “calculating de-
vices”—abaci, Babbage’s Analytical Engine, programming 
cards for Jacquard looms, etc.—are all understood under inter-
pretation, in terms of what their mechanical arrangements 
mean. The brilliance in their design typically stems from the 
ingenuity embodied in the ways their mechanical configura-
tions are constructed to allow them to meet those interpreted 
goals (that is: goals formulated in terms of the states of affairs 
that the states represent). Although he claimed to be focused 
on numbers and mathematical functions, Turing’s originality 
lay in how he was able to devise mechanisms to manipulate rep-
resentations of those numbers and functions—mechanisms 
with which to achieve goals framed in terms of the numbers and 
functions that those representations mean. 

It was soon realized, after publication of Turing’s paper, 
that computational “meaning” was not limited to relations be-
tween concrete states and abstract numbers—or perhaps, to 
construe the same point from a perspective that Turing might 
have preferred, that the meaning relation defined over compu-
tational states need not “stop” with numbers; those represented 
numbers may in turn be taken to represent arbitrarily more 
general domains. As Newell noted in his landmark “Physical 
Symbol Systems” paper, he and Simon emphasized this wider 
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interpretation throughout their work:5 

“[W]e insisted that computers were symbol manipulation 
machines and not just number [sic] manipulation machines. 
The mathematicians and engineers [in the s] re-
sponsible for computers insisted that computers only 
processed numbers—that the great thing was that in-
structions could be translated into numbers. On the con-
trary, we argued, the great thing was that computers 
could take instructions and it was incidental, though use-
ful, that they dealt with numbers. … [O]ur aim was to 
revise opinions about the computer.”6 

This was the insight that unleashed artificial intelligence and 
the computer revolution. Even if computers were originally de-
scribed in mathematical terms, at heart they involve the effec-
tive or mechanical manipulation of meaningful symbols of un-
restricted variety—symbols representing entities, problems, 
and phenomena in arbitrarily diverse domains.7 

It follows that computer science—the study of computing—
should encompass three things: (i) a study of mechanism, at 
least at the level of abstraction at which it is relevant to the fun-
damental meaning/mechanism dialectic; (ii) a study of mean-
ing, or anyway an account of the sorts of meaning that are rele-
vant to this dialectical interplay, perhaps including a story 
about what sorts of configurations of effective ingredients can 
serve as effective mechanical vehicles for such meanings; and 
(iii) a study of how meaning and mechanism interact, both in 
practice and in theory—i.e., a study of how mechanisms can be 
structured and led to behave in such a way as to support useful 

 
 
5Newell () 
6Newell (), p. Emphasis in the original. All remarks in this para-
graph suggesting that computers process numbers can only be interpreted 
as meaning that they processes numerals representing numbers. 
7While I applaud Newell and Simon’s broadening of the conception of 
computing, in §. I take exception to their characterization of meaning 
and semantics as referring to internal states of affairs. 
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meaningful interpretation. 
Needless to say, all three parts of the story should apply to 

those meaningful mechanisms we call computers—or to the 
meaningful behaviour of computational processes, to charac-
terize the situation more actively, or however the point should 
be formulated so as best to reveal the interplay of the two foun-
dational notions. 

This immediately raises a question.  
If, on the one hand, the devices we know as computers are 

a proper subtype of a broader general category of meaningful 
mechanisms, a category that presumably includes at least peo-
ple and animals8—or if computational activity is a proper sub-
type of active meaningful mechanical behaviour more generally, 
or, again, however one wants to put the point—then a theory 
of computing should say what that distinguished computa-
tional subtype is, and account for how it is to be distinguished 
from the general class. If computation is special, that is, then 
computer science should say how it is special, and explain the 
consequences of that “specialness.” If, on the other hand, com-
puters are not a distinguished subtype—if computers are not 
special, and the term ‘computation’ has simply come to be a 
name for what all meaningful mechanisms do, or ‘computer’ to 
be a name for all active meaningful mechanisms (or at least ac-
tive meaningful mechanisms that people build)—then com-
puter science should make that fact plain, and present itself as 
a theory of the structure, operations, and behaviours of mean-
ingful mechanisms in general. 

Unless computation can be shown to be special, that is, the 
account should be a theory of the structure, operations, and 

 
 
8The point is not to deny, especially at the outset, what I call the “compu-
tational claim on mind”: the thesis that people are computational. Rather, 
it is to recognize that that claim is viewed as a substantive thesis. The idea 
that we are meaningful mechanisms is trivial—obvious to anyone who is 
not a substance dualist. Humans manifestly mean; and by ‘mechanism’ I 
do not denote anything more specific than being physically embodied. 
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behaviours of all meaningful mechanisms qua meaningful mech-
anisms—i.e., a theory of meaningful mechanisms simpliciter. 

What might such an account look like? Regularities underlying 
mechanism have to do with causal profiles and effective prop-
erties—in the computational case, with concrete configura-
tions of computational devices and the operations they engen-
der or undergo. Focusing on mechanisms and effective proper-
ties fits seamlessly into our contemporary intellectual 
worldview—our concern with causes and effects, physical bod-
ies, with “how things work,” as explored since the th century 
under the head of the age of mechanism and the development 
of the natural sciences. 

Because it not only highlights the interpretation of physical 
configurations but also typically ignores differences between 
distinct physical configurations that support the same interpre-
tation—i.e., because interpretively equivalent configurations 
can typically be constructed or assembled out of different ma-
terials—computer science’s conception of “how things work” is 
typically more abstract (more “coarse-grained”) than that pur-
sued in the physical sciences. In most cases, computational 
analyses and individuation criteria abstract away from specific 
considerations of material, energy, heat, etc., often classifying 
the states and configurations of interest mathematically. Yet no 
matter how abstractly formulated, it is physical causation that 
ultimately grounds the difference between what can and what 
cannot be done, even if it is mathematically modeled.  

Even if computer science examines effective properties 
through a mathematical lens, that is—even if it theorizes them 
as if they were themselves abstract—it is clear on analysis, and 
is foundational in the understanding of programmers, that the 
constraints on what can be done stem from the capacities and 
limitations of mechanisms qua concrete mechanical devices. It 
is this effective focus that gives computer science its claim on 
being a science. 

This is why the fundamental theory underlying computer 
science is called a theory of effective computability. The 
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limitations theorized in the computability and complexity re-
sults that are central to our current theoretical conception of 
computer science derive from what are ultimately mechanical 
properties of computational substrates.9 If one changes the 
physics, or the encoding schemes by which the numbers and 
functions are represented in the mechanisms, or otherwise 
messes with the meaning-mechanism relation, it is straightfor-
ward to alter the mathematically-formulated computability 
limits—claims about non-computability, about complexity 
classes of mathematical relations, etc. (If all constraints on the 
representation relation between concrete mechanical configu-
rations and abstract numbers are relaxed, for example, it be-
comes trivial to solve the halting problem.10) This manifest de-
pendence on substrate and encoding makes it evident that the 
limits are not fundamental to the abstract mathematical realm, 
but to how they are represented in concrete mechanical form. 

As well as giving it scientific credibility, this mechanical fo-
cus has allowed computer science to restrict its attention to 
proximal properties of computational processes. By concentrat-
ing of what is effective, that is, computer science has been able 
to focus solely on matters “within the machine” or immediately 
impinging on its boundaries—i.e., to theorize local properties 
of effective structures and operations upon them. Metaphysi-
cally, this proximal focus stems from the spatiotemporal local-
ity restrictions of causal effectiveness. 

I will argue that this restriction of theoretical focus to local 
mechanical issues is ultimately untenable (insufficient for ex-
plaining computing as computing), but it has had obvious prac-
tical benefit. While, as we will see, mechanism alone cannot 

 
 
9This can be shown even if the theory of computability is described en-
tirely in mathematical terms. The functions classically taken as primitive 
(increment, equality, etc.) all have straightforward mechanical implemen-
tations, as Turing emphasized. Other functions could lead to other com-
putability and complexity results. 
10See “Solving the Halting Problem, and Other Skullduggery in the 
Foundations of Computing” (Smith, 2014). 
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explain what computation is, understanding the structure of 
the mechanical substrate is critical for knowing how to con-
struct what we think of as computers and implement those pro-
cesses we deem computational. While it leaves many theoreti-
cal questions unanswered, a focus on effective mechanism is a 
useful foil for those who want to build. It also explains why 
many computer science departments are in engineering 
schools. 

The regularities underlying meaning are very different in kind. 
At least in general, meaning involves deferential relations to 
that which is distal—relations to situations and states of affairs 
at least potentially lying beyond the reach of the causal and the 
effective. Relations to abstract numbers, satellite trajectories, 
the organization of far-flung corporations, hypothetical situa-
tions, future and past events, and the like, are not causal, one 
might say, but I believe it is better and more precise to use the 
computational term and say they are not effective. Semantic re-
lations to distal subject matters, including reference relations, 
cannot be blocked by putting up a physical barrier. If I were to 
launch a computational process modeling proton decay, simu-
lating traffic problems in Bangalore, or calculating the first mil-
lion digits of π, the process would still do these things even if it 
were placed in a lead vault, or run on Alpha Centauri. 

Needless to say, it is metaphysically fortunate that the inac-
cessibility and even non-existence of a situation that a compu-
tation is about does not entail the ineffectiveness or non-exist-
ence of the computation itself. The non-effectiveness of refer-
ence in the philosophical sense (the sense in which the word 
‘Matterhorn’ refers to a pyramidal mountain in the Alps) is ut-
terly essential to anything we can imagine as computation. It is 
so fundamental to our understanding of both the human and 
the computational case—to the very notion of intentionality, to 
all intentional phenomena, including understanding itself, and 
to the fundamental character of “aboutness”—that it is impos-
sible to imagine its not being true. If reference were restricted 
to being an effective relation, the world would disappear, 
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reasoning become useless, hypotheticals impossible, counter-
factual reasoning inconceivable, and fantasy lives metaphysi-
cally banned. 

Some will argue that meaning is at least partially consti-
tuted by effective relationships and causal behaviours in which 
the effectively implemented meaningful structures play a causal 
role. This intuition permeates what is called embodied cogni-
tive science, it is a theme in various pragmatist ideas about hu-
man thought and language (such as that we “do things with 
words”), and it is hugely popular throughout contemporary hu-
manities and social sciences—e.g., in so-called “new material-
ism,” in theories of radical embodiment, and the like. The intu-
ition also meshes with widespread contemporary endorsement 
of naturalistic theorizing. In all these theoretical efforts it has 
become de rigueur for theorists to emphasize the critical rele-
vance of effective material properties, physical bodies, causal in-
teractions, and constitutive materialities of intentional phe-
nomena. In parallel—though for at least superficially different 
reasons—focusing on the causal behaviour and the effective 
character of meaningful structures will resonate with many 
computer scientists. 

Yet no matter how constructive or embodied one’s view, no 
matter how pragmatist one’s epistemological predilections, no 
matter how much such “embodiment” intuitions hold true, no 
matter how materialist or concrete one’s metaphysical sensibil-
ities, many of intentionality’s most fundamental properties, in-
cluding not only truth but reference as well, can never be en-
tirely constituted locally or effectively.11 On the contrary, they 
paradigmatically reach beyond the limits of the effective. This 
is an ultimate and irrevocable fact—even if it does not occupy a 
prominent position at the forefront of present-day theoretical 

 
 
11Even in mathematics, Gödel’s second incompleteness result, the failure 
of Hilbert’s formalism project, and the concomitant recognition that “se-
mantics cannot ultimately be reduced to syntax,” reflects this intrinsic de-
pendence of mathematical expression on facts beyond the reach of the ef-
fective properties of their expression. See §.. 
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imagination. 
No accumulation of embodied, causal, physicalist, or mate-

rialist intuitions, that is, can undermine the fact that meaning 
and intentionality are constitutively oriented (directed) beyond 
the effective—beyond what is physically or immediately proxi-
mate. We would not even know about the world, if that were 
not true. Not only would we not be able to get home, once 
home disappeared over the horizon; we would not be able to 
think about home—would not be able to think about or have a 
notion of home, or indeed think about anything else—if the 
reach of meaning and aboutness was foreshortened to the 
boundaries of effect. In fact I would even go so far as to say that 
“reaching beyond the effective horizon” is intentionality’s point. 

 2 Deference 
Why call reference relations deferential? Because the norms that 
govern the effective states and mechanical operations of the de-
vices we build (norms of correctness, e.g.) are determined at 
least in part and often wholly by facts about and relations to 
and among those distal situations—by facts about the situa-
tions towards which they are intentionally directed. If I write 
an algorithm to enumerate prime numbers—if, that is, I devise 
a strategy to cause a machine to produce a list of decimal nu-
merals representing prime numbers—and my program prints 
out «»,12 then it has made a mistake. That it is a mistake, 
however, cannot be determined by close inspection of the se-
quential characters «» and «». That «» denotes thirty-
eight, for starters, depends on our assumption that we are using 
a base-ten representation scheme; if we were using base-eleven, 
«» would denote forty-one, which is prime. Plus, even assum-
ing the standard base-ten representation, the fact that the num-
ber thirty-eight is not prime, and therefore that the computer 

 
 
12Because both single and double quotation marks are elements of many 
computer languages, including the Lisp dialects to be discussed in this 
book, I will use guillemots (“French quotes”), as here, to demarcate, and 
thereby quote, computational expressions referred to within English text. 
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has erred, is a fact about the distal, abstract number that the 
two-character numeral «» represents, or is anyway taken to 
represent. And since the stated goal was to “enumerate prime 
numbers,” it is an abstract fact about that non-proximal number 
thirty-eight that matters—the abstract, non-effective fact 
about primality that establishes the norm that my algorithm is 
mandated to honour. 

Deference is a fundamental norm underlying all thinking—
including all of science. If a theory parts company with the facts, 
then the theory is wrong, and needs to be rejected or repaired. 
More generally, right and wrong, true and false, correct and incor-
rect, and the like all have to do with whether effective states and 
operations correspond appropriately to that which they mean 
or that to which they refer—i.e., with that towards which they 
are intentionally directed. As I say, this is not to reject pragma-
tism, or the Wittgensteinian maxim that meaning is use, or any 
other view that takes meaning to include material activity, 
and/or to depend on facts about situations and states of affairs 
in addition to those towards which they are primarily directed. 
Those ancillary situations and activities, too, qua being inten-
tional, typically reach beyond the local and proximal “bumping 
and shoving” of pure mechanism. (Wittgenstein was no solip-
sist, physical reductionist, or any other form of psychological 
internalist.13) 

The moral of “deference to that which is distal” holds just 
as true in computational contexts as in any other. 

I call these relations normative because, in the context of 
use, the roles played by the relata are of unequal value or 
worth.14 True, right, and correct are good properties to have; we 

 
 
13Wittgenstein would likely also be appalled at the idea that the meaning 
of words could be modelled, as in many contemporary AI systems, by the 
frequencies and associations with other words. The language game of 
brick-layers involves bricks, mortar, hods, and trowels, not merely the 
words ‘brick,’ ‘mortar,’ ‘hod,’ and ‘trowel.’ 
14‘Value’ and ‘worth’ are normative concepts; I am not attempting to de-
fine normativity in non-normative terms, which is likely impossible. 
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strive for them, and work to build computers that achieve them. 
False, wrong, and incorrect are bad; we strive to avoid them, and 
design our machines to avoid them as well. Again, this is not 
because there is something intrinsically right or wrong, per se, 
with the mechanical configuration of the machines (or our 
brains) that end up in such states. Rather, the entities and states 
of affairs towards which those states are directed “hold the 
cards” with respect to the norms that govern our machines and 
our brains. If they are not as they are represented as being, then 
the machine or brain states in question are censurable. Even in 
that narrow class of cases when it might seem as if all applicable 
norms could be locally and effectively defined—"arrange a 
group of unary numerals in order of increasing length,” for ex-
ample—the fact that it is someone’s goal for the numerals to be 
in that order will in general rest on distal (non-local) facts and 
considerations. It is not an intrinsic, machine-internal fact 
about the list of unary numerals, even after they are arranged, 
that being so arranged was their or anyone else’s goal, or that, 
per se, being so ordered is good. The goal might have been to 
arrange them in order of decreasing length, in which case the 
machine would again have failed, in spite of being in a mechan-
ically indistinguishable state. 

Because they are constituted by distal relations, the non-ef-
fective aspects of meaning cannot play an immediate causal role 
in how computations proceed—cannot exert a direct influence 
within the local space-time envelope of the mechanical goings-
on.15 This is the deep metaphysical truth underlying the wide-
spread idea that logical inference must be “formal,” on at least 
one reading of that problematic term. Yet, to state what is per-
haps the most fundamental tenet on which this book is based: 

 
 
Certainly I disagree with attempts to characterize it in terms of evolution-
ary fitness and adaptability, as has become common in theoretical biology. 
If anything, I believe it requires adversion to objectivity and a conception 
of “world as world,” as indicated in The Promise of Artificial Intelligence. 
15As argued in §., formal or syntactic properties are constrained to be 
effective.  
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Even though it cannot make an immediate effective difference, 
meaning is nevertheless essential to computing as computing. 

With nothing representing anything—nothing norma-
tively governing its operations, nothing determining whether or 
not what it is doing makes sense—our devices would be as far 
from computing as random splatterings of ink on paper are far 
from language, are far from meaning anything. Moreover, as we 
have already seen, meaning even establishes “what has hap-
pened” and “what has been computed,” when those “what” 
phrases are understood, as a philosopher would put it, “under 
interpretation”16—in terms of what it is that the concretely ma-
nipulated structures mean or refer to or represent. As I keep 
saying, to claim that a computational procedure has added num-
bers, figured something out, made a decision, calculated an optimal 
route, obeyed an instruction, determined a likely outcome, etc., is to 
describe that computation through such an intentional lens. 

Issues of meaning, in sum, have to do with the relations of effec-
tive arrangements of marks and mechanical parts to distal sub-
ject matters or task domains—to what they are about, to why 
they matter, to what they signify. Issues of mechanism, in con-
trast, underlie what is immediately and proximally accessible, 
what can be concretely done, how it needs to be arranged in or-
der to do it, how hard it is to accomplish a given result. Because 
of the locality of physical space-time (at least at any scale rele-
vant to contemporary computing) issues of mechanism tend to 
reach “inwards,” or at least “nearby,” to the nature of and rela-
tions among the effective ingredients of the computational pro-
cess itself, and to surface perturbations or causal couplings of 
the system to its immediately liminal environment. Issues of 
meaning, in contrast, in general17 reach “outwards,” into the 

 
 
16‘Under interpretation’ again in the philosophical and traditional seman-
tic sense of interpretation. 
17Many of the reference relations in reflective systems do not reach out-
wards (even if the norms governing them do)—one reason reflection is an 
ideal site for studying computation as computation within what would 
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world or context in which the computation is relevant, unlim-
ited by that which is immediately causally accessible. 

Mechanism stays local, to put this cryptically, determining 
what can be done. Meaning reaches widely, governing why we 
care. It is only because of their interplay that computation is 
useful, powerful, and important—only because of their inter-
play that computation is computing. 

 3 Computer Science 
To date, the focus of theoretical computer science has been 
skewed. Computational theory—computer science as explic-
itly formulated—has focused almost exclusively on the me-
chanical side of the dialectic, on what is local, on what is effec-
tive, on what configurations it is possible to construct a device 
to causally manifest. Responsibility for meaning has been rele-
gated to the sidelines, shouldered by the implicit practices and 
presuppositions of theoreticians and programmers—has been 
assumed, that is, and presumed to be unproblematic. Mecha-
nism has been on center stage; meaning banished to the wings. 

That is not to say or imply that meaning is either invisible 
or unimportant. It is utterly standard to speak of computations 
as adding numbers, as making decisions, as calculating routes, 
etc.—phrasings that betray the ever-presence of meaningful in-
terpretation. But as regards direct theoretical attention, mean-
ing relations play only a supportive role in theoretical analy-
sis—crucial, but outside the spotlight. 

The depth of this asymmetry, and the extent of the confu-
sions and infelicities to which it has led, have been difficult to 
appreciate, because of three intricately correlated assumptions 
and practices. Some readers will immediately rebel against the 
claim, arguing against the singular importance of the mechani-
cal by citing, as evidence contrary to what I  am arguing here, 
object-oriented languages, modeling languages, purely mathe-
matical formulations of computability and complexity theory, 

 
 
appear to be a traditional computational context. 
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and a variety of other features of contemporary practice. Rather 
than undermining the point, however, I will argue that these 
considerations merely show how pervasive has been the influ-
ence of these three ultimately distracting assumptions. Disen-
tangling them, documenting the resultant confusions, and 
clearing the way for a more adequate account, are among the 
aims of this book. 

 3a Mathematical Vocabulary 
One source of misunderstanding has already become apparent: 
computer science’s near-ubiquitous use of mathematical vocab-
ulary. It is not unusual for computing, computability, and com-
plexity to be described in wholly mathematical terms, both in 
introductory treatments and in advanced treatises, with no ex-
plicit reference to mechanisms at all, or to encodings, represen-
tation, or anything else concrete.18 

Like so many other things, this mathematical focus was  ev-
ident in Turing’s original / paper. Ostensibly, the paper’s 
subject matter was the computation of numbers; specific 

 
 
18An example is the definition of the term “effective computability,” com-
monly presented in university-level Theory of Computation courses. 

Let N = {0,1,…},	Nk	=	N ×	…		×	N (with k factors) 
A partial function 
      f : Nk → N 
is effectively computable if there is an effective procedure or al-
gorithm that correctly calculates f. An effective procedure is 
one that meets the following specifications. Firstly, the proce-
dure must consist of a finite set of “simple” instructions and 
there must be no ambiguity concerning the order in which the 
instructions are to be carried out. Secondly, if the procedure is 
given a k-tuple x in the domain of f, then after a finite number 
of steps, the calculation must terminate and output f(x); if the 
procedure is given a k-tuple not in the domain of f it must not 
output a value. See also Church-Turing thesis. (Daintith and 
Wright, 2008). 

Note that this explanation rests on the undefined terms “simple” and “car-
ried out”. 
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machines were modeled with mathematical (abstract) quintu-
ples; and so on. The property of being ‘computable’ is officially 
predicated only of abstract entities: numbers in the first in-
stance, and subsequently functions. All the considerations 
about numbers adduced throughout the paper, however, and 
about the functions defined over them, have to do not with 
numbers themselves, but with numerals—i.e., with their con-
crete representations: with what can be done locally, with what 
is and what is not directly comparable in a sensory and/or ef-
fective way, with what is finite and what can be done by finite 
means. Turing is explicit about this: “According to my defini-
tion, a number is computable if its decimal [i.e., if a standard-
form numeral representing it] can be written down by a ma-
chine.”19 Think too of his invocation of intuitions about the re-
sources available to a “human computer”: things visible, things 
close at hand, things that can be stored in a finite and limited 
memory, and the like. Consider as well the strategy invoked to 
define the universal machine (and language “interpretation,” in 
the programmers’ sense, at the same time): of writing the quad-
ruples down on the machine tape, which of course means writing 
down representations of those quadruples. Yet although the 
mechanical properties of numerals are doing all the work, it is 
numbers that predominate in the attendant imaginary. 

 3b Classification 
A second complicating issue is also evident in Turing’s paper, 
keeping the asymmetry of current computational theory at bay. 
I said above that we use the labels ‘’ and ‘’ to classify compu-
tational states, using a phrasing that suggests that what we use 
as classificatory devices are numerals. As far as it goes, that is 
correct; think of internet addresses such as «...»—
labels that do not denote numbers at all, and that play their in-
dividuating role as concrete structures. 

We also use the numbers themselves, however (that is, the 

 
 
19Turing (). 
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numbers that the numerals denote), including the numbers 
zero and one,20 to classify computational states—or, as might be 
said, to model them. Classification in this context, to simplify 
egregiously, is an epistemic practice we theoreticians engage 
in—using objects useful for our theoretical understanding and 
referents of terms in our linguistically framed theories to model 
or correspond to the entities in the domain that the theory is 
ultimately about, even though those objects are not themselves 
what we are talking about. Thus we denote the length of a 
board by saying that it is “ feet ⅜ inches long,” where ‘feet’ 
and ‘inch’ are classificatory devices we use to characterize 
lengths; the length in question would be the same identical 
length, within the applicable margin of error, if we denoted it 
by describing its extent as  meter, . cm. “The length 
doesn’t know from feet and inches,”  one might say; the length 
is what it is, independent of such classifying externalities. 

This implies that there are two ways in which concrete 
computational states are related to abstract numbers: one in 
which states represent numbers, as for example when computers 
are taken to add or perform calculations; a second in which the 
representation relation runs the other way, with numbers being 
used to represent states, as for example in the suggestion of us-
ing  as a mask to block or reveal the lowest eight bits of a 
memory location. 

Among other differences, the two cases involve distinct di-
rections of deference. If addition is at issue, then we hold the 
bit patterns accountable to representing the sum. If we add 
three and five, using the numerals «» and «»—if, that is, we 
issue (what we interpret as) an instruction leading the machine 
to do what we call “adding” to the binary representations of the 
numbers three and five, and assume that the machine should as 
a result produce a representation of the sum of the two 

 
 
20To minimize confusion, I will write out the names of abstract numbers 
in English, in contexts when the use of decimal numerals (‘’, ‘’, etc.) 
might confuse matters as to whether numbers or numerals are at issue. 
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numbers that those two numerals represent—and the com-
puter prints out «» (i.e., the numeral representing the number 
seven), then the machine has erred, or the program has a bug. 
The computer or program is normatively enjoined to return 
«» (the numeral representing the number eight). If on the 
other hand we recommend or instruct the computer to use the 
numeral representing the number eight to mask the lowest 
three bits of a binary storage location, then it is we who have 
erred; the operative norms in this case are on the binary bit pat-
tern, not on the abstract number that we use to classify that 
pattern. 

Though fallible, understanding the direction of deference 
can be a useful guide to identify the direction of representation. 
In some cases both directions of representation are combined, 
complicating discernment of the underlying semantic situation. 
One hears talk, for example, about “adding two eight-bit num-
bers”—a phrase which on the surface is manifestly oxymoronic. 
Numbers do not have numbers of bits; “eight-bit” is a property 
of representations. Addition, however, is not au fond an opera-
tion on representations; strictly speaking, it is defined only over 
numbers. The idea of an “eight-bit number” thus relies on a de-
rivative extension of bits to numbers and of addition to numer-
als, via an assumed numeral-number representation relation.21 

 3c Redefinition 
More serious than the ubiquitous use of mathematical language 
and the collapsing of numeral-number relations is a third com-
plication standing in the way of our proper understanding of 
computing. In an unremarked development that disturbs the 
foundations of science, the vocabulary and terms of art that 
have historically been used to talk about meaning and inten-
tionality have been systematically redefined, in computer sci-
ence, to refer to effective properties of mechanisms—not to the 

 
 
21Note that in such constructions (such as “eight-bit number”) the classi-
fier is a number of bits, not a numeral of bits—which would make no sense. 
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distal situations, or to relations to those distal situations, to 
which they would classically have been taken to refer. That is, 
such ur-semantic notions as reference, value, semantics, interpre-
tation, etc.—even meaning itself—have been reconstrued in 
computational discourse to refer (in its classical sense) to prop-
erties and relations within the proximal, effective realm of the 
computation qua mechanism. This terminological transfor-
mation, symptomatic of a historic mechanization of the topics 
of intellectual discourse more widely, has complicated the un-
derstanding of the discourse of computer science by surround-
ing disciplines. Suppose a computer scientist writes or talks 
about “the semantics of program α,” “the meaning of computa-
tional configuration β,” or “the referent of program identifier 
γ.” It would be unexceptional for an outsider to misunderstand 
such phrases as being about deferential, non-effective relations 
to distal or abstract task domains—numbers, functions, peo-
ple, sets, employees, satellite trajectories, organizations, future 
events, etc. In contemporary computational discursive con-
texts, however, the meanings of all these terms have been folded 
back inside the machine—used to refer to the effective conse-
quences of running the program or operating with that struc-
ture (even if the structure is mathematically modeled). 

It is as if computer science has wrapped all its devices in in-
wards-facing mirrors, which reflect all traditional semantical 
reference back inside the machine. In a program to determine 
raises, for example, the official “semantic value” of an identifier 
like «EMPLOYEE-» would be taken, in computer science, to 
be a (potentially abstract model of a) memory record, not a living 
and breathing employee. Similarly, if «$USER» were a computa-
tional identifier for the currently logged-in user, its reference 
would likely be a concrete login identifier, not the flesh-and-
blood person to whom, as outsiders, we would take that iden-
tifier to refer. What is considered to be the denotational seman-
tics—not just the “operational consequences” or “behavioural 
import”—of an instruction to compare the identities of the uni-
versity having the most students with that having the highest-
paid basketball coach will be to return “true” (i.e., the 
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computational identifier «TRUE») if two internal identifiers are 
the same, not if the two institutions are in fact the same. 

Suppose Michigan State and Montana State were acci-
dentally assigned the same label «MSU», leading a computer to 
return «TRUE» to a question about whether two students attend 
the same university,22 when in fact the correct response would 
have been «FALSE». The point is not that this might not happen; 
such mistakes are legion (and unavoidable). What is problem-
atic is that the «TRUE» response would be deemed correct, ac-
cording to computer science’s reigning analyses of what is called 
the semantics of programming languages (not just its account of 
their operation). What computer science takes to be the stand-
ard semantical account, that is, “reaches” only as far as what is 
internal to the machine; the question of what universities those 
identifiers actually name is not only considered to be extra-the-
oretical, but, surprisingly, to be beyond the reach of semantical 
analysis. 

It is left to the programmers, or to the users of these sys-
tems, or to theorists’ tacit understanding, to realize that «EM-

PLOYEE-» also signifies or denotes or in some other way rep-
resents a person, that «INSTITUTION-» also signifies or rep-
resents a university, and that the instruction will return «FALSE» 
if the identifiers «INSTITUTION-» and «INSTITUTION-» 
are distinct, without reference to the people or institutions in-
volved. Or, to invert the example, if one university were to end 
up identified by two distinct labels, it would again be left to pro-
grammers, users, etc., to understand that the system would re-
turn «FALSE», and would be deemed “semantically correct” in 
doing so, even if the correct answer would have been «TRUE». 
By the same token, it is left to designers, programmers, and us-
ers to understand whether “adding” «,» to a financial 

 
 
22We take the question to be about students. The idea that the program 
would take it to be a question at all is, of course, also a projection that we 
make on it. Even assuming that interpretation, the program would treat 
it as an issue of the respective identities of the labels associated with the 
universities that are tied to the labels associated with the students. 
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record merely represents an update to a computational record, 
or signals that a live human being has being given a raise. And 
of course the fact that «TRUE» and «FALSE» signify truth and fal-
sity is similarly atheoretical (to say nothing of being non-effec-
tive), on current semantical accounts, relegated to programmer 
or theorist understanding. 

How could a machine do something different? Or perhaps 
more pointedly: how could computer science do something dif-
ferent? Computer science could take a lead from logic, and, so 
long as the program is operating as expected, warrant the com-
putational behaviour not to be correct, but to be sound—to fol-
low from the assumptions, including the semantic assumptions, 
on which it is based. It could provide facilities for the definition 
of constants («CICERO», «DUKE-UNIVERSITY», «USER-», etc.) 
which it recognized as having referents in the real-world task 
domain, without assuming that the identity of the symbol was 
necessarily a reliable proxy for the identity of that to which the 
symbol referred. Or if the programmer or user were explicitly 
prepared to warrant that symbol identity could be taken to 
match referent identity—i.e., could affirm a one-to-one corre-
spondence between computational identifiers and real-world 
entities they denote (called a “closed world” assumption in 
AI)—that fact could be explicitly stated, and pointed to in 
demonstrations of how programs meet their semantic goals. 

It may be pointed out that even if these issues about the se-
mantic reach of computational structures into task domains re-
main theoretically untreated, computer science has neverthe-
less triumphed in its first fifty years. It may be argued, that is, 
that even if it is left to programmers to shoulder tacit under-
standing of these issues, they are clearly capable of doing so ad-
equately. But masons extoled the building of St Mark's in Ven-
ice, too, hundreds of years before the development of Newto-
nian mechanics. The claim of an eleventh-century engineer that 
they had no need for a theory of forces, torques, mechanical ad-
vantage, etc., would ring hollow today. It is also widely recog-
nized that programming is becoming increasingly bewildering; 
any help we can provide programmers to steward these issues 



24 Computational Reflections 

 

will be beneficial. And think of such famous bugs as the one 
that bedeviled the Hubble Telescope when it was first launched 
because two numerical values were referenced to schemes for-
mulated with different units. 

In addition, we are not going to be able to rely on the tacit 
understanding of human programmers and human stewards of 
programs’ semantic assumptions in the future. As software de-
velopment is increasingly delegated to automated algorithmic 
development—including “software .,” as automation 
schemes based on machine learning are being called—we may 
increasingly need to depend on explicit representations of the 
computation-to-world correspondences. 

 4 Project 
My aim in this book is to disentangle the complexities de-
scribed above, in search of a clearer theoretical framing—a task 
made more difficult than it might otherwise have been because 
of the reconfigured vocabulary issues discussed in §c. 

Because computer science has redefined the terms that phi-
losophers, linguists, and cognitive scientists have used for hun-
dreds of years to talk about the deferential, distal, non-effective 
aspects of intentional meaning, it is difficult to write about the 
issues in a way that is comprehensible to both audiences. It is 
especially difficult to explain classical conceptions of semantics, 
including issues about distal reference, non-effective relations, 
and governing norms to computer scientists, since all the terms 
that were classically used to name such phenomena (‘reference’, 
‘meaning,’ ‘truth,’ etc.) have been “used up” in the new compu-
tational jargon for internal phenomena, and as a result the is-
sues classically considered to be semantic have disappeared. 

Inevitably, it follows that all statements made here are vul-
nerable to being differentially interpreted by diverse audi-
ences—even those to which the book is primarily addressed. 
For starters, the notion of semantics is likely to be given an ex-
ternally-directed, non-effective, non-temporal reading by phi-
losophers, and a computationally internal, effective, processual 
reading by computationalists, with cognitive scientists and 
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linguists potentially spread out across a variety of intermediate 
views. I will do my best to avoid confusions stemming from 
such terminological misalignment, and within practicable lim-
its will erect signposts to signal what is going on, but it is an 
issue with which the reader will inevitably have to contend. 

Partly to mitigate such difficulties, the investigation will 
start internally, with problems recognizable as problems within 
computer science, and slowly build towards more externally 
reaching and widely encompassing frameworks. But through-
out, the bottom line is straightforward. Although computation 
involves an interplay of meaning and mechanism, contempo-
rary discourse about computation, as embodied in present-day 
computer science, has projected the realm of meaning onto the 
effective wall of the cave. All that can be seen on that wall is a 
shadow of the intentional richness that is in fact constitutive of 
computing as computing. We need a thorough understanding 
of the whole phenomenon, not merely of its projection onto a 
mechanical wall, if we are to understand computation and 
move computer science forward. 

Meaning and mechanism are the primary characters in this 
drama. Their interplay is the primary subject matter. The pow-
ers and limitations of the effective are a major theme. The ade-
quacy of science for explaining intentional phenomena, includ-
ing computing, are the stakes. 

What we need is an investigative strategy. 

B — Strategy 

The book is written in the form of a detective story. It starts by 
examining the evidence alluded to at the outset: telling issues in 
our default conception of computing that came to the fore in 
the s, during a series of experiments exploring computa-
tional reflection. The discussion will include not only the de-
sign of Lisp, the world’s first “reflective” programming lan-
guage, but also the subsequent failure to develop Lisp, Lisp’s 
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envisaged successor. 

 5 Reflection 
A reflective system is one that is able to represent, reason about, 
and act appropriately in regard to its own operations, struc-
tures, and behaviour. Reflection therefore intrinsically involves 
both meaning and mechanism. “Represent and reason about” 
are intentional capacities; “act appropriately in regard to” in-
volves effective operation. While all computational systems ex-
emplify both dimensions, reflective systems are distinctive in 
the fact that the dialectic applies twice. Not only must a reflec-
tive system itself be meaningful and mechanically effective; it 
must also represent itself as being meaningful and mechanically 
effective.23 Meaning and mechanism are constitutive parts of 
both the system as signifying and the system as signified. 

More specifically, a reflective system R must both represent 
(describe, reason about) itself, and be able to act effectively and 
appropriately in regard to itself, in terms of a representational 
schema or model MR—something I will call the system’s re-

flective model. R must both instantiate MR and represent itself 
as instantiating MR. That self-referential aspect of reflection, 
coupled with the dual-aspect nature of computation, generate 
a four-part criterion on reflective systems—something which 
as a whole I call the reflective integrity criterion: a reflective 
computational system must be able to 
. Represent its ability to represent; 
. Represent its ability to act; 
. Act on its ability to represent; and 

 
 
23Because the notion of reflection introduced with the publication of 
Lisp (Smith, ) was not understood (as documented here in §.), 
the term ‘reflection’ in modern programming languages has lost its inten-
tional character—i.e., its involvement of issues of meaning and reference, 
as discussed here. As I argue throughout the book, however, I believe that 
this practice is a follow-on consequence of misunderstanding, and that 
considerations of meaning nevertheless play an implicit if unacknowl-
edged role in programmers’ understanding of the notion. 
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. Act on its ability to act. 

Moreover, it must do all of these things “correctly.”24 
It is these interlocked strictures that make reflection an 

ideal site to analyze both dimensions of the dialectical mean-
ing/mechanism conception of computing. It is because both as-
pects play such central roles that the book starts out looking at 
reflection. 

I attempted to meet the reflective integrity criterion in stages. 
For expository simplicity, I used ‘Lisp’ as a blanket label for all 
prior Lisps—from McCarthy’s Lisp .  through Sussman and 
Steele’s Scheme, a higher-order version of Lisp that attained 
prominence in the s and s.25 The next step, called 
Lisp, which met criteria –, was designed to manifest the two 
dimensions of computing explicitly—both meaning and mech-
anism. Though not itself reflective, the fact that Lisp was 
based on such a model made it “reflection-ready.” The design 
of Lisp allowed the subsequent definition of Lisp to be rela-
tively straightforward. In fact Lisp is conceptually simpler 
than Lisp (though trickier to implement). 

Although Lisp in particular, and the idea of reflection in 
general, was acknowledged in the literature, I believe it is fair to 
say that Lisp was never fully understood. It was not Lisp’s 
reflective character that was opaque, however—at least not in 
the first instance. Rather, it was the underlying two-factor 
“meaning/mechanism” model of computation, exemplified in 
the Lisp dialect, that proved theoretically inscrutable. 

This book is not a study of computational reflection. 

 
 
24I.e., it must represent its representational capacities in a way that satis-
fies the conditions that it represents those capacities as meeting. If it rep-
resents its own representational capacities as context-independent and 
static, then it must represent itself as such, and so on. 
25In retrospect I think I should have used the label ‘Lisp’ for Scheme, to 
make the higher-order version a distinct second step in the sequence. 
What ended up being called Lisp, Lisp, and Lisp would then have 
been labeled Lisp, Lisp, and Lisp. 
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Rather, reflection serves merely as a crucible in which to subject 
our underlying models of computation and representation to 
merciless scrutiny, in order to reveal lurking inconsistencies and 
conceptual ambiguities. The book is an (English-language, dis-
cursive) reflection on the fundamental nature of computation, 
and of the interplay of meaning and mechanism. It explores 
these issues first in the context of computational reflection, 
then more generally across computing and computer science, 
and ultimately in the full range of intentional systems. 

 6 Difficulties 
What were the difficulties? What troubles have lurked under 
the hood of computation, only to be exposed by reflection and 
the design of Lisp? And why was the design of Lisp never 
completed, intended as the next step in the series? 

Evidence of trouble has already surfaced, discernable in the 
history of computer science’s technical vocabulary. The most 
basic terms of the field—symbol, data, meaning, value, interpre-
tation, information, etc.—were inherited from th century dis-
courses about logic and reasoning. These terms are not like 
mass, force, energy, charge, momentum, etc.—properties mani-
festly applicable to moving bodies, physical forces, processes, 
energetic effects, and such. That is: the origins of computer sci-
ence’s most fundamental terms did not historically have to do 
with mechanical concerns. Rather than stemming from the 
“empiricist” side of the Cartesian divide, it might be said, the 
terms derive from the “rationalist” side, having to do with the 
sorts of intentional entities studied in logic: expressions and 
processes that are about things—entities “intentionally di-
rected” towards entities and phenomena (objects, processes, 
states of affairs, etc.) that they are about, entities and phenom-
ena in a subject matter or task domain. 

On the surface, this origin story does not seem problematic. 
We have already seen that computational structures are inten-
tionally directed: they represent numbers, mathematical rela-
tions, elements of task domains (employees, salaries, corpora-
tions, classroom usage, etc.), other items in the computational 
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realm itself (web pages, code bases, memory locations, data base 
entries, etc.), and instructions to perform this or that operation. 
As soon as one presses, though, it becomes clear that complex-
ities lie just below the surface. 

An almost trivially simple example will serve as a “smoking 
gun” in subsequent analysis. In all classic dialects of Lisp, «» is 
taken to be the value both of «(QUOTE )»26, which makes sense, 
since quoting an expression is a classical way to name or repre-
sent it, and also of «» itself. The item «», that is, is said to be 
“self-evaluating.” 

Per se, «»’s being self-evaluating is not unintelligible. Nor 
is it unintelligible that, given «» as input, the Lisp interpreter27 
returns «» as output—i.e., returns as output the very structure 
it is given as input. What else, after all, should it be expected to 
do? What is problematic is calling «» its own value. That 
phrasing suggests that “evaluation” is being used for something 
other than ‘semantic value’ in the traditional intentional or log-
ical sense (of ‘reference’). To speak classically: 
. If the computational entity «» is taken to be a numeral or 

symbol (e.g., on a “formal symbol manipulation” construal 
of computing), then «»’s semantic value is surely the ab-
stract number three—not something that a language pro-
cessor can return, in fact not a “computation-internal” en-
tity at all. 

 
 
26«QUOTE» is typically used in Lisp-like languages to create list data with-
out evaluation. For example, «(+  )» evaluates to «», whereas  
«(QUOTE (+  ))» (or «'(+  )») evaluates to a list with three elements, the 
first of which is the atom «+». The need/use for quotation is due to the 
fact that the same data structure, a list, is used for both code and data. 
There is not a clear correlate in most other programming languages (with 
the notable exception of machine code, which uses byte sequences for 
both code and data). In Python, for example, one can create a string of an 
expression «" + "» – and even use special-purpose methods like «eval» to 
attempt to evaluate it as Python code – but there is always a clear distinc-
tion between code and data structures. See §. for a discussion of why a 
Lisp-like language was chosen for the study of semantics and reflection. 
27More on computer science’s use of the term ‘interpreter’ in §., below. 
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. If, alternatively, «» is taken to be a number, on the view 
that computation is itself abstract, then a number does not 
seem like something that should have a value at all. There 
is no problem, on an abstract conception, with numbers 
being values. But abstract numbers having values seems 
awry. 

In other words, the term ‘value’ is being used for two different 
things: (i) the structure that the language processor returns, 
given an input, and (ii) the entity that the input signifies or des-
ignates. Whereas the former must be computational, the latter 
need not. The entities, and the original structure’s relations to 
them, are different. Clarity demands that they be labeled with 
different terms. 
. Someone might suggest a third possibility: that when we 

describe a computationally-internal element using the 
term ‘«»’28 we are indirectly referring to a computational 
structure—to something concrete, something with effec-
tive properties, something that can play a mechanical 
role—by classifying it in terms of the abstract entity that 
would classically be called its semantic value. This fits 
with the practice of saying that an algorithm has “figured 
out the shortest route to Albuquerque,” or that a decision-
theoretic algorithm has “determined that Alex should be 
given the job.” 

But in terms of the current issue this third suggestion 
is problematic. According to it, “the value of «»” should 
then refer to the value of that which we are classifying with 
its value—which, if not oxymoronic, is either empty or 
ambiguous. Any English term denoting that value would 
also, by stipulation, denote (via indirect classification) the 
computational structure of which it is the value. If we use 
a structure’s value as a way to classify it, that is, we are left 

 
 
28The five-character ‘«»’ expression is a English-language reference to a 
single character token of the Lisp numeral . (See note  on the use of 
guillemots (‘«’ and ‘»’) in §..) 
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with no way to talk about the relation between that struc-
ture and its value. 

If the structure «» has anything to do with the number three, 
in other words, then none of these three options license the 
claim that «» is self-evaluating. 

To complain about «» and «(QUOTE )» both evaluating to 
«» may seem petty and fastidious—nothing over which to 
make heavy weather. So thought I when I built Lisp, designed 
in terms of what seemed an “easy fix” to the problem. But the 
issues ramify. What seemed trivial, on the surface, proved to be 
the tip of a large conceptual iceberg. 

This example simultaneously illustrates two common practices 
in contemporary computational theory: 
. Computational structures are often conflated or identified 

with what they mean, represent, or denote, in virtue of ei-
ther (i) being directly identified with them (treated as the 
same thing), or (ii) having the relation between them left 
implicit, out of theoretical view. 

. When the phrase ‘the semantics of’ (or ‘the semantic value 
of’) is used explicitly, it invariably functions to name a 
computationally internal structure or  behaviour.29 It may 
name a structure directly, in which case that structure will 
be an effective structure of the sort that can be returned as 
the output of a language processing regimen—e.g., as 
when the semantics of «(QUOTE A )» is said to be the atom 
«A». Or it may name the structure indirectly, via an inter-
mediating abstract classifying entity, such as a number, 
function, or truth-value. 

Return to the example of the numeral «». What «» means, 
represents, or denotes is unarguably the number three—the 

 
 
29This is too simple; the ‘semantics’ may include side-effects or other re-
sults of processing, for example. The domain of semantics, however, even 
including such activity, is always computation internal or peripheral—not 
something that reaches out into the distal world. 
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abstract number with which in informal practice (and in pro-
grammers’ minds) it is invariably identified. How can we be 
sure? Because «+» will invariably return «», and the only 
rationale for that behavior is because the number five is the sum 
of the numbers two and three. Informally, one might think “the 
value of «»” or “the value of «»” would be English terms nam-
ing the respective numbers. But that analysis does not with-
stand scrutiny. It is belied by the claim that “«» is self-evaluat-
ing”—a statement that betrays the fact that the abstract num-
ber is being used to classify something concrete. 

Even if such conflationary practices seemed innocent in Tu-
ring’s time, perhaps because of the clear mathematical structure 
of the domains with which he was concerned, they are prob-
lematic for a more general account of computing. In three dis-
tinct ways they effectively “disappear” various properties, phe-
nomena, and vocabulary items that we need to understand if we 
are to plumb the depths of computation: 
. Ontologically, identifying a structure with what it repre-

sents or means, without theorizing the representation or 
meaning relationship explicitly, hides the entire issue of 
meaning and representation from theoretical view—the 
first of the two axes constituting computation as compu-
tation. Differences between representation and repre-
sented are minimized, if noticed at all—including, in par-
ticular cases, issues of cardinality, identity, contextual sen-
sitivity, and the like.30 These intentional complexities are 
critical to the proper functioning of real-world computa-
tional systems. Hiding them from theoretical view pre-
vents our understanding some of the most critical issues 
in contemporary computing (including, for example, 

 
 
30E.g., whether symbol identity can be used as a proxy for identity in the 
task domain, whether the number of entries in a data base can be assumed 
to be the same as the number of entities in the domain that the data base 
represents, whether the fact that an internal identifier has not changed, 
such as “disk in drive ” or «$USER», is evidence that the item that this iden-
tifier names has not changed, etc. 
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issues of ethics, bias, coverage, etc.). 
. Epistemically, using the word ‘semantics’ and ‘value’ for 

what is returned by language processors, and for other ef-
fective relations and operations among computationally 
internal structures, also robs us of the theoretical vocabu-
lary necessary for understanding the meaning dimension 
of computing, when it does come into view—for under-
standing how computing systems are related to the task 
domains or worlds they are about, and how they are more 
than merely uninterpreted state machines.31 

Ironically, moreover, as well as obscuring the meaning dimen-
sion of computing, conflating or identifying representations 
with what they represent also hides from view the second of 
computation’s constitutive dimensions: the notion of effective-
ness. Computational structures play a role in computational ac-
tivity in virtue of exemplifying effective properties. Yet it is of-
ten true that the entities that those structures mean or repre-
sent are not themselves effective. The case of numerals (effec-
tive) representing numbers (not-effective) is a case in point. If 
representation and represented are not rigorously distin-
guished, then not only does the relation between what means 
and what is meant get hidden, but the role of effectiveness also 
eludes theoretical view. 

The problem to which this leads is not that computer sci-
ence has ignored efficacy; rather, it is that it has too blithely as-
sumed it. Current computational theory seems to assume that 
everything of interest is effective, even if it is mathematically 
modeled. While this would take work to document carefully, I 

 
 
31Another example. Logicians, philosophers, and cognitive scientists 
might say that when we understand the computational structure «» as 
“the number three,” we are understanding it under interpretation. As noted 
above, that is not the notion of interpretation from computer science. In 
computational discourse, the interpretation of any computational struc-
ture must be another computational structure (or effective operation on 
such structures), nothing genuinely abstract. So the term ‘interpretation,’ 
along with ‘semantics’ and ‘value,’ needs reconstruction. 
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believe that computer science is in the grip of something I dis-
cuss in chapter , under the label of blanket mechanism: an 
ontological-cum-epistemic assumption that the entire dis-
course relevant to computation—the entire ontological field 
relevant to computer science—can be restricted to what is me-
chanically effective. Blanket mechanism is essentially a method-
ological commitment that privileges mechanism, disappears 
meaning, and comprehends only half of the nature of compu-
tation. 

Blanket mechanism is the name of the wall in the cave. 

 7 Discussion 
All sorts of rejoinders suggest themselves.  

Re arithmetic, some will suggest that relations between in-
tegers and their canonical representations are so close—virtu-
ally isomorphic, pace an exponential difference in complexity—
that it is otiose to distinguish them. No one, they will argue, 
gets confused. Consider a case already encountered: the idea of 
a “-bit integer.” This term presumably means something like 
the following: “an integer (i.e., an abstract number) ranging 
from -, to ,, representable, using standard two’s-
complement binary encoding, in two bytes of binary computer 
memory.” The qualifiers “-bit” and “in two bytes” apply to 
numerals (representations), whereas, at least in the first in-
stance, “ranging from –, to ,” applies to numbers so 
represented. Numerals, per se, do not “range.” 

Whether people are ever confused about the number/nu-
meral relation is hard to say,32 but a reflective system might be. 

 
 
32Some people are indisputably confused about numeral/number rela-
tions in regards to complexity results. Schoolbook multiplication is said 
to have complexity on the order of n2—where n refers not to the size of 
the abstract numbers being multiplied, but to the size of their binary (dec-
imal, etc.) representation, which in turn is proportional to the logarithm of 
the represented number. Strictly speaking, therefore, the complexity of 
multiplying integers m1 and m2, using the schoolbook method (and as-
suming the usual positional notation), is proportional to the product of 
the base- logarithms of m1 and m2. 
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Suppose one tried to represent, in a Lisp-like language, the fact 
that the numeral «» represents the number three. Lisp is not 
a knowledge representation language, so facts cannot be repre-
sented as such—at least not in any way that the official “seman-
tical” account of Lisp would recognize. But if Lisp were ex-
tended to be able to represent facts, the natural form for this 
would likely be something like «(REPRESENTS ' )»—i.e., an ab-
breviation for «(REPRESENTS (QUOTE ) )». But there are two 
problems with this suggestion. First, if subject to anything like 
traditional Lisp evaluation, the term “«(QUOTE )»” would be 
converted to «», turning (the meaning of) the suggested for-
mula into a false claim that «» represents itself. In order for 
the suggestion to work, moreover, this version of semantics 
would have to be defined independently of Lisp’s notion of “se-
mantic value,” leading to two separate accounts of semantics, 
concerning different things, using overlapping terminology. A 
sound reflective architecture must be clear and rigorous in re-
gard to semantical issues—in no small part because reflection 
is fundamentally a semantical notion (“a reflective system is one 
that it is able to represent…its own operations, structures, and 
behaviour”). As soon as one brings representation within the 
system, even in as simple a case as that which relates numerals 
to numbers, relying on external human expertise to manage un-
admitted conceptual complexity is not a winning strategy. 

More generally, as Newell and Simon emphasized half a 
century ago, numerals denoting numbers is far from the only 
example of representation in computational systems. Consider 
object-oriented languages. It is standard to define classes or 
types in object-oriented programs to correspond to the con-
cepts in terms of which we understand their non-mathematical 
task domains: teacher, student, instructor, course, grade, etc., in a 
university registration system; institution, account, balance, 
transaction, and so on, in the case of a financial system; and the 
like. According to the accepted practice of how theoretical com-
puter science assigns semantics to such languages, their in-
stances would be understood to have memory records (or math-
ematical models thereof) as their semantic values, not live 
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human beings, brick buildings, transactable dollars, etc. 
As in the case of numerals vs. numbers, someone might ar-

gue that in simple cases people are unlikely to be confused, es-
pecially when the ontological structure of memory mimics that 
of the task domain—i.e., when the program is conceived as a 
direct model or simulation. But problems arise as soon as the 
program-world relation departs from being one-to-one, or 
from any other form of isomorphism. Suppose a university stu-
dent is registered as a student in a course of which they themself 

are the instructor—something that happened in the case of AI 
philosopher John Haugeland immediately after he submitted 
his Berkeley doctoral dissertation. 

Consider how this situation might be computationally 
modeled. Suppose, not unreasonably, that students and in-
structors were labeled using different schemes—students by 
student IDs; instructors by personnel numbers. In such a situa-
tion, a programmatic query as to whether the instructor of 
«COURSE-» was a student in «COURSE-» might well return 
false (something like «FALSE»), on the assumption, reasonable 
in general but incorrect in this case, that the types “student” and 
“instructor” (sets of students and instructors) would be exten-
sionally disjoint. Or a system allocating classrooms might rea-
son that the room for the course that Haugeland was teaching 
needed one more chair than was in fact required. These are not 
uncommon forms of bug: it is routine for systems to perform 
incorrectly due to failures in tacit assumptions—including the 
common assumption that identifier identity can stand proxy 
for identity of that which is identified. 

The difficulty is not that it is up to computer science to en-
sure that programs cannot make or be constructed in terms of 
incorrect assumptions. That would be impossible—like requir-
ing that a logical system never process or produce a false sen-
tence in the course of making an inference. Rather, what be-
trays the problem is the discrepancy between (i) what we hu-
mas understand such constructs as 
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(IN (INSTRUCTOR (COURSE-%&)) (STUDENTS (COURSE-%&)))33 

to mean—i.e., to be a representation or query about real people 
and real courses in the world—and (ii) what computer science 
takes the semantics of that statement to be, which in contrast 
has to do with computational-internal relations among compu-
tational structures. We take the proposition represented above 
to be true, because Haugeland was in fact a student in his own 
class. The computer science account would deem the computer 
warranted in returning «FALSE», because the “semantic values” 
of the constituent terms—i.e., the internal identifiers—are dis-
tinct. And because computer science has redefined the term ‘se-
mantics’ to name this internal relation, there is no vocabulary 
left with which to say that the statement is in fact true. 

The moral generalizes. By moving the representation-to-
the-world relation out of theoretical view, by off-loading, onto 
programmers’ and onto theorists’ tacit understanding, all re-
sponsibility for ensuing appropriate system behaviour, which 
in general will be defined in terms of it, and by suggesting that 
the simple case of sign-signified isomorphism can be taken as 
paradigmatic—and beyond that by vainly hoping for the 
best—computer science abrogates its responsibility to provide 
a sound theoretical framework in terms of which to analyse and 
understand the systems that we build. 

 8 2Lisp 
To deal with these and similar oddities—to provide a concep-
tual framework in terms of which to reveal, as clearly as possi-
ble, issues of meaning, mechanism, and their relation—I set 
aside the notion of a computational value entirely, in Lisp, and 
split the classic notion of evaluation into two roughly orthogo-
nal notions: 
. One of designation, according to which Lisp structures 

were taken to have denotational, representational, or ref-
erential content (the “meaning” side of the dialectic); and 

 
 
33In Python, «COURSE_9:.instructor in COURSE_9:.students». 
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. One of simplification, according to which arbitrary pro-
gram expressions were reduced to simpler, “normal form” 
co-designating expressions. 

Lisp simplification was reminiscent of term-reduction in logic 
and of α- and β-reduction in the λ-calculus. Simplification—a 
form of term-rewriting, where ‘term’ was extended to cover all 
effective computational structures—was taken to be the funda-
mental operation underlying the processing of Lisp programs. 

Drawing a denotation/simplification distinction seemed 
eminently reasonable, given that simplification is clearly an op-
eration that “stays within the boundaries of the machine,” 
whereas designation is a relation that faces no such internalist 
restrictions. Simplification is manifestly a function from ex-
pressions to expressions (or, rather, in a computational context, 
from internal structures to internal structures). This made it 
unexceptional to assume that the domain and co-domain of 
Lisp simplification were the same, elements of which were 
produced and responded to in virtue of their exemplification of 
effective properties. 

Borrowed from our understanding of logic, natural lan-
guage, and human reasoning, in contrast, designation or refer-
ence was taken to be the relation between thoughts, words, 
symbols and ideas, on the one hand, and what we think about, 
talk about, hypothesize, and imagine—i.e., between intentional 
entities and the world towards which they are intentionally di-
rected. 

Depending on program and user context, Lisp expressions 
could designate anything at all (just as we can talk, think about, 
and imagine just about anything at all)—abstract numbers and 
functions, people, routes, and other arbitrary objects and situa-
tions past and future, as well as other internal structures, such 
as data structures, program fragments, storage locations, and so 
on.34 The example above of a computational structure 

 
 
34As explained in §., there was to have been a fourth dialect in the se-
quence, called Lisp, in which the representation of external entities in 



 1 · Overview 

 39 

representing an academic course, with elements for instructor, 
students, topic, grades, etc., and a theoretical recognition that 
those real-world entities were what the computational struc-
tures designated, was perfectly in line with the Lisp ap-
proach.35 

I viewed distinguishing designation from processing as a 
straightforward matter of conceptual hygiene—a necessary 
prerequisite to defining a clear, cogent, tractable notion of re-
flection. That is, I felt and argued at the time, it was necessary 
in order to satisfy the two-by-two reflective integrity criterion. 
In addition, I expected it to be relatively transparent, and self-
evidently sensible. 

I still believe the first claim—that distinguishing meaning, 
reference, designation, and other relevant aspects of the inten-
tional nature of computation from the much narrower set of 
effective relations constitutive of computational mechanism is 
prerequisite to a coherent notion of reflection. On the second 
claim, though, about the move’s being self-evidently sensible, I 
was wildly mistaken. 

Far from clarifying matters, separating designation and 
processing gave Lisp (and Lisp, the reflective dialect defined 
in terms of it) a conceptual structure totally unfamiliar to pro-
grammers—so wholly at odds with reigning conceptions of 
programming languages as to be opaque to programmers and 

 
 
task domains would be explicitly theorized. Data structures in current 
programming languages (including Lisp and Lisp) can of course repre-
sent such phenomena; the difference in Lisp was that this representa-
tional relation was to be theorized as part of the language design, and 
therefore formulable as something to which programs could be held nor-
matively accountable. 
35More accurately, they were in line with what was to have been the Lisp 
approach. Lisp licensed external real-world reference, and so technically 
speaking all these examples were Lisp structures. The Lisp processing 
regimen, however—and that of Lisp defined in terms of it—was defined 
only with respect to such external referents as numbers, truth values, se-
quences, etc. (as well as with respect to references to all computationally 
internal structures). See §.. 
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theoreticians alike. In particular, it opened up cracks among: 
. The official story about the nature of computation, run-

ning from Turing’s / paper through to the present 
day, and built into the tacit assumptions underlying con-
temporary theoretical computer science; 

. The tacit understanding of computing on which pro-
grammers rely in their daily practice, managing the rela-
tion between the code they write and the demands on 
their code stemming from requirements framed in terms 
of the projects and task domains for which the programs 
are being written; and 

. Long-standing and deeply rooted understandings of how 
symbols, languages, and representations stand for and ori-
ent us towards entities and phenomena in the world 
around us—the very tradition on which computer science 
is historically founded. 

 9 Approach 
To reach these conclusions, as noted above, the investigation 
starts by identifying problems that arose in the development of 
Lisp and Lisp: problems having to do with the nature of pro-
grams, their (human) interpretation, and the frameworks that 
computer science used to analyse their “semantics.”  

The book then steps serially through various different con-
ceptions of program and of semantics, in search of tenable con-
ceptual footings. I first examine programs understood as effec-
tive specifications of computational behaviour, then as ingredi-
ents in algorithmic manipulations of structures representing 
task domains. The exploration systematically documents unre-
solved questions about programs, about data structures, about 
relations between representations and what they represent, 
about both effective and non-effective properties of computa-
tion-internal entities, and a spate of similar issues. 

In chapters -, the case is made that no incremental ad-
justment of our current theoretical framework is powerful 
enough to generate a satisfactory solution. Chapter  backs up 
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to review the conceptual structure of logic—the intellectual 
forebear of computer science, on which so much of computer 
sciences’ approach and vocabulary are based. One goal of doing 
this is to show that, whereas computer science has come to fo-
cus almost exclusively on the mechanical and the effective, 
logic—even formal logic—was never so restricted. On the con-
trary, though it is not usually formulated in these terms, logic 
developed a valuable understanding of something I call the core 

intentional architecture: the architecture of systems explicitly 
exemplifying both meaning and mechanism, interdefined but 
neither conflated nor confused. As explicated in chapter , the 
effective conditions constitutive of the operation of logic-based 
mechanical systems are associated with syntax and derivation 
or proof (‘⊢’). Issues of meaning, including non-effective repre-
sentation, relations to both abstract and concrete elements, etc., 
are theorized under semantics, interpretation, and entailment 
(‘⊨’). The dimensions are related in two of the most important 
notions in logic: those of soundness and completeness.36 

Systems of formal logic, and active inference systems based 
upon them, are exceedingly restricted—profoundly incapable 
of dealing with the suffusing complexity, circumstantially de-
pendent semantics, causal impact, process control, side effects, 
and myriad other facts routinely encountered and dealt with in 
contemporary computational systems. But the underlying core 

 
 
36That the dimensions of both meaning and mechanism are considered to 
be constitutive of a logical system is evident in the fact that inference and 
proof, in logic, are understood to be defined over the formal or syntactic 
properties of the expressions. The logical properties would be understood 
to include both the syntactic and the semantic. To say that inference or 
proof was defined over the logical properties of sentences is either inexact 
or confused. 

In contrast, it is commonplace to talk about the computational prop-
erties of programs, data structures, etc., taken to include only the ef-
fective properties, analogous to the syntactic and proof-theoretic prop-
erties in logic. This fact alone betrays the fact that genuinely semantic 
(non-effective, distally oriented issues of interpretation and intentional 
directedness) are sidelined in current computational theory. 
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intentional architecture is based on a profound insight into the 
nature of intentionality—an insight that remains applicable to 
present-day computing, in all its wooly complexity. Unfortu-
nately, the insight has disappeared in contemporary discussion, 
rendered invisible by the shift in vocabulary and computer sci-
ence’s singular focus on the effective. The fundamental insight 
at the heart of logic has to do with how an intentionally consti-
tuted system can be effectively realized and normatively gov-
erned by non-effective representational relations to distal sub-
ject matters. That insight has fallen by the wayside in our the-
oretical imaginations, but it remains of enormous signifi-
cance—as applicable to present day computing as it ever was to 
purely mathematical and logical deliberation. That formality 
and syntax constitute the mechanical dimension of logical sys-
tems may not be immediately evident, in part because the gen-
eral question of what it is to be a logical system is not normally 
theorized as such. What receives theoretical attention, in logi-
cal treatises, are usually particular logics or particular families 
of logics: first-order quantificational logics, predicate logics 
with equality, and the like. What it is to be a syntactic property, 
for example, is not typically theorized; rather, the syntactic fea-
tures of the logic(s) under investigation are typically posited or 
demonstrated ostensively. 

Still, there is widespread tacit agreement on a variety of 
background norms and standards on logical practice. Some are 
relatively specific, such as that syntactic and semantic proper-
ties be defined in such a way as to support what is known as 
compositionality—the idea that the semantic value of a compo-
site expression be a function of the semantic values of its syn-
tactic constituents. Others are more general, including that the 
syntactic properties and formal rules of inference be such as to 
make semantical sense. What is most important for our present 
purposes, as argued in chapter , is that syntactic properties 
must be effective. Any attempt to propose a logical system in 
which a non-effective property was deemed syntactic would be 
censured—considered to be a cheat. 

Systems of logic, that is, satisfy what in The Promise of 
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Artificial Intelligence (henceforth Promise) I call the REPRESEN-

TATIONAL MANDATE—six conditions constitutive of all core 
intentional architectures: 
Conditions (DIALECTIC) 
C An intentional system must work, locally, in virtue of the 

effective properties manifested by its embodiment. 
C Overall, it is normatively directed towards the world as a 

whole, including much that is not effectively available. 
C Being physically embodied, it has no access to the non-

effectively-available states in terms of which the norms on 
its operation are defined. 

So what does it do? (ARCHITECTURE) 
C It exploits local, effective properties that it can use, but 

does not (intrinsically) care about 
C To “stand in for” or “serve in place of” properties and re-

lations of states of affairs it cannot effectively access 
C In order to behave appropriately towards those non-ef-

fective states that it does care about, but cannot use. 

C is an acknowledgement of the constraints imposed by an 
overarching physicalism and the limits of effective causality; C, 
of the fundamental nature of intentionality; and C, of the dia-
lectic that follows from C and C. C–C are effectively a sum-
mary of the notion of representation, with C framed to include 
both internal representations (memories, data structures, con-
figurations of ingredients, etc.) and external representations 
(maps, signs, images, external language, and the like). 

As noted above, logical systems, and especially those stud-
ied under the guise of formal logic, are extraordinarily more 
specific than required by the core architecture. Among other 
things, they typically assume: that syntactic inference is inde-
pendent of semantic interpretation; that semantic interpreta-
tion is independent of inference and all other contextual factors 
(such as changes in external state, the passage of time, and so 
on); that inference systems are state free (so that whether an 
inference is legitimate does not depend on what other 
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inferences have taken place); and a host of other things. The 
importance of formulating the core architecture in this investi-
gation at a broad level of generality, however, is to make a sim-
ple point: the computational systems we build and use in the 
world are also instances of this same architectural type. 

I warrant that all programmers have a deep appreciation of 
C-C—in their bones and in the regularities in their practice, 
if not (yet) in their explicit understanding.  

The fact that the core intentional architecture applies as much 
to computing as to logic suggests that its generality stems from 
fundamental facts about intentionality, embodiment, etc., 
thereby at least beginning to erode the idea that computation is 
“special” in the sense suggested in §.. The argument to this 
conclusion will be buttressed by an analysis of how we have 
ended up in the situation we are in—how computer science 
came to focus so exclusively on effective mechanism, how all of 
our semantical and intentional vocabulary came to be redefined 
to deal with local, computation-internal, effective matters, how 
such remarkable progress has been made in theoretical results 
that have been developed to date even while more far-reaching 
intentional issues have been sidelined, etc. A full explanation 
belongs to intellectual history, but at least the following con-
tributing threads can be identified: 
. Pressure to fit the study of computing into our conception 

of “science,” complete with its naturalistic presumption of 
the explanatory adequacy of causal explanation; 

. A focus on the things that need to be understood in order 
to construct intentional systems—i.e.,  an abiding interest 
in what it takes to implement or build computational pro-
cesses; 

. The fact that computer science started out as, and in many 
cases remains, an engineering practice, in which program-
mers and theorists alike understand full well that compu-
tation involves issues of representation, but also under-
stand, at least tacitly, that computer science as it stands 
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does not theorize those relations; 
. The fact that, in the first half of the th century, what 

was monumentally significant was the recognition, by 
now taken as a truism but at that point far from obvious, 
that it was possible to construct a physical device that 
could be understood as taking rational steps in a logical 
argument, under seemingly obvious and self-evident re-
gimes of semantic interpretation;37  

. The fact, in spite of Newell and Simon’s reminder that 
computation is broader than this, that numerical compu-
tation has remained the primary focus of theoretical anal-
ysis—a case in which, even if the effective structure (of nu-
merals and representations) and the structures they rep-
resents (numbers, functions, etc.) are not isomorphic, 
there is sufficiently widespread agreement in practice on 
which representational schemes are being assumed that 
confusion has been largely avoided; 

. The fact that a pact has been tacitly agreed, by program-
mers, theorists, and users alike, that it is up to them to 
shoulder responsibility for navigating the complex inten-
tional and representational nuances and subtleties that ac-
crue to contemporary systems, relating the constructed 
systems to their task domains; and 

. Perhaps also, as will be highlighted in chapter , a tacit 
recognition that the subtleties underlying the representa-
tional and intentional properties of contemporary compu-
tational systems are almost stupefyingly complex, and that 
dealing with them adequately in compelling theoretical 
terms will be extraordinarily challenging—far beyond the 
capabilities of any currently available semantic or even on-
tological theory.  

 
 
37John Haugeland emphasized this historical fact—which underlay his 
widely quoted (but in my view also widely misunderstood) claim that “if 
you take care of the syntax, the semantics will take care of themselves.”  
See §.. 
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This book will tell a story about this subject matter, in an at-
tempt to hew an intelligible path through a thicket of theoreti-
cal issues and forge a comprehensible proposal for how we can 
move forward—a story of how we can open a new era of un-
derstanding of computational and intentional systems. But 
while that will be the end of the road for this book, it will not 
be the end of the road for inquiry. The book’s ultimate aim is 
not to bring one era of analysis to an end, but to open up a new 
one that is clearer, more encompassing, and more accurate. 

C — Conclusion 

I would be the first to admit that the territory that this investi-
gation explores has been only inchoately mapped. At issue are 
intricate relations between the mechanical and effective opera-
tions in virtue of which embodied intentional systems work, 
and the non-effective semantic relations of directedness they 
bear to the subject matters they are about—relations pertinent 
to the norms they are enjoined to honor. 

The philosophical literature is replete with accounts of 
some human dimensions of this issue. Of signal importance is 
Frege’s  distinction between cognition-oriented sense and 
world-directed reference.38 Other proposals have been pre-
sented that, in various ways, attempt—to put it in Wittgen-
steinnian terms—to account for both meaning and use: ac-
counts of pragmatism, activity theory, inferentialism, and the 
like. None, though, are candidates for serving as general models 
of intentional significance. Some, such as “conceptual role se-
mantics” or “two-factor semantics,”39 assume that denotation 
or reference is always to an external world, and that all effective 
operations are internal—a pair of assumptions inapplicable to 

 
 
38Frege  (). 
39Also called inferential role, functional role, procedural semantics, se-
mantic inferentialism, and other labels. 
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computer systems, which abound in internal denotation and 
external interaction. Some frameworks, such as those that take 
two sentences to “mean the same thing” if, intuitively, they li-
cense the same inferences, are defined with respect to disquali-
fyingly high-level intuitions about human reasoning. Some ap-
ply only to external language, whereas anything appropriate for 
computing in general will have to account for arbitrary internal 
states (the computational analogue of “mentalese,” as it were). 
More seriously, none has been worked out in anything like the 
technical detail required to serve as the basis for architectural 
or language design in computer science. 

On the computational side, efforts to theorize relations be-
tween computational systems and the world, such as 
knowledge representation languages, resource description 
frameworks (RDF), models used in requirements engineering, 
etc., are not only too ontologically simple to do justice to the 
needs of “computation in the wild,” but are also designed for 
much coarser-grained application (overall goals, classes of in-
puts and outputs, etc.) than the intricacies of detailed program 
code. In addition, they typically fail to address issues of contex-
tualism, the impacts of use and processing on denotation and 
meaning, etc. One of the strengths of contemporary program-
ming language semantics is that its accounts, at their best, are 
designed to deal with just such complexities.  The difficulty is 
that what they account for is restricted to what is ultimately me-
chanical, effective, and internal. 

Progress will undoubtedly be made integrating these ap-
proaches and techniques, developing new ones, and framing ac-
counts that do justice to computational systems as unrestricted 
(“non-special”) intentional systems embedded in unlimited 
worlds. Numerous challenges will need to be addressed en 
route, including the development of an ontological framework 
adequate to accommodating the surpassing complexities that 
programmers deal with, albeit tacitly, in the programs they 
write. But the daunting nature of the task should not weaken 
our theoretical resolve. It is five hundred years since the begin-
ning of the Scientific Revolution and consequent efforts to 
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theorize the “natural,” mechanical, physical world. We should 
not expect the task of developing an equivalently comprehen-
sive understanding of the realm of meaning, intentionality, and 
reference, etc.—the realm of significance—to be any simpler or 
more straightforward.  

 



 2 Reflection 

Reflection is an invaluable site for analyzing computation be-
cause notions of meaning and mechanism arise doubly. It must 
represent and be able to act; and it must represent and be able 
to act upon its ability to represent and to act. That is, it must 
satisfy what in the Introduction I called the reflective integrity 
criterion. 

This chapter will focus on reflection, in order to develop in-
tuitions to which to hold subsequent analyses accountable. 

 

A reflective system is one able to represent, reason about, and 
direct intentional actions towards its operations, structures, be-
haviour, and engagement with the world—and to do so in a dy-
namic, integrated, and on-going fashion. Reflection is a sub-
stantial capacity in its own right. Among other things, it is a 
prerequisite to the possession of any capacity that could be 
called genuine intelligence. But inchoate reflective capacities 
have been recognized as powerful in a wide range of less exalted 
computational settings. Most contemporary programming lan-
guages provide at least rudimentary capacities of this sort. 
While not as central as recursion, reflection has become a staple 
ingredient in the conceptual arsenal of contemporary computer 
science. 

Just what reflection is, however, remains an open question. 
No general theories of computational reflection have been pro-
posed, for reasons that reach deep into our understanding of 
computation itself. As noted in the Introduction, this makes 
reflection an ideal site for rigorously examining the nature of 
computing—and in particular for assessing the adequacy of 
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current theoretical frameworks, for uncovering their limita-
tions, and for developing more adequate alternatives. 

Reflection’s importance is not restricted to the computa-
tional realm. It is also an instructive example with which to 
challenge a variety of reigning assumptions about mind, con-
sciousness, and other topics in artificial intelligence (AI), cogni-
tive science, and philosophy. These larger topics are not the 
subject matter of this book, which focuses on the computa-
tional case. Still, some comments on them will be made in pass-
ing, since computing can be viewed as a small distillation of 
many of our deepest theories about the nature of intentionality 
and mind—especially if computing turns out not to be “special” 
in the sense discussed in §.. And even within the computa-
tional realm, the aim here is not to understand reflection in a 
narrow sense, but to use its analysis as a strategy for revealing 
foundational issues in programming, implementation, and 
computing in general. 

 1 Preliminaries 
Reflection can be understood as a form of self-reference, so long 
as both self and reference are interpreted broadly. At issue is not 
simply the possibility of a single expression, data structure, or 
event denoting or referring to itself, in the narrow form exhib-
ited in such familiar logical paradoxes as the famously contra-
dictory “This sentence is false.”1 Rather, the notion of reflection 

 
 
1“This sentence is false,” known as The Liar, is self-contradictory be-
cause if it is true, it must be false; and if false, true. See e.g. Barwise 
and Etchemendy (). 

Similar forms of narrow self-reference characterize the sorts of log-
ical puzzle made famous by Raymond Smullyan (e.g., see Smullyan 
). Though it is not referential, and thus ineligible for being called 
self-reference, I would count the cyclicity of set-theoretic non-well-
foundedness, where a set may contain itself as a member, as similarly 
“narrow,” since the cyclicity is local—a single binary relation between 
two unitary entities (unitary for the purposes of establishing the cy-
cle). 

So too recursion. I do not believe that recursion involves self-
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to be explored here has much wider scope, both intensionally 
and extensionally—including not only the ability of a system to 
refer to or designate itself or its ingredient structures (including 
the ability to name both itself and its parts),2 but also, employ-
ing descriptive and theory-laden capacities, to find itself richly 
intelligible—as a complex entirety, in fine-grained componential 
detail, and as both dynamic and contextually embedded. 

For a system to count as reflective, I will argue, such capaci-
ties must be integral to a system’s overall intentional (represen-
tational, descriptive, etc.) and active capacities, rather than be 
separate from or external to them, of the sort that might be em-
ployed by a detached observer or theorist, or be exemplified in 
a modeling system used to model itself.3 Moreover, in order to 
achieve any kind of power and generality, the idea is for a sys-
tem to represent, reason about, engage with, and modify itself 
in the same way, and using the same resources, that it uses to rep-
resent, reason about, engage with, and potentially modify the 
external world or task domain in which it is embedded. As well 
as increasing generality, elegance, and power, it is crucial for the 
resources for self-representation (reasoning, etc.) to be the 

 
 

reference, but there is nevertheless a related cyclicity in recursive defi-
nitions; they too I would count as narrow. 
2This characterization crosses the “personal/subpersonal” (or analo-
gous “system/subsystem”) divide. It can certainly be argued that peo-
ple’s introspective or reflective capacities exist primarily only at the 
personal level; we are able to consider ourselves, our behaviour, etc., 
or aspects of ourselves or behaviour, as whole people. Famously, we 
lack direct introspective access to the components or physical config-
urations of our brains, or to other fine-grained aspects of mental im-
plementation—though, needless to say, we have no difficulty refer-
ring to individual thoughts and beliefs, to physiological aspects of our 
person (limbs, torn muscles, sciatica, etc.), to such psychological as-
pects as confusion, paranoia, and happiness, and to aspectual facts 
about our phenomenology influenced by subpersonal issues of imple-
mentation, such as being over-caffeinated, inebriated, or drugged. 
3Thus to construct a model of a general modeling system M within M 
would not make M reflective, for reasons explained below. 
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same as those used for representing the external world or tradi-
tional task domain so as to enable the system, in full reflection, 
to comprehend itself as an integrated, intelligible part of that 
world—to be able to see itself as in and of the world as a whole. 

It is in part because of this wider compass that reflection is 
such a useful crucible in which to test the mettle of any pro-
posed understanding of computation. 

At its base, reflection builds on a suite of familiar technical ca-
pacities: quotation and disquotation, logical “reflection princi-
ples,”4 “representation theorems,” facilities for semantic ascent 
and descent, the ability to construct representations of primi-
tive structures and operations, facilities for “treating programs 
as data,” etc.—i.e., the very sorts of resource that underlie a va-
riety of forms of narrow self-reference. As architectures grow 
more complex, however, reflection’s demands reach further—
to include a system’s ability to construct (and act upon) descrip-
tions, theories and models of itself, not only as a static or passive 
structural entity, but as a complex, dynamic, contextually em-
bedded system that is, in turn, complexly, dynamically, and 
contextually described. Moreover, it is only in that more de-
manding context that the stuff and substance of reflection 
comes into view. 

Perhaps the best way to understand computational reflec-
tion is as a technical analogue of what self-knowledge means in 
everyday discourse (not as it is theorized in philosophy, where 
self-knowledge, too, is often understood in a narrow sense5). It 
is one thing to know one’s own name, to be proficient with the 

 
 
4Though related to the notion of ‘reflection principle’ in logic, the can-
vas of reflection as understood in this book is much wider. 
5Philosophical accounts of self-knowledge largely treat no more than 
the relation between a subject’s being in a mental state and knowing 
that they are in that mental state—e.g., between being in pain and 
knowing that one is in pain; between believing that there will be a third 
world war (to use Evan’s famous example), and believing that one be-
lieves that there will be a third world war (Evans, ). 
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first-person pronoun, to comprehend the world from a single 
perspective, and to recognize and recall what one said a mo-
ment earlier—all of which, on the human side, are well within 
the capacities of young children. It is another to be dispassion-
ately observant about one’s conduct and impact on others, to 
have insight into one’s motivations and behaviour, to be effec-
tive in deploying self-understanding gained through years of 
psychoanalysis, self-discipline, and/or considered experience. 
While no computational system yet constructed approaches 
such levels of prowess, the notion of reflection examined here 
and the computational architectures I explore were designed 
from the outset with those more ambitious accomplishments 
in mind. 

As we witness unrelenting progress in AI, neuroscience, ma-
chine learning, cyborg engineering, and the like, such a substan-
tial notion of reflection will only grow in importance. 

 2 Failure 
In the s I formulated a concept of “procedural reflec-
tion”—a capacity of a programming language to include ele-
mentary reflective capacities. Among other things, I wanted to 
show that reflection was a coherent and well-behaved notion, 
to illustrate its power, and to discharge the sense of mystery 
that surrounded the notion, because of its relation to such gen-
uinely challenging phenomena as consciousness. Though the 
project was conducted within the confines of a simple tradi-
tional programming language, I also undertook it as something 
of a “design study” in order to establish more adequate footings 
for constructing more ambitious reflective systems in 
knowledge representation and artificial intelligence more 
broadly. 

The primary focus of that original work was architectural. 
In my doctoral dissertation and a number of subsequent papers 
I showed how an extremely elementary form of reflection could 
be implemented in a purpose-built dialect of Lisp. As well as 
presenting, explaining, and assessing this language, the disser-
tation also explored, at a more general level, some of the 
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conditions, theoretical as well as practical, that any system must 
meet in order to be counted as genuinely reflective. 

Among other things, reflection puts special attention on the 
intentional dimension of a computational system—on the 
“aboutness” of the system, on what is traditionally (outside of 
computer science) understood under the label of ‘semantics’—
for the simple reason that a reflective system must be capable of 
representing or reasoning about its own construction and be-
haviour. That is, a reflective system must be capable of mani-
festing or engaging in behaviours that are about its self. To put 
it bluntly: reflection is a semantical notion. The architecture and 
intelligibility of a reflective system is thus singularly dependent 
on the notion of semantics or “aboutness” in terms of which 
that characterization is framed. As such, reflection serves as an 
distilled case in which to assess reigning notions of semantics. 

One of the larger claims I argue in this book is that all con-
temporary understandings of computational semantics are in-
adequate.6 They are inadequate for many reasons, including 
some that relate programmers’ tacit understanding of programs 
with the dictates of contemporary computational theory, as 
well as more specifically being inadequate in terms of which to 
define a notion of aboutness adequate to the concept of reflec-
tion. 

More specifically, present-day notions of computational se-
mantics restrict their focus to mechanical configurations and 
mechanically induced behavior within the boundaries of ma-
chines—on the causal underpinnings of computational pro-
cesses, on the “mechanism” side of the fundamental dialectic. 
That is, semantics as it is understood in computer science is re-
stricted to the realm of the effective. To put it in computational 

 
 
6I have in mind (and this book will primarily discuss) the semantics 
of computational systems themselves, of the programs we write to 
control them, etc. The focus will not be on what is sometimes called 
the “computational semantics” of (human) language and mind—
though the morals and insights drawn out here are relevant to those 
topics. 
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terms: “semantics” as currently understood in computer science 
is more about implementation and causal behaviour than about 
the nature (especially the intentional nature) of that which is 
implemented. This remains true even when computation is 
studied in abstract or mathematical terms.  

This computational understanding of semantics is ulti-
mately so different from the traditional understanding, which 
has to do with non-effective long-distance aboutness, that when 
the differences are salient, I will refer to them using different 
labels, using semantics-L for semantics as in logic—i.e., the 
non-effective aboutness discussed in the Introduction, consti-
tutive of the meaning side of the fundamental dialectic; and se-
mantics-C for semantics as that word is currently used in com-
puter science, which focuses instead on the perhaps mathemat-
ically modeled behavioural (effective) consequences of a com-
putational structure or operation. (More generally, when con-
fusion might arise, I will append an ‘L’ to intentional words used 
as in logic and natural language, and a ‘C’ to those same terms 
as used in computer science.) As recognized in some contem-
porary philosophical discussions,7 computer science treats 
computing as a physical, mechanical, or effective notion, in 
spite of its ubiquitous use of the term ‘semantics.’ 

To serve as a background and reference for this discussion, I 
have assembled relevant parts of the original dissertation and 
some subsequent papers written in the s into an accompa-
nying volume (The Lisp Legacy). Along with the original texts, 
that book includes annotations tying specific discussions to the 
issues explored in this volume. I have brought them together to 
serve as a background for the present discussion, in part be-
cause I believe they incorporate some insights of enduring 
value. But the catalyzing motivation, not just for that volume 
but for the present one as well, stems from the fact that the dis-
sertation and these papers all ultimately failed—both 

 
 
7Piccinini (). 
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practically and theoretically. The reasons for that failure have 
yet to be explicated. It is those reasons, and their consequences 
for computing more generally, that I believe to be of contempo-
rary significance. 

The problem is not that the proposed reflective dialect of 
Lisp, called Lisp, was never used. While true, that was to be 
expected, if for no other reason than Lisp was a test demon-
stration—a vehicle developed to make a theoretical point.8 Ra-
ther, Lisp, and the specific architecture it was meant to exem-
plify, was both: (i) unusable, for all intents and purposes, not 
just in pragmatic form but in fundamental conception; and (ii) 
unintelligible, given the discourse of computer science into 
which it was introduced. The reasons for the dysfunction and 
the incomprehensibility are different, telling, and not easy to 
fix.9 As I will argue here, they stem not from local facts about 
Lisp, or indeed from any issues about Lisp in particular, but 

 
 
8I doubt that many of the other languages that were subsequently pro-
posed as models of reflection—including Brown (Friedman and 
Wand, ), Blond (Danvy and Malmkjaer, ), M-Lisp (Muller, 
), etc. —enjoyed much use, either, for a similar reason: they were 
more theoretical demonstrations than practical proposals. That does 
not mean that they, or Lisp, lacked influence. The presence of at least 
inchoate reflective capacities in numerous contemporary languages, 
including Java and Ruby, stands witness to the impact that reflection 
has had since these special-purpose demonstrations were published. 
9Those familiar with Lisp are likely to suggest that the dialect’s evi-
dent dysfunction has to do with its excessive strictness about distin-
guishing signs and symbols from what they signify or denote—what 
philosophers would call issues of use and mention—such as its insist-
ence on relentlessly discriminating among numbers, numerals, and 
quoted numerals, and its distinction between representations of se-
quences of entities and sequences of representations of those same en-
tities (cf. §.). 

Many of these accusations are true. Less obvious, though, is one of 
the issues to be explored here: why Lisp imposed such strictness, and 
why this semantic rigour, which seemingly added conceptual clarity, 
ultimately contravened, rather than facilitated, practicability. See 
chapter , and “The Correspondence Continuum” (Smith, ). 
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from inadequacies in the conception of computation in terms 
of which it was designed—inadequacies which can only be ad-
dressed via the wholesale reconfiguration of computer science 
recommended in chapter . 

The general design of Lisp, including many of the aspects 
that made it unusable, grew out of an attempt to repair confu-
sions, particularly semantic confusions, that infected (and con-
tinue to infect) our understanding of the nature of programs 
and programming. These confusions, normally glossed over in 
practice, come to light under the scrutiny required in order to 
construct a system that is reflectively sound.10 Cleaning up 
these confusions, which I believed to be a prerequisite to defin-
ing an elegant reflective architecture, hardly seemed like a con-
tentious goal.11 Yet doing so, and thereby achieving what from 
a classic philosophical perspective would be considered a degree 
of theoretical elegance, yielded a programming language that, 
far from being unequivocally better than previous dialects, was 
in many ways worse. 

Philosophical clarity, that is—at least clarity in terms of 
reigning philosophical norms—was achieved at a price of such 
semantical strictness that it vitiated day-to-day practicability. 
More seriously, arranging for Lisp to hew closer to the con-
ceptual frameworks in terms of which we understand language 
and logic pulled it away from how we presently understand 
computing. Aligning the notion of semantics in terms of which 
Lisp was designed more closely with traditional notions of se-
mantics-L, that is, one of my design goals, required distancing 
it from reigning computational presuppositions about seman-
tics-C. Diagnosing why those things happened, in turn—that 

 
 
10See §.V on the applicable notion of soundness. 
11At the time Lisp was designed, I was convinced that it was theoret-
ically cleaner than Scheme, which had just been developed at MIT. I 
fantasized that it, or at least Lisp (a non-reflective precursor to Lisp 
that nevertheless cleaned up the confusions I felt were endemic to 
Scheme), might replace Scheme as the paradigmatically clean and dis-
tilled version of Lisp. It was not to be. 
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is, why resolving evident confusions can hinder, rather than 
help, both practical usability and intellectual comprehensibil-
ity—reveals a wealth of yet additional difficulties, the theoreti-
cal measure of which has yet to be taken. While some of the 
complexities have to do with reflection per se, most stem from 
more basic unresolved issues in computing that come most 
prominently to light when reflection is at point. 

Three examples, to give a taste: 
. The discrepancy between the semantics of particular 

programs and the semantics of the programming lan-
guages in which they are written. It is no accident, given 
the current state of computer science, and the exclusive 
focus on the semantics-C construal of semantics, that 
we presume to some understanding of the latter, and 
virtually none of the former—and sobering, too, that 
our accounts of the latter do not even provide adequate 
resources in terms of which to develop the former. 

. A related gap between our “official stories” of what pro-
grams mean and the tacit understanding of them that, 
so far as I can tell, working programmers universally 
share—perhaps even must share—in order for pro-
gramming to be a humanly viable endeavour. 

. A profound inability of all currently accepted formal 
models of semantics—across philosophy and logic as 
well as computer science—to deal with the ontological 
profusion that permeates what I have called computa-

tion in the wild: real-world programs engaging with 
genuine, concrete task domains. 

Some of Lisp’s inadequacies can be understood in terms of its 
attempt to address these issues. The problem is that its ap-
proach was strong enough to tear away the blinders that for 
decades have kept us unaware of the conceptual difficulties un-
derlying all of them, but too weak to serve as the basis for a via-
ble alternative. So it stands as something of an unstable 
waystation en route to a better framework. 
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So that is one failure: Lisp achieved (what at least seemed like) 
semantical clarity at the expense of usability. But that was not 
the only problem. Equally telling is the fact that the papers pre-
senting Lisp failed communicatively. 

It is not that the work on which they report received no 
recognition. On the contrary, interest in reflection burgeoned 
after descriptions of Lisp were first published,12 with a num-
ber of follow-on dialects developed, papers written, and work-
shops held. It would be an exaggeration to claim success on one 
of the project’s original goals: to make reflection as ubiquitous 
and unproblematic as recursion. Still, as mentioned above, 
whereas the word ‘reflection’ was essentially foreign to compu-
tational discourse in the s,13 the majority of contemporary 
programmers would now recognize the term, and have at least 
a rudimentary sense of what it would be (indeed, what it is) for 
a computational system to be reflective—at least in the sense in 
which they understand it. 

In spite of this notice, however, the fundamental idea for 
which the original Lisp papers argued—the insight that I still 
feel to be crucial to understanding reflection—died stillborn. 
The problem was not so much that it was rejected, as one might 
have expected had it merely been a bad idea, but that it was al-
most wholly ignored in all follow-on work, even work that 
claimed to be inspired, among other things, by Lisp itself. 

Four decades on, I still believe that the idea is important—
not only for any architecture laying claim to being reflective 
(even if the form in which it was exemplified in Lisp was sim-
plistic and fatally flawed), but for a more general understanding 
of self-knowledge and even consciousness, and indeed of all 
forms of human understanding and engagement. The idea 

 
 
12Especially the  Principles of Programming Languages (POPL) 
paper, entitled “Reflection and Semantics in Lisp” (Smith ).  
13Reflection was recognized as a concept in logic, of course, in notions 
of reflection principles. One of the goals of this text is to demonstrate 
how, and why, introducing an analogous notion into computational 
contexts is hugely more complex. 
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remains essential, for example, in any effort to take the measure 
of contemporary developments in machine learning and sec-
ond-wave AI. The difficulty is that it was rendered invisible by 
the theoretical commitments that then governed, and still do 
govern, the entire field of computing—commitments that I be-
lieve are ultimately intellectually untenable, and that block pro-
gress across all of cognitive as well as computer science. 

Understanding what rendered the idea invisible requires 
pressing hard on what turn out to be surprisingly divergent un-
derstandings of computation currently prevalent in AI, com-
puter science, logic, and philosophy of mind. And once one 
presses hard, cracks start to appear, undermining confidence 
that theorists and practicioners in these various fields are even 
talking about the same thing. These difficulties erode any sense 
that we are close to comprehending the space of meaningful 
mechanical systems. 

In addition to whatever merit it has in its own right, in other 
words, reflection serves as an unparalleled site for exploring in-
tellectual parallels, collisions, and disjunctions among compu-
ting, philosophy, and cognitive science. One might have 
thought it would be uncontentious to mesh a reasonably 
straightforward model of semantically disambiguated repre-
sentation with an equally familiar conception of a programming 
language. But as soon as the two were brought together, the 
combination started to tear itself apart. 

 3 Anecdotal History 
A personal digression on the history of Lisp may provide some 
useful context. 

In the s, while a graduate student in the Artificial Intel-
ligence Laboratory at MIT, I set forth on an incurably ambitious 
project: to design and implement, from the ground up, a new 
kind of knowledge representation system. I had in mind some-
thing small, elegant, and powerful—more of a kernel or virtual 
machine than a full-fledged reasoning system. From the get-go, 
I imagined that the calculus would integrate declarative and 
procedural dimensions in a conceptually integrated way. 
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Rather than consisting of two interacting parts, that is—a de-
clarative representational language tied together with a proce-
dural programming language—I envisaged a single, semanti-
cally cohesive architecture, in which all behaviour was inte-
grated with employment of its integrated representational ca-
pacities. Modulo various logical intricacies, that is, including 
limits on explicitization, the system would only do what it rep-
resented itself as doing.14 

The project of developing a kernel architecture or calculus 
has antecedents. For more than three centuries the differential 
calculus has served as an elegant basis in terms of which to for-
mulate classical physics—not merely because of its general 
mathematical power, but more specifically because it so deftly 
incorporates, in its very architectural design, ontological com-
mitments about its subject matter shared across all its domains 
of applicability. Upon enrolling as a student at the MIT Artifi-
cial Intelligence Laboratory, I was analogously impressed, espe-
cially through Sussman and Steele’s contemporaneous 
“Lambda papers,”15 by how Lisp (about which more in a mo-
ment) could play an analogous role in computer science—serv-
ing as a compact basis for numerous seemingly disparate pro-
gramming constructs, well beyond its evident support of recur-
sion and functional programming. In setting out on the ill-fated 
dissertation project, I thought—and to some extent still do 
think—that I could imagine an equally distilled active repre-
sentational or descriptive computational calculus that could 
serve as the heart of wide-ranging systems capable of knowing 

 
 
14The normal reaction to the (Lewis, not Michael) Carroll paradoxes  
is that some behaviour must “happen directly,” rather than be engen-
dered by the processing of behavioural description. Reflection pro-
vides a novel approach to the issue by allowing that truth to obtain 
only in the limit, without imposing a finite bound on the number of 
levels of descriptive ascent accessible in any given circumstance. 
15Sussman and Steele (), Steele and Sussman (), Steele 
(), Steele (), Sussman and Steele (), Steele and Suss-
man (), Steele (); note they were being released at the time. 
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and reasoning about the world.16 
The system was to be known as ‘Mantiq’ (‘ ’’, approxi-

mately the Arabic equivalent of the Greek ‘λόγος’, or logos). It 
arose in part out of my involvement, over a number of sum-
mers, in Winograd and Bobrow’s project at the Xerox Palo 
Alto Research Center (PARC) to develop a “Knowledge Repre-
sentation Language” known as KRL.17 Though in some ways 
Mantiq was inspired by the aims of KRL, it was equally moti-
vated in contrast. Though I was sympathetic to KRL’s attempt 
to fuse descriptive, procedural, and architectural capacities,18 I 
was dismayed at its mushrooming complexity, impatient with 
the initial version’s retention of a distinction between a “declar-
ative” representational language and the “procedural” program-
ming language (Interlisp) used to specify behaviour, and suspi-
cious that the designers’ proposal to add procedural and meta-
level facilities “later” (i.e., in some imagined future version), ra-
ther than designing them in at the outset, would sentence the 
system to irredeemable baroqueness.19 I imagined something 

 
 
16It is not hard to think that one can imagine something, of course. 
17Bobrow, Winograd, and the KRL Research Group (), pp. –
. 
18Just one example: KRL attempted to implement default reasoning ar-
chitecturally, rather than explicitly. Suppose for example that β (say, 
that x flies) is intended to be a default entailment of α (that x is a bird). 
One of our goals, in designing KRL, was to construct a system that, 
when presented with α, and absent any explicit countervailing indica-
tion, would conclude β without having to consider a representation 
whose content was along the lines that “β was a default consequence 
of α.” That is, the aim was for KRL to conclude, by default, that β was a 
consequence of α, rather than by to (explicitly) conclude that β was a 
default consequence of α. 
19If the system was to be adequate as a descriptive framework, why 
not use it to describe any behaviour that was to be engendered? Alt-
hough this was a sentiment with which Bobrow & Winograd agreed, 
they did not deem it possible to pursue in KRL-0. Eager to move for-
ward towards such a goal, the project I took on, as a student member 
of the project, was an attempt to represent KRL descriptive structures 
within KRL, as a first step towards incorporating a procedural 
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orders of magnitude simpler, yet at the same time far more gen-
eratively powerful—a core, integrated calculus that would wear 
a combined essence of reasoning-cum-representation on its 
sleeve. 

In , as a design study en route to Mantiq, I decided to 
work out, within the familiar context of a programming lan-
guage, the notion of reflection discussed in the papers included 
in Legacy—the kinds of self-directed reasoning and representa-
tion that I knew would need to be a fundamental architectural 
dimension of the ultimate Mantiq system. Once reflection and 
“a few other details” were in hand, I planned to turn to Mantiq 
itself. 

For multiple reasons, I chose Lisp as the programming lan-
guage to work with. Lisp was simple and expressive, for start-
ers—at least in its core versions, including Lisp . and the ini-
tial versions of Scheme that Sussman and Steele were designing 
at the time. Second, as mentioned, Lisp embodied the aesthetic 
that, though difficult to articulate, was so important, and some-
thing I took to be a criterion on the design of Mantiq: of syn-
categorematically expressing, in relatively distilled form, at least 
some of the essential structure of its domain of applicability.20 

 
 
language within the overall descriptive framework. There is no doubt 
that the Lisp language arose in part from this experience. Note that 
Lisp can be considered to be approximately the dual of that KRL sub-
project. Rather than represent procedural capacities within a descrip-
tive framework (my task for KRL), my goal in Lisp was to instill the 
type of semantical framework appropriate to a descriptive calculus 
into the scope of a procedural language. 
20Set theory is simple, too—and one undoubtedly could (some people 
do) model the behaviour of programming languages in set theory. But 
with respect to the domain of programming languages, set theory does 
not embody the aesthetic I was after. The reason I had been so im-
pressed with the differential calculus as a kernel formalism in which 
to express classical mechanics and dynamics had to do with how many 
substantive physical insights were embodied in the formalism itself—
including, for example, the idea of point-to-point temporally varying 
features (in the Strawsonian sense), not requiring any notion of a 
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Third—and contrary to subsequent misinterpretation—I also 
felt that, in its structures and its behaviour, both explicitly and 
implicitly, Lisp was admirably free from distracting influences 
of its implementation on von Neumann architectures. This 
would allow reflection in Lisp to be genuinely about Lisp itself—
i.e., about the nature of Lisp (about the “pure Lisp virtual ma-
chine,” to put it in computational vernacular), not about details 
of its underlying (physical or computational) implementa-
tion.21 Fourth, Lisp was not bogged down by irrelevant issues 
of complicated syntax—a benefit for the “programs as data” fo-
cus of reflection and self-reference. Fifth, early versions of Lisp 
attempted to be higher-order, and Scheme actually achieved 
that capability—a fact that was relevant to a number of other 
long-term Mantiq design goals. Sixth, around MIT in the s 
Lisp reigned supreme, virtually unchallenged as something of 
an AI programmer’s lingua franca: the language in which to build 
AI systems. Seventh, and by no means least, from the first meta-
circular interpreter for Lisp, called M-Lisp, formulated in 
McCarthy et al.'s legendary Lisp !.# Programmers Manual, Lisp 
provided built-in mechanisms for (structural) quotation and 
for dealing with program structures as data, thereby famously 
allowing informal play with (at least narrow) self-referential 
programming. 

So I selected Lisp not merely as a language in which to im-
plement a prototype reflective system—which, though it hap-
pens to be true, is from a theoretical point of view irrelevant—
but as the basis for a design that was itself reflective. The distinc-
tion is critical for various theoretical reasons, especially 

 
 
discrete individuated object for their exemplification. Set theory, in 
contrast, does not embed substantive theses considered to be univer-
sal to programming languages—does not architecturally build in 
those features that are and must be shared among all candidate pro-
gramming languages (including behaviour, representation, effective-
ness, and instruction-following). 
21Garbage collection, for example, is in my book a fact about Lisp im-
plementation on von Neumann machines, not about Lisp itself. 
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including semantical ones, but it had an additional side benefit. 
The study provided a dual opportunity: not only of under-
standing reflection well enough, or anyway so I hoped, to incor-
porate it in Mantiq, but also of filling in a gap in our under-
standing of Lisp itself. As noted, it was well understood in the 
s that Lisp provided capacities for quotation and other 
(narrow) forms of self-reference; it facilitated ready demonstra-
tion of meta-circular interpreters; it seemed unproblematically 
to support (pace subsequent debates) macros, backquote, and 
other forms of programmable program modification; and Lisp 
.’s (McCarthy’s) analysis of Lisp in Lisp suggested its use as 
its own meta-language. Yet I had always felt, since my very first 
encounter with the language in the s, that in all then-ex-
tant dialects of Lisp these self-referential powers remained tan-
talizingly undeveloped and under-theorized. Designing a re-
flective dialect of Lisp, therefore, struck me as a worthy side 
project—offering the possibility of bringing to successful com-
pletion the self-referential promise that Lisp had inchoately of-
fered from the outset. 

As the work got underway, the subsidiary goal took on a life 
of its own: to deepen our understanding of Lisp’s vaunted self-
referential properties. Embarrassingly, until close to the end of 
the s, it remained my intention to write a doctoral disser-
tation on Mantiq, incorporating a raft of metaphysical, onto-
logical, and epistemic proposals. The full Mantiq project, how-
ever, was not just unrealistic; it was delusional. Fortunately, de-
veloping Lisp proved sufficiently tractable to serve as an ade-
quate basis on which to obtain a doctoral degree. 

 4 Project 
Numerous considerations recommend reflection as an area of 
study. 

First, if a knowledge representation system (such as the en-
visaged Mantiq) is to be integrated, not only in the sense of not 
imposing a sharp procedural/declarative divide (such as by us-
ing different languages for each, in the manner of KRL), but 
also, relatedly, in allowing behaviour to be specified in virtue of 
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its explicit description, rather than just through bare impera-
tives, then the system’s structures, operations, and behaviour 
must be able to be represented and described. 

Moreover, if the reflective mechanisms are to be capable of 
modifying or affecting the system—rather than just being pow-
erful enough to model or describe it, as for example ubiqui-
tously demonstrated in incompleteness and uncomputability 
proofs—then those structures, operations, and behaviour must 
be represented effectively, in two importantly distinct senses of 
that critical term. For starters, throughout the course of the sys-
tem’s operation, what is the case about the system, not just in 
general, but specifically what is going on at that very moment, 
must be presentable to the system using the system’s own de-
scriptive/representational resources. That is, as I put it in 
Smith (), the system must be capable of on-the-fly intro-
spection.22 In addition, for the reflective deliberations to be of 
any use, they must be what I came to call causally connected in 
such a way as to support consequential intervention and ac-
tion.23 Whether one takes the use of the words literally or met-
aphorically, that is, a reflective system must be capable of self-
directed “perception” and “action”—must act, in Searle’s phras-
ing, in ways that honour both world-to-word and word-to-
world norms24 (though in both cases the “world,” in Lisp’s 
case, was restricted to the innards of the system itself in addi-
tion to associated mathematical entities). In sum: by itself, the 
goal of integrated control is strong enough to mandate effective, 

 
 
22“Varieties of Self-Reference,” Smith (). 
23Another way to describe this is directionally, in terms of  the ubiq-
uitous metaphor that meta-level descriptions are “above” the base-
level they describe—e.g., as reflected in the phrase “semantic ascent.” 
A reflective system must implement an effective version of semantic 
ascent, or be able to “reflect upwards,” as well as to implement an ef-
fective version of “semantic descent,” or be able to “reflect down-
wards,” by moving from a meta-level description of a possible state of 
itself to being in the state thereby described.  
24Searle (). 
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self-referential access to a system’s representational structures. 
So from the outset, it was clear that a genuinely integrated rep-
resentational system must be reflective—must honor the re-
flective integrity criterion. 

A second reason to focus on reflection, independent of con-
siderations of integrated control, is more pragmatic. As all pro-
grammers know, such proto-reflective capabilities as quotation, 
disquotation and meta-level facilities, on both sides of the pro-
cedural/declarative divide (i.e., both in procedural program-
ming languages and in such purely representational systems as 
formal logic), supply remarkable power at minimal cost. In 
Lisp’s case, explicit access to the famed EVAL and APPLY, along with 
program quotation, are crucial to its ability to embody the “dis-
tilled kernel” aesthetic described above. Lisp’s support for mac-
ros, similarly, allows the language to be used for its own exten-
sion,25 increasing expressive power with little increase in core 
complexity.26 Code optimizers, genetic algorithms, debuggers, 
etc., are behaviours that can all be considered to fall within this 
class.27 And as mentioned earlier, if such capacities are ulti-
mately going to be part of an integrated representational sys-
tem, rather than build them in at the outset (which would be 

 
 
25‘Extension’ not in the logical sense, but in the ordinary language 
sense of allowing the system to be extended—by adding features, defin-
ing new aspects and properties, etc. 
26The notion of “increased expressive power” is informal but crucial. 
There are widely accepted proofs that, on the procedural side, any 
machine capable of implementing a Turing machine is “equally pow-
erful,” and on the descriptive or representational, that any system ca-
pable of expressing the truths of arithmetic is as “just as expressive” as 
that of any other language whose semantical structures can be arith-
metically modeled. I support neither notion of equivalence, and reject 
their excessively-indiscriminate use of “equivalent power.” 
27The point is not that macros, debuggers, optimization routines, etc., 
are simple or distilled. Rather, it is that a simple, distilled kernel with 
quotational and other very simple meta-level capabilities (explicit EVAL 
in Lisp, for example) can provide a facility for defining all of these 
sorts of capabilities, without needing to complicate the kernel. 
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brittle and baroque), facilities for their integration should be 
part of the kernel architecture, so that they could be added in a 
theoretically and practically elegant way. 

A third motivation for studying reflection is best framed 
theoretically. It has to do with the treatment of what is perhaps 
most generally subsumed under the notion of the “meaning” or 
“sense” or “intension,”28 as opposed to the denotation or exten-
sion, of a procedural or declarative structure. Considerations of 
meaning and intension are ubiquitous in logic and philosophy 
of language, to deal with referential opacity, modal operators, 
quantificational contexts, variable binding, etc., where the se-
mantical import or role of an occurrence of a term is other than 
simply to designate or point to its referent. Computer science 
has at least analogous contexts, where the computational sig-
nificance of an expression differs from, or goes beyond, its or-
dinary denotation or “value.” Most famous are the “left-hand 
side contexts” in assignment statements,29 but there are other 
cases as well, such as in variable declarations, some forms of pa-
rameter passing (e.g., when the name of an array is passed as an 
argument to a function rather than the array as a whole), etc. 

These intensional issues are relevant to reflection because of 
their intimate relation with quotation and semantic ascent. 
Lisp is especially free in using quotation to deal with intensional 
issues.30 Cf. for example the way that LAMBDA terms are used to 

 
 
28This is not the place to distinguish and disentangle the relations 
among these three terms. Arguments can be made that the notion of 
intension (as opposed to extension) is logic’s partial attempt to deal 
with what, at least since Frege, philosophy of language has called the 
sense (as opposed to reference) of a natural language expression or 
thought. 
29If x=2 and y=10, for example, the Python statement 

x = (x + y)/0   

is an assignment statement that results in variable x being assigned the 
value 6; it is not a false claim that 2=6. Similarly, in 

  array[6] = array[6] + 8 

the right-hand-side occurrence of ‘array[7]’ is generally taken to be a 
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create closures in Scheme, which essentially involves quoting 
their bodies, or Lisp .’s use of APPLY, MAPCAR, etc., where the 
programmer must explicitly quote a functional expression in 
order to enable it to be applied to arguments in a different con-
text, as for example in:31,32 

(mapcar '(lambda (x) 
            (+ x 1)) 
        '(10 20 30))        ⟹ (11 21 31) 
(apply  '(lambda (j k l) 
            (* j (+ k l)))  
       '(7 8 9))         ⟹ 119 

Even the simple case of setting a variable, which in many lan-
guage is a primitive construct (e.g., y = y + 1), involves intensional 
issues—one reason why the construct bedevils initiate pro-
grammers, since the so-called “left-hand side value” (the varia-
ble ‘y’ in this case, in its occurrence on the left side of the equals 
sign) is, as it is said, “not evaluated.” It is not incidental that the 
corresponding Lisp expression is: 

(setq y (+ y 1)) 

where the ‘Q’ in ‘SETQ’ is short for “quote,” the expression being 
an abbreviational equivalent to the more transparent: 

 
 
reference to the value of the seventh element of the array named ‘array’, 
whereas the left-hand-side occurrence names that element, in such a 
way that execution of the statement can cause the value to be  greater 
than it was before that execution. 
30As a logician might put it: dialects of Lisp prior to Scheme (and 
/Lisp) used hyperintensional mechanisms to deal with intensional 
issues. 
31These are Lisp . versions; in each case, the Scheme analogue 
would omit the quote mark before the «(lambda…)» term, but retain it 
before the second argument. 
32Again, Python does not require the same use of quotation as Lisps, 
but approximately equivalent expressions would be: 
       list(map(lambda x: x +1, [ 10, 20, 30 ]))           ⟹		[ 11, 21, 31 ] 
and: 
       (lambda j, k, l : j * (k + l))(7, 8, 9)                     ⟹		119 
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(set (quote y) (+ y 1)) 

or, as it is universally written, 
(set 'y (+ y 1)) 

The general point is that whereas more complex languages may 
provide special constructs (assignment statements, special syn-
tax for type declarations, etc.), Lisp’s simplicity and “kernel cal-
culus” character lead it to use quotation as a mechanism for 
treating sophisticated issues about meaning—a step, I believe, 
though it is never so described, towards dealing with reference 
to meanings (i.e., the ability to construct and use terms whose 
extensions are the intensions of other terms). Anyone proposing 
to deal seriously with intentionality (with a ‘t’) and therefore 
anyone proposing to design a comprehensive representational 
system, thus needs a firm grasp of the relationship between 
quotation and self-reference, on the one hand, and fine-grained 
intensional (with an ‘s’) contexts, on the other. Reflection is a 
great site in which to work such issues through. 

A fourth reason to focus on reflection, though still technical, 
has a different flavour. 

In the late s and early s, when Lisp was designed, 
it was common for researchers to construct AI systems to deal 
with simulated worlds—“toy worlds,” as they disparagingly 
came to be known, because of the patently unrealistic simplicity 
of the simulations commonly used. To foreshadow concerns to 
be taken up later, one problem (of many) with these “toy-
world” simulations was that they effectively “baked in” their de-
signers’ conception of their task domain’s ontology, character-
istically taken to be clean and unproblematic. My sympathies 
lay with a then-growing cohort in AI who felt that it was intel-
lectually important—fundamental in order not to “cheat”—for 
an AI system to engage with its subject or task domain “for real,” 
rather than merely “as imagined.” 

The problem, of course, is that dealing with external task 
domains “in vivo” typically requires engaging with sensors and 
effectors, perception and action, etc.—i.e., requires that one 
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take up real-world robotics, suffused in expense, challenges, 
and complexity. Taking the “internal structures” and “internal 
behaviour” of a computational system to be its represented sub-
ject matter thus allows a system to be genuine without requiring 
the resources of sensors, effectors, and general robotics. That is 
not to say that the structure of a calculus or virtual machine 
might not still be considered “toy,“ because of its extreme sim-
plicity (and formal neatness), especially as compared to the ex-
ternal world. That simplicity has its advantages, though—it al-
lows the theorist to pursue the architectural and semantic is-
sues in greater depth than would likely be practicable were the 
base case or ground condition to be realistically rich. Having a 
task domain be simple and cheap, but still genuine, makes it an 
ideal initial site for exploring issues of representation, behav-
iour, and semantics. 

A fifth reason to study reflection was different in flavour. Stem-
ming from the human side of things, the motivation stemmed 
from a recognition of the importance of the self to the very no-
tion of intelligence, and the corresponding urgency, for AI and 
cognitive science generally, of understanding it. 

The view that the ability to reason about oneself must be an 
integral part of any system able to engage in full-fledged reason-
ing is widespread—from the Delphic “know thyself” injunc-
tion, to considerations of the phylogeny of the prefrontal cor-
tex, to Popper’s indelible “we think so that our hypotheses can 
die in our stead,” to AI’s recognition of the importance of meta-
level reasoning in planning and error recovery. The recognition 
is so widespread that it need not be belaboured here, except to 
make one personal comment relevant to the reflection project. 

I was suspicious, in the s, and remain suspicious today, 
of excessive emphasis on explicit “self” versions of reference and 
consciousness, blinding one to what I take to be the most im-
portant fact about meaning and semantic directedness—that it 
can leap over time, space, connection, and even possibility, so as 
to be directed towards alterity, towards the world beyond, to-
wards the wider reality in which we all live. 
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There is not the remotest sense in which the Lisp architec-
ture, or the more general notions of reflection explored in this 
volume, probe questions of the depth required to do justice to 
all of these issues. But it is important to understand that the 
theoretical framing of the Lisp project, and to some extent the 
subsequent analysis of its capabilities, were influenced by this 
motivation. Even in the s I believed a proposition to which 
I remain committed today: that if we develop technical models 
or analyses of concepts and behaviours fundamental to our hu-
manity, we should do so with respect for the “real case,” of 
which our technical systems are but simple, inchoate models. 
Perhaps the staggering advances in processing power witnessed 
in the intervening four decades, including present enthusiasms 
for various machine learning schemes and second wave AI, will 
make the point more obviously consequential than it was in the 
s. However that goes, I believe that it is important to keep 
in mind, throughout the technical intricacies of the discussions 
of representational semantics, even in the arcane details of the 
technical papers included in the accompanying volume, that se-
rious issues are at stake—much more serious than surface de-
tails might suggest. 

There was yet a sixth motivation, relating the reflection project 
being examined here to the wider issue of the self as theorized 
in knowledge representation, AI, and cognitive science. In the 
s, as this work was being undertaken, the topic of con-
sciousness was just beginning to emerge from a long period of 
intellectual taboo (at least in scientific circles) into legitimacy 
and even prominence. Here, too, I want to make just one famil-
iar point: that it was (and remains) popular, in discussions of 
consciousness and even of awareness, to point to self-conscious-
ness—to the ability to be aware of being aware, to the capacity 
of engaging in meta-level reasoning, etc.—as being not just 
characteristic attributes of consciousness, but perhaps even de-
fining, or at least definitive of what makes human conscious-
ness special. 

For reasons mentioned above, I found much of this focus on 
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the “self” aspects of consciousness excessive. Needless to say, 
self-awareness is decisive in rational, ethical, emotional life. Yet 
it was common, in the s, to hear incautious exhortations 
not much more sophisticated than the following: “If only we 
could construct a system that was aware of itself—that could 
reason about its own nature and behaviour—why then we would 
have a system that was truly conscious!” 

I doubted it. I have almost unbounded respect for what it 
would be to develop a system that can genuinely be said to think 
about anything—for all sorts of reasons, including many that 
figure in discussions of authentic and/or genuine intentional-
ity. Similarly, though it is likely easier, I have the greatest ap-
preciation of what it would be to devise a system that merits 
being called aware. But the self part made me uneasy—espe-
cially its fetishization. Sure enough, there can be something 
wondrous, and devilishly intricate, about the ability to step at 
least partially aside from one’s own existence, in order to survey 
it along with all else that exists in the world. There is no deny-
ing its psychological importance, either—or underestimating 
the apparent difficulty in achieving detachment or dispassion in 
more profound form. But architecturally, the self did not seem 
to me to warrant the almost mystical awe in which it was held. 
The fundamental challenge for AI and cognitive science, I be-
lieved then—and continue to believe now—is not to be con-
scious of oneself, but to be conscious of the world. 

An anecdote. In the late s, a small group of philoso-
phers and philosophically-minded cognitive scientists met 
from time to time in Cambridge, MA.33 At one such meeting 
someone expressed the view that what would genuinely be chal-
lenging for artificial intelligence, and would almost be constitu-
tive of achieving consciousness, would be to build a “self-aware” 
computer system, with the emphasis on the ‘self’—one capable 

 
 
33I have no clear sense of the membership, but I recall at least Ned 
Block, Dan Dennett, Jerry Fodor, David Israel, Dan Osherson, and 
Georges Rey being among the regular attendees. 
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of forming meta-level beliefs, desires and intentions about its 
own beliefs, desires and intentions, without restriction or 
limit.34 I protested that this was patently untrue—that I could 
trivially build such a system, if someone would first just tell me 
how to build a system that could be aware of a tree. In fact, pace 
awareness, I had already constructed systems, I pressed on, 
with all the self-examining, self-referential, self-modifying 
properties that others were touting as the mark of conscious-
ness—yet I was willing to guarantee, and would certainly have 
gone to court to argue, that these systems were not in the remot-
est sense conscious of anything at all. 

It would go too far to say that my subsequent study of re-
flection was intended to be deflationary, but it was definitely 
intended to be demystifying. The analogy with recursion is in-
structive. (Reflection bears more than a passing resemblance to 
recursion, though reflection is substantially more complex, in 
part, though by no means only, because of being semantically 
laden.35) To the uninitiated, recursion can seem mysterious, 

 
 
34The “qualia” debate had not yet emerged—but even when such is-
sues are taken into account, it is the qualitative character of being in 
the world that is challenging, in my book, not the additional case of 
qualitative character of oneself thinking or being aware. 
35Recursion is sometimes described as involving self-reference, and so 
might seem like a semantically-laden notion, but I believe that the de-
scription of recursion as involving self-reference is an elementary se-
mantical mistake. 

From an extensional point of view, first, a recursive function is 
simply a mapping from a domain to a co-domain. There is nothing 
circular or looping, let alone referential, about it, qua mapping. Sec-
ond, even intensionally, to assume for a moment that it is legitimate 
to talk about functions-in-intension, any looping or topological 
closedness is at most mereological—again not involving reference in 
any form. Issues of reference arise only when one describes or denotes 
or represents a function (recursive or otherwise). But in that case, the 
supposed “self-reference” is not self-reference—not reference to the 
definition. Rather, it is an embedded reference, within a (presumably 
compositional) representation of a complex whole, to that whole, ra-
ther than to a part of that whole—thereby violating a kind of 
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even somewhat magical. Sans underlying support, implement-
ing recursive behaviour is somewhat complicated, as would be 
agreed by legions of low-level programmers who have struggled 
to ensure that re-entrant drivers, interrupt processors, and op-
erating systems do not inadvertently trample on their own var-
iables. And few are the students who find Church’s Y-operator 
pellucid. Moreover, implementing efficient, seamless, transpar-
ent garbage-collecting memory management regimens, a pre-
mium in implementations of recursive behaviour, remains an 
active area of research.36 Nevertheless, we understand recursion; 
virtually all contemporary high-level languages provide primi-
tive support for it. No one is any longer theoretically perplexed; 
and programmers use it with abandon. 

One of my original goals in studying reflection, by analogy, 
was to render descriptive and effective reflective (including self-
referential) access as unproblematic as recursion, to enable it be 
provided by default in high-level languages, to unleash 

 
 

mereological isomorphism that might otherwise be suggested by the 
governing compositionality. (Think about a technique employed in 
the days of early Lisp implementations of replacing the “recursive call” 
within a recursive procedure definition with a direct link back to the 
beginning of the procedure—making the definition, again, topologi-
cally closed or looping, thereby avoiding the overhead of a full proce-
dure call, for a miniscule gain in efficiency.) 

In sum, not only do recursive functions not refer to themselves; they 
do not refer at all. Functions are not semantic entities. The definition 
of a recursive function does not refer to itself, either; it contains, as a 
proper subpart, a reference to the function as a whole. To call a re-
cursive definition self-referential is thus to commit an elementary 
use/mention confusion. 

One can put the point even more simply. Extensionally, recursive 
functions involve neither self nor reference; they are merely mappings 
from domains to co-domains. Intensionally (or hyper-intensionally), 
definitions of recursive functions do involve self, but they do not in-
volve self-reference; rather, they involve self-use. (The fact that we call 
recursive functions ‘recursive’ is an intensional or hyper-intensional 
fact about their finite representation.) 
36E.g., in data purge algorithms in (so-called) solid-state disk drives. 
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programmers to use it without question—all in order to free us 
up to focus on more important things. Most of my published 
work, including not only the technical papers on reflection and 
3Lisp, but also the more conceptual On the Origin of Objects and 
The Promise of Artificial Intelligence attest to that same orienta-
tion. As I have said several times, I firmly believe that the most 
difficult problems that AI and cognitive science must address do 
not have to do with self-reference and reflection at all, but with 
comprehending the world at large. 

There is irony to the situation. In spite of spending years 
studying reflection, and developing something of a reputation, 
particularly in computer science, for being obsessed with self-
reference, my deeper goal was to understand the self en route 
to setting it aside, as a theoretical problem, in order to focus on 
more challenging issues. 

So that was the project: to explore issues reflection, self-refer-
ence, and substantial and effective self-description. Locally, the 
goal was to understand the topic, at least in a skeletal way, so 
as: (i) to clarify some of the promises that had lain implicit in 
Lisp and other programming languages and calculi that were 
able to “treat programs as data,” (ii) to serve as an ingredient for 
a larger knowledge representation system; and (iii) if not quite 
to “solve” at least to advance our understanding of some of the 
formal/technical mystique surrounding consideration of the 
self. The approach also arose out of a sensibility: that in our 
theorizing about consciousness we stop fetishizing the self, and 
focus on the more substantive issue of building systems able to 
grasp their embedding world. 

But topic, goal, and sensibility are not enough. Also required 
is an idea—an insight or guiding principle strong enough to al-
low these aims to be realized. That idea had to do with seman-
tics. 

 5 Semantics 
As I have said several times, reflection is an ineliminably seman-
tic or intentional phenomenon. That is not to say that it is 
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passive, as if all that is required is reference or representation. 
As noted above, reflection in the sense I am considering re-
quires effective, dynamic interaction between the reflective pro-
cess and the system of which it is a part—self-directed ana-
logues of action as well as perception. Notwithstanding these 
requirements of causal or effective engagement, however, the 
fundamental fact about reflection is of a system able to bear a 
semantic or intentional relationship to itself. 

This stance of giving semantics the lead in any discussion of 
reflection is betrayed in the opening characterisation: that re-
flection is the ability of a system to represent, reason about, or 
direct intentional action towards its own structures, operations, 
and behaviour. Representation and “reasoning about” are para-
digmatic (and paradigmatically) semantic phenomena—virtu-
ally defining of what semantics is. Directing intentional action 
towards something is by definition intentional; but even if the 
phrasing were simplified to ‘deal with,’ in the sense intended, 
the meaning would be the same. To “deal with” something is to 
be directed towards it—a caller at the door, a pressing email, an 
electrical problem. And a similar point can be made of other 
characterisations, such as the opening sentence in the (current) 
Wikipedia article on reflection, which describes it as “the ability 
of a process to examine…and modify its own structure and be-
havior.”37 Like ‘reason’ and ‘represent,’ the term ‘examine’ is se-
mantically laden, denoting an intentional activity and orienta-
tion. One would not say that a bullet “examines” the window 
that it shatters, or that a magnetic field “examines” the objects 
within its compass in order to determine whether or not they 
will bend to its “will”—would not use intentional language, that 
is, when the phenomenon can be comprehensively explained 
using less conceptually demanding physical notions. 

Like all semantic phenomena, as most obviously manifested 

 
 
37“Reflective programming,” Wikimedia Foundation, last modified 
September , , : (UTC), https://en.wikipedia.org/wiki/Re-
flective_programming (emphasis added) 
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by reference, reflective activity is oriented towards some entity, 
event, phenomenon, domain, or subject matter (in reflection’s 
case: some aspects of the system of which it is a part)—related 
to it through a “semantic arrow of intentional directedness,” to 
put it in Brentanoesque terms.38 This referential orientation, 
and more general semantical character, is underscored in infor-
mal discussion, and explains the almost automatic assumption 
that reflective reasoning must involve some form of “semantic 
ascent” or employment of meta-levels. In addition, as explained 
in the Introduction, and using terminology discussed in Smith 
, it must also be deferentially oriented towards its subject 
matter. This normative requirement is fundamental. Notwith-
standing their use to underwrite activity, change default behav-
iour, and the like, reflective descriptions, models, and even ac-
tivities are normatively accountable to the system of which they 
are descriptions and models—towards which they are oriented. 
A reflective model or description, to put this baldly, should be 
correct, or at least descriptively or representationally adequate 
to the tasks in which it is being employed. 

This point about reflection’s fundamentally semantic char-
acter seems so obvious as barely to deserve mentioning. It is cer-
tainly the case that discussions of reflection, in programming 
language circles as much as in logic, are drenched in semantical 
vocabulary: self-models, meta-level reasoning, representations of 
dynamic program state, etc. Reflection, it is said, involves “de-
composing a system into a base-level and one or more meta-levels 
that perform computation on the computation of the lower levels,” 
for example, to take a quote almost at random;39 or “[c]ompu-
tational reflection…is defined as the activity performed by an 
agent when doing computations about itself.40 Yet, as this book 
takes pains to argue, this surface agreement and use of common 

 
 
38Or at least Brentano as interpreted by Chisholm, see Chisholm 
().  Also see McAllister () and Dupuy (). 
39Cazzola et al. (). 
40Ancona et al. (). 
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semantical vocabulary mask profound underlying disagree-
ment, having to do with what the word ‘semantics’ is under-
stood to mean. 

When I set out to design Lisp, I was innocent of the lurking 
semantical and terminological complexities. I based the design 
of the dialect on a conception of semantics that arose from my 
interest in knowledge representation and wider issues in cogni-
tive science. Though I knew little logic at the time, the approach 
is also consonant with the classical (roughly realist) conception 
of logical semantics discussed in chapter . That is, without yet 
appreciating the profundity of the difference between them, I 
took ‘semantics’ to mean ‘semantics-L,’ not ‘semantics-C.’ 

In particular, I took the requirement of distinguishing signs 
from what they signify—maps from territories—to be a mini-
mum requirement on any system pretending to representa-
tional status. True, programming languages were not usually 
viewed as representation systems, but they are universally taken 
to be semantic—i.e., to comprise symbolic structures subject to 
interpretation—and so nothing seemed awry in approaching 
them from a representational vantage point. They involve the 
use of numerals, for example; the numerals surely designate 
numbers; and so on. Similarly for the other semantical terms 
with which computational discourse is rife: names, identifiers, 
symbols, references, data, information, etc. Theories of program-
ming language semantics routinely map entities of all these 
sorts onto corresponding semantic values in what, at least on 
the surface, looks like the usual way (numerals onto numbers, 
memory addresses onto memory locations, etc.). And so it 
seemed innocuous, and certainly uncontentious, to embark on 
the project of designing a programming language, enriched 
with reflective capacities, that was based on a representational 
conception of semantics. 

The details of the particular representational stance that I 
adopted were commonplace in the s, though they now 
seem dated. In the dissertation I framed them this way, with 
reference to the overarching project of artificial intelligence 
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(note that the KRH is not about reflection, but about the un-
derlying conception of computation and representation on top 
of which Lisp’s model of reflection was based): 

KRH Knowledge Representation Hypothesis (1982): 
Any mechanically embodied intelligent process will be 
comprised of structural ingredients that (a) we as ex-
ternal observers naturally take to represent a proposi-
tional account of the knowledge that the overall pro-
cess exhibits, and (b) independent of such external se-
mantical attribution, play a formal but causal and es-
sential role in engendering the behaviour that mani-
fests that knowledge. 

This was my attempt, in , when Lisp was designed, to ex-
plicate the “formal symbol manipulation” conception of both 
computation and cognition that reigned throughout AI and 
cognitive science in the s, in the heyday of its classical 
model (GOFAI). From a contemporary perspective, its formu-
lation is problematic, even if one continues to embrace a computa-
tional theory of mind. For present purposes, what matters is the 
KRH’s deferential attitude to semantics. I now believe that its 
claim that the mechanistic (formal, causal) operations are inde-
pendent of the semantic attribution is too strong (false, in fact, 
of entities we take to be computers), but it certainly entails 
something I still believe: that there is more to the semantics than 
merely “what happens,” mechanistically (formally, effectively, 
causally). And that “more” is enough to motivate the deferenti-
ality of the stance: as explored in chapter , how things are (me-
chanically) treated is normatively governed by that semantical 
interpretation, with that non-effective interpretation having at 
least a degree of ontological and explanatory priority over the 
mechanically engendered behaviour. 

For purposes of this book, and somewhat informally, I will 
label this deferential stance a representational model of com-
putation—even if not necessarily restricted to be formally rep-
resentational in the sense articulated in the KRH. There are 
hazards in using the term ‘representation’: it is used with a host 
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of different meanings in different fields; these days it is almost 
universally deprecated in contemporary discursive theorizing in 
all of them; and it is itself subject to the very same confusions 
that, as I will argue here, plague our understanding of seman-
tics. As I argue elsewhere, however,41 I find the deprecation ex-
cessive, blocking appreciation of profound insights into the na-
ture of intentional mechanism. What matters most about rep-
resentation here is merely that the ingredient structures of a 
representational computing system, as I use the phrase, are 
mandated, in some way or other, to bear a deferential non-effec-
tive semantic relation to that system’s world or task domain. 

A commitment to a representational model of computing was 
not, per se, the idea on which the proposed theory of reflection 
was based—the idea that I later came to feel had disappeared. 
But this representational model of computing was a critical pre-
cursor to and underlying assumption of that idea. Part of what 
rendered the reflection idea invisible was that an underlying 
deferential conception of semantics was something I simply as-
sumed. It is not that I considered it unworthy of mention; the 
aim of articulating the KRH, above, was exactly to forestall any 
misunderstanding. But then, with that much said, I simply 
took a deferential understanding of non-effective representa-
tional semantics to constitute the theoretical background in 
terms of which the idea I wanted to express was framed. 

The model of reflection, based on this assumption, was ra-
ther simple: the architectural form of a reflective system, I be-
lieved, was effectively dictated by two things: 

. The system’s nonreflective architectural form—i.e., the 
system as it was defined for or used in normal, nonre-
flective situations; and 

. The overarching or governing semantical framework—

 
 
41See “Rehabilitating Representation” (Smith ), and also the 
‘Representational Mandate’ in Promise (Smith ). 
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again, as framed so as to deal with the semantics of non-
reflective representational structures. 

That is, to make this as explicit as possible, far from being a 
mysterious or sophisticated add-on to a general (nonreflective) 
system, requiring devious additional design, the structure of a 
reflective system emerged, or anyway so at least I claimed, as a 
relatively straightforward consequence of two things: (i) its rep-
resentational capacities; and (ii) its base-level architectural de-
sign. (The claim is a little strong—but there is something right 
about it—and it is that “something right” that I was struggling 
to convey.) 

As this formulation makes evident, the substance or content 
of any given reflective system (the meaning or content of its re-
flective deliberations or states) is governed by the nature of the 
theory of self in terms of which the system found itself intelli-
gible, acted upon itself, etc. A reflective system framed in terms 
of a modest theory of self (in terms of a modest “self-model,” as 
some would put it) would, perforce, likely have modest reflec-
tive capacities. A system capable of perceiving, understanding, 
and acting upon itself in terms of a powerful, comprehensive 
theory of self would thereby be that much more reflectively pow-
erful. Such a system, however, would need to be capable of 
powerful capacities for perceiving, understanding, and acting in 
general—which capacities would by my lights need to be avail-
able to be deployed in its mundane, base-level interactions with 
the world.42 The nub of its reflectivity—the architectural intri-
cacies required in order to make the system reflective, so that it 
could avoid tripping over itself in vicious loops, but nevertheless 
be sufficiently closely engaged with its own operations so as to 
be able to monitor the most acute particular details—i.e., the 
self-referential architectural structure that combined the 

 
 
42The reason that those capacities would have to be available in non-
reflective situations, rather than merely being likely to be available, 
stemmed from the aspects of reflection that transcended mere intro-
spection. See chapter . 
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requisite degrees of attachment and detachment—that, I be-
lieved, was: 

. Relatively simple—certainly more complex than recur-
sion, to repeat a point made earlier, but nevertheless 
something that could be understood once, demon-
strated to be theoretically sound and pragmatically trac-
table, and then, as I put it above, “used with abandon”; 

. Generic, in the sense that it could underwrite essentially 
arbitrary reflective systems, even if those systems dif-
fered substantively in having widely differing theories of 
self (just as the theory of recursion underwrites all man-
ner of divers recursive function definitions); and 

. Effectively dictated, as stated above, by the combination 
of (i) its basic, nonreflective architecture, and (ii) the na-
ture of the governing semantic/intentional theory. 

Did I say as much in the dissertation? Perhaps not as summar-
ily as I might have. The most compact statement occurs in a 
paper published in the Principles of Programming Languages 
conference (POPL) in , where expression is given to a thesis 
that subsequently became something of the Lisp project man-
tra: that 

RSS Reflection is simple to build on a semantically 

sound base 

The phrase “semantically sound” in this statement does not 
mean ‘sound’ in the technical sense of formal logic,43 but neither 
was it meant entirely informally—i.e., as saying no more than 
that a house should be built on sound foundations. Its specific 
content will be explained in chapter , having to do with the 
appropriate integration of declarative and procedural forms of 
content. One of the difficulties with the reception of Lisp had 

 
 
43I.e., that derivable consequences of a set of premises are true just in 
case the premises are true. In the context, that would have been the 
natural interpretation, and so the wording was infelicitous. 
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to do with the fact that the very maxim on which it was formu-
lated was itself subject to misinterpretation due to conflicts in 
underlying assumptions and vocabulary. 

Nevertheless, RSS was always intended pragmatically. At a 
general level, the intuition was roughly this: that, because re-
flection is a semantic phenomenon, and because its intricacies 
can grow, in order to be intelligible and useful, it should be de-
veloped in a system whose base-level semantic framework is as 
clear and as simple as possible. Given that clear and simple base, 
the idea went, the ensuing reflective architecture would be sim-
ple enough to understand and to construct—i.e., would effec-
tively “fall out” of the semantic framework, once that semantic 
framework was properly understood. Everything hinged on the 
words “properly understood.” Whereas semantical awkward-
ness and complexity might be acceptable in a nonreflective sys-
tem, the demands and strictures of reflection, or so anyway I 
believed, would amplify any ground-floor semantic infelicity to 
the point where the system would become unusably baroque 
and incomprehensibly complex. 

Thesis RSS directly influenced the Lisp project. In spite of 
the reputed elegance of prior Lisps, including both Lisp . and 
Scheme, I did not feel that any of them were semantically clean 
enough for reflective purposes. A simple but particularly telling 
example in Lisp . and its descendants (such as MacLisp, the 
dialect in which Lisp was first implemented) has already been 
mentioned: their awkward use of quotation, in a dynamically-
scoped language, to mimic higher-order behaviour—an awk-
wardness with which programmers had lived until the defi-
ciency was repaired in Scheme. But there were other problems, 
detailed here, that in my judgment had not been repaired in any 
existing Lisps, including Scheme. 

Perhaps the barest possible example of these problems, 
again already mentioned, is illustrated in the fact that in 
Scheme, as well as in all prior Lisps, the expression «(+  (QUOTE 

))» evaluates to . This in spite of the fact that, at least to any-
one of a representational bent, the expression seems ill-
formed—a malformed attempt to add a number to a numeral. 
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And if one’s basic semantical framework is confused on issues 
of use and mention (philosophical terms for the distinction be-
tween referring to something and referring to a representation 
of or to a reference to that thing), then the chances of a com-
prehensible reflective architecture being developed on top of it 
struck me as minimal to nil. 

As detailed in the original Lisp papers, therefore, my strat-
egy involved the presentation and analysis of three consecutive 
Lisp dialects. The first, dubbed Lisp, introduced purely for 
comparison purposes, was stipulated to be a distillation of, but 
was really just a name for, all prior Lisps, including not only 
McCarthy’s original Lisp ., but all subsequent versions—in-
cluding, crucially, the lexically-scoped, higher-order Scheme. 
The second system, Lisp, was a dialect I called semantically 

rationalized, in which the aforementioned semantic infelici-
ties were “corrected”—so that, among other things, «(+  ')» 
generates a type error. Details are provided in Legacy; for now 
it is enough to note that this semantical cleansing operation re-
quired replacing the default evaluation regimen that underlies 
other Lisps (except M-Lisp) with one of normalization, a form 
of simplification or term-rewriting, reminiscent of α- and β-re-
duction in the λ-calculus, which reduces expressions to canon-
ical co-designating terms—a move that requires separating out 
(i) the notion of a symbolic expression’s value or reference or 
denotation, and (ii) what happens to that expression when it is 
subjected to computational processing.44 Making this separa-
tion, which turns out to lie at the nub of the misunderstanding 
of computing to be unraveled here, led Lisp, I felt, to be a 
cleaner version of Lisp than any that existed before, including 
Scheme. 

The proposed model of procedural reflection was then 
demonstrated in the third dialect, Lisp, defined as a reflective 

 
 
44Terms used to refer to “what happens to an expression when it is 
processed” vary by context: “evaluation” in functional languages, “in-
ferential role” in logic, etc. 
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variant of Lisp, inheriting its alleged semantical cleanliness. 
The theoretical point was straightforward: the coherence and 
simplicity of the Lisp reflective model depended fundamen-
tally on the semantic cleanliness of the rationalized version 
(Lisp) on which it was based.45 

There was to have been a fourth dialect, en route to Mantiq, 
called Lisp. From a representational point of view, Lisp was 
intended to (and indeed did) deal solely with internal issues: 
quotation, self-reference, and effective internal description—
i.e., with what I call an “introspective” sense of reflection. While 
remaining fully procedural (though within an overarching rep-
resentational conception, as always), Lisp was to meet two ad-
ditional goals. 

First, Lisp was to extend the semantic rationalization and 
semantic cleanliness of Lisp and Lisp to data structures, used 
in programs to refer to or represent objects, events, states of af-
fairs, and the like, in the program’s task domain—paradigmat-
ically located in the world outside the machine (though of 
course data structures are used to represent internal entities 
and states of affairs as well). Lisp and Lisp provided some el-
ementary data structures, but only “formally,” as it were. With 
respect to the critical issue of (representational, and thus non-
effective) semantic interpretation, beyond the obviously critical 
ability to refer to programs themselves, only simple mathemat-
ical entities were handled in Lisp: numbers, functions, se-
quences, boolean truth values, etc.—plus, in what was in effect 
a semantic “cheat,” uninterpreted atomic symbols (traditional 
Lisp “atoms”). 

Needless to say, there is a sense in which the Lisp and Lisp 
 

 
45A reflective Lisp, I believe, would have been a mess. Strikingly, all 
subsequent reflective dialects of which I am aware, with the possible 
exception of Muller’s M-Lisp, are in fact just that: attempts to meld 
reflective capacities into/onto languages that are not designed in 
terms of a semantical model in terms of which reflection can (in my 
view) be defined. 
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data structures are computationally “complete.”46 A Lisp or 
Lisp programmer can readily construct vectors consisting of 
atomic identifiers, and other such usual forms; it is simple 
enough, in turn, to “implement” any other data structure one 
pleases out of them, such as a vector consisting of the capital 
cities of all the countries in the British Commonwealth. But 
that was exactly not the point. The whole idea undergirding 
Lisp and Lisp, in contradistinction to standard data struc-
tural practice, was to provide a programming language that, like 
logic, came complete with (representational) semantical interpreta-
tion (in the semantic-L sense). And the entities in the real-world 
task domain of a Lisp program, which would form the natural 
domain of interpretation of its data structures, lay beyond the 
reach of the semantical theory governing Lisp (or, for that 
matter, any other programming language at the time). 

So the first half of the Lisp mandate was to provide full 
support—formal structures plus semantical-L interpretation, 
as in logic47—for representing concrete real-world entities: ob-
jects, events, situations, states of affairs, etc., together with the 
properties and relations that apply to them. Once this was in 
place, a second part of the mandate came into view: for Lisp 
to extend the Lisp reflective model so as to be able to represent 
and reason not only about its internal operations and struc-
tures, but also about its relationship to and engagement with that 

 
 
46Computational completeness has nothing to do with the notion of 
completeness in logic; rather, it has to do with a form of mechani-
cal/behavioral equivalence, according to a very broad metric of equiv-
alence. 
47As in logic, the language designer could not possibly provide the ac-
tual interpretation for all use cases. I imagined that Lisp would pro-
vide categorical constraints on interpretation (entities of a given struc-
tural class would denote or represent elements of the semantic do-
main of a corresponding type), with the actual interpretation function 
supplied, in the absence of semantics-determining robotic engage-
ment with the world, by the user. The resulting structure would set 
up the preconditions for the language definition and implementation 
needing to be sound, rather than correct.   
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task domain (covering not only input-output and other phe-
nomena at the liminal boundary, but also those states of affairs 
beyond the boundary normatively relevant to how and why it 
behaved as it did).48 That is, in terms of the vocabulary of “Va-
rieties of Self-Reference” (), Lisp was to move beyond 
mere introspection into the genuine world of reflection. 

Like Mantiq, Lisp never came to pass. Among other things, 
its development would have required the prior overhaul of 
computer science recommended in chapter . 

 6 Reception 
The dissertation on Lisp and reflection was completed in 
, and two papers published in  (both papers and ex-
cerpts from the dissertation are included in Legacy). As sug-
gested earlier, the reception was more positive than any freshly 
minted graduate student could reasonably have expected. Four 
people deserve special appreciation: (i) Jim des Rivières, first 
and foremost, to whom this book is in part dedicated, who 
moved to Xerox PARC to help develop Lisp, co-wrote the pa-
per on implementing reflection,49 and developed an impres-
sively-capable run-time Lisp compiler—someone who earned 
my enduring thanks, who tragically passed away before this 
book was completed; (ii) Dan Friedman, who at the  Prin-
ciples of Programming Languages conference (POPL) com-
mented positively on the Lisp work, and who together with 

 
 
48To put this another way, Lisp was to be designed to represent, 
among other things, all those external-world phenomena and states 
of affairs that would be adduced in an intentionally adequate explan-
atory theory—i.e., a theory that explained the semantics of and nor-
mative standards applicable to its structures and behavior—not just 
the array of causally-effective circumstances that caused such behav-
ior to come into place. 
49Jim des Rivières and Brian Cantwell Smith, “The Implementation 
of Procedurally Reflective Languages,” in LFP '84: Proceedings of the 
1984 ACM Symposium on LISP and Functional Programming (Asso-
ciation for Computing Machinery, ), –. 
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his colleague Mitchell Wand went on to publish a number of 
important papers on reflection and related topics; and (iii) 
Mario Tokoro and Akinori Yonezawa,50 long-term supporters 
of reflection in computer science, who over the next decade 
played critical roles in forging and supporting the reflection 
community.51 

Over the following decade a small community developed, 
additional papers were published, and a series of international 
workshops held (on reflection, first, and then on reflection and 
meta-level programming). Some other reflective languages 
were defined, notably including Friedman’s “Brown,” Danvy’s 
“Blond,” and Muller’s M-Lisp; and theoretical analyses pro-
posed such as Friedman & Wand (), Demers & Malenfant 
(), and Muller (). 

Even more broadly, it is probably fair to say (as mentioned 
earlier), the notion of reflection—or at least some notion of re-
flection—has at least to some degree been made “safe” for pro-
grammers and theorists alike. That is not to say that the theo-
retical work is done—or, in my judgment, even seriously en-
joined. In spite of a number of efforts, suggested above, I do not 
believe an adequate theory of reflection has yet been developed 
(by me or anyone else), or even that there is any accepted un-
derstanding of what such a theory would involve—in particu-
lar, as argued throughout this book, of what reflection even is, 
such that we might have a theory of it. In large part, I believe, 
the reason for this lack of theoretical understanding rests on the 
underlying confusion about the notion of reflection itself, based 
in turn on misunderstanding as to the nature of non-effective 
semantics in terms of which Lisp was framed, and underlying 
that about the nature of computation itself—the topic to which 
this book is ultimately addressed. Still, at least in broad outline, 

 
 
50Then at Keio Univ; now Chairman and Founder of Sony Computer 
Science Laboratories. 
51E.g., the IMSA International Workshop on Reflection and Meta-
Level Architectures held in Tokyo, Nov. –, . 
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in the sense that the notion has come to be understood, the no-
tion of reflection is no longer viewed as mysterious or even very 
suspicious. 

In this vein, it is sometimes noted that the possibility of re-
flection was intrinsically present in the original days of ma-
chine-language programming, since in Von Neumann archi-
tectures the binary representation of a program is no different 
in kind, and no less amenable to access and modification, than 
that of any other form of data. Subsequent higher-level lan-
guages, however, tended to inscribe a line between the two, 
marking the program part of the machine as “off limits” with 
respect to dynamic modification, in part to facilitate compila-
tion and other forms of program analysis and optimization. 
Since the s, however, following the development of Lisp 
and other (reputedly) reflective dialects, and the demonstration 
of rudimentary reflective capacities in such much more main-
stream languages as Smalltalk, it has become almost the norm 
for at least some reflective capacity to be provided in contem-
porary languages. Ruby, Java, and Python, for example, lan-
guages still in common use, provide some reflective facility. And 
so while reflection is nothing like as ubiquitous as recursion 
(though at the same time arguably more powerful, and admit-
tedly more challenging to understand and to implement), one 
can reasonably say that it has taken up a pragmatically stable 
place, alongside other constructs, in the contemporary pro-
gramming language designer’s toolkit. 

Why then not count the Lisp work as more of a success? 
The reason rests on a single point made above. The intent of 
the original exercise was not to demonstrate that a simple re-
flective system could be built and even used, but to make the 
theoretical point encapsulated (but by no means explicated) in 
the RSS mantra: that, if one gets the semantics straight, then re-
flection can be designed and implemented in a straightforward 
way. Preparing that cleaned-up semantical ground within the 
realm of functional programming languages was the point of 
Lisp. And it was not just the Lisp dialect itself, or its concep-
tion of semantical cleanliness, but the very idea of providing 
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(what I would consider to be) a semantically clean basis on 
which to build, and even the recognition that reflection is itself 
a fundamentally semantical or intentional notion, and thus, in 
my view, any real sense of what a reflective architecture is or 
would be—all of these things, subsequent to the publication of 
the dissertation and ensuing Lisp papers, vanished into thin 
air. 

Why? That is the first mystery that we need to unravel. 



 3 Programs 
  Diagnosis · First Pass 

Few ideas are as central to our understanding of computation 
as that of a program—a “set of instructions” directing an under-
lying machine to perform a set or sequence of operations. The 
idea is often associated with von Neumann’s conception of 
“stored program” machines, in which programs are stored in 
the same type of memory as the data on which the program op-
erates. This is the architecture of virtually every computer in 
existence today. But the concept is older, having developed in 
tandem with that of computation itself. It builds on a long-
standing idea of using a mechanical apparatus to control a ma-
chine’s behaviour, perhaps most famously in the design of the 
th century Jacquard loom. In his  paper Turing used this 
idea to arrange for one portion of the computer memory to con-
trol the operations of the machine in his development of the 
concept of a “universal machine.” 

Programs are the paradigmatic subject of semantic-C analy-
sis in computer science. On the face of it, it is not obvious why 
programs should be given higher priority than data structures, 
with respect to semantic analysis, since data structures and 
other non-program elements are the primary vehicles used to 
represent and carry information about programs’ task do-
mains—people, institutions, mathematical entities, machine-
internal states of affairs (the length of lists, whether data has 
been updated, etc.), and so forth. On the surface—though I will 
question this below—the representational status of data struc-
tures might seem, at least in some senses, simpler than that of 
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programs. Nevertheless, the semantics of data structures is not 
a staple area of inquiry in computer science (though semantic 
analyses are applied in analyses of knowledge representation 
systems and databases). Rather, it is programs—or, signifi-
cantly, programming languages—that form the centerpiece of 
the semantic analysis of computations. 

Programs are semantically challenging in part because they ex-
hibit two very different kinds of properties. The relation be-
tween them illustrates the fundamental meaning/mechanism 
dialectic in analytic focus throughout this book. 

First, on the mechanism side, programs must be effec-
tive—capable of leading the machines on which they are im-
plemented to behave in certain ways. I will eventually argue that 
effectiveness may be the most important notion in all of com-
puter science. For now, though, and in rough terms, we can 
simply take it to mean that programs must have mechanical or 
“formal” properties that have a causal or in some other way de-
terminative influence on the behaviour of the machines they are 
implemented on.1 

Second, on the meaning side, and still speaking informally, 
programs are also semantically interpreted: taken to be meaning-
ful (approximately linguistic) expressions that represent or are 
“about” the computations they effectively produce. Just how 
that aboutness works, and how it should be understood, will 
occupy us here for several chapters. 

Effectively engendering  something and semantically repre-
senting it are not the same thing.  Spark plugs engender explo-
sions without representing them.  This is why they are analysed 
as pure mechanisms, rather than as signs or symbols. In 

 
 
1Computer science has the notion of effectively computable, which is in-
troduced by ostension and widely agreed upon, but there are no attempts 
to define what is or is not effective. See for example the definition from 
Daintith and Wright (2008) in footnote  of chapter 1. See Minsky 
(1967) for a more nuanced treatment of mechanism, which nevertheless 
is still more motivational examples than rigorous definition. 
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contrast, engines can be represented by numerous things—
models, specifications, descriptions, blueprints, etc.—but in 
general it is not the functional role of such entities to cause to 
come into existence that which they represent. Again, on the 
mechanism side, the sun exerts effective control over, but does 
not represent, the orbits of the planets, whereas, on the mean-
ing side, a paper expressing Newton’s theory of orbital mechan-
ics represents planetary motion, without exerting causal or ef-
fective influence on it. 

The fact that programs cause the behaviour they represent 
is explicable neither purely semantically nor purely mechani-
cally. Suppose we arbitrarily divide a computer’s memory into 
two parts: p and –p. And suppose the bits in portion p are con-
figured into some arrangement αp, and the bits in –p into ar-
rangement α–p (informally, αp would be called the “contents” of 
portion p, and α–p the contents of –p2). In general, arrangement 
αp will exert an effective influence on the behaviour of the 
whole, since if αp is changed, and α–p held constant, the behav-
iour of the whole system is liable to change as well. But that fact 
alone is not enough to warrant calling p a program. By the same 
token, if p is held constant, and –p changed, then again, at least 
in general, the behaviour of the whole will adjust—but that is 
not sufficient warrant for calling –p the “data structures” over 
which p operates. The problem is that, from what has been said 
so far, the situation regarding p and –p, and αp, and α–p, is entirely 
symmetric; so far we have no warrant for identifying one as pro-
gram and the other as data structures. To count as a program, 
a configuration αp must be able to be semantically interpreted 
as being about the behaviour that it causes. And by the same to-
ken, to label α–p data structures requires that there be data that  
α–p encodes—where data, similarly, in order to be data, must be 

 
 
2‘Contents’ in the sense of the configuration of bits in that portion. Like 
everything in this realm, ‘content’ is a tricky word, having both a purely 
mechanical meaning (as in “the contents of this cup”) and also a seman-
tical one (“the content of what he said,” meaning the meaning or sub-
stance). 
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meaningful, must be about something. 
I will push hard, in this book, on what it is for programs to 

be about the behaviour they cause. At a general level, however, the 
fact that programs necessarily exhibit both effective and repre-
sentational properties makes them an ideal site for the explora-
tion of an ontological and epistemic issue of extraordinary gen-
erality—with ramifications far beyond computing. Since the 
Scientific Revolution and the rise of “mechanical philosophy,” 
scientific theories have embraced causal explanations of mate-
rial phenomena. This strategy has proved so successful that sci-
ence is now often equated with “causal explanation.” Histori-
cally, however, it has not been obvious that semantic or inten-
tional phenomena, including logic, language, mind, and other 
meaningful phenomena—phenomena in what I am calling the 
realm of significance—fall within the scope of scientific ex-
plicability. For reasons to be explored here, there is good reason 
to doubt that they will ever be explicable purely in terms of the 
generalized “bumping and shoving” world of material causa-
tion.3 

Needless to say, none of this is to claim that significant phe-
nomena are non-physical, in a dualistic sense, according to some 
spooky metaphysics.4 Many if not most signs and symbols are 

 
 
3By “the bumping and shoving” world of material causation I mean to 
include everything in current (and future) physical theory. Newton fa-
mously noted that neither gravity or magnetism worked by “bumping 
and shoving,” in any sense of those terms used in his day, leading him to 
doubt that either were physical or mechanical forces at all (Newton, 
). Our notions of physical force have developed, however, and espe-
cially with the recent LIGO results (laser interferometer gravitational-
wave observatories), magnetism and gravity have been subsumed into 
physics’ conception of the world—and so it is now unremarked to con-
sider magnetism and gravity as kinds of “bumping and shoving.” At issue 
here is whether representation and other semantic-L relations (including 
reference) will prove explicable within anything like what is currently un-
derstood as scientific theory. 
4In particular, this statement is not by itself intended to deny what is 
called “global physical supervenience”—the idea that the total physical 
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plainly physical in their concrete occurrence. This is evidently 
true of oral language, written language, and computer data 
structures (though abstract and mathematical entities may also 
be interpreted semantically). Physical objects and processes are 
employed in scientific theories, as well as being represented by 
them. At issue, rather, is whether the analysis of the causal, 
physical, material, or effective (mechanical) dimension of signs, 
symbols, and other significant or intentional entities, especially 
their local causal, physical, material, or effective dimensions, is 
adequate for explaining what it is about them that makes them 
meaningful, significant, intentional. 

It can be argued, I believe, that whether intentional or sig-
nificant phenomena can be explained in causal (mechanical, 
physical, effective) terms is among the most fundamental chal-
lenges permeating current intellectual inquiry. It comes down 
to a question of whether the realm of meaning, interpretation, 
language, representation, significance, etc. can be explained by 
science as we know it—whether they can be naturalized, to put it 
in philosophical jargon; whether they can be reduced to the phys-
ical, to put it informally.5 The issue bears on the power of neu-
roscience to explain the mind, on the explanatory potential of 
evolutionary psychology, on the prospects of building genu-
inely intelligent artificial intelligence systems, and on myriad 
other issues. While this book is not directly addressed at such 
large-scale questions, the discussion will be relevant to them for 
the following reason: many contemporary discussions of these 

 
 
state of the universe, at the lowest and most fundamental level of physics, 
is sufficient to determine the state of everything in that universe, includ-
ing its intentional phenomena.   
5In saying “reduced to the physical” I do not mean to take a stand on 
specific forms of relation to the physical world—e.g., of the sort explored 
in philosophical discussions of the relations among type-reduction, to-
ken-reduction, supervenience, etc. My aim here is very general: to get at 
whether causal explanations, of the sort familiar from science (including 
discussions of emergent properties) will suffice to get at what matters 
about intentionality and significance. 
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issues rest, more or less explicitly, on presuppositions about 
computing and the explanatory frameworks we use to under-
stand it. 

In particular, there are many who take computer science to 
have demonstrated the adequacy of mechanical explanation for 
at least some intentional phenomena. If computation deals 
with intentional phenomena, which is certainly arguable, and if 
computer science deserves its label as a ‘science,’ which it cer-
tainly claims, then surely, such people reason, that must 
demonstrate that intentionality, in at least some sense, has been 
“rendered safe for scientific explanation.” 

In this book I will argue against that conclusion. On the first 
step, I agree: computation, at least what I have called “compu-
tation in the wild,” does in fact deal with intentionality—and 
necessarily so. That is implicit in what I am calling the funda-
mental dialectic, between meaning and mechanism, where by 
meaning I include the realm of the intentional. It is the second 
step of the argument that is problematic. I will not only argue 
that computer science, in anything like its present guise, is in-
capable of explaining intentionality, but more strongly, that for 
that reason computer science, as presently constituted, is inca-
pable of explaining computing as computing. As a result, the con-
temporary state of computer science cannot, in my view, be 
used to buttress any arguments that scientific explanation as we 
know it today—including genetics, neuroscience, evolutionary 
psychology, and artificial intelligence6—is capable of providing 
a foundation for understanding the realm of meaning, matter-
ing, and significance. 

I will not discuss these larger considerations further here, 
but their existence in the background underlines why it is so 
important to examine programs’ constitutive exemplification of 
properties on both sides of the “meaning/mechanism” divide. 

 
 
6At least artificial intelligence as currently theorized; see Promise. 
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 1 Diagnoses 
It quickly became clear, following the publication of the initial 
/Lisp papers, which aimed for rigour in differentiating mech-
anism and meaning, that the theoretical framework underlying 
Lisp, and hence the model of reflection in terms of which 
Lisp was defined, was invisible or opaque to traditional pro-
grammers. 

Over the years I entertained several hypotheses about the 
reasons for this epistemic blindness. My first diagnosis, dis-
cussed in the original Lisp publications, was that it arose from 
a conflict between two competing understandings of the nature 
of a program—a divergence of opinion on what programs are, 
what it is for a program to mean something or have semantic 
value, what “program interpretation” refers to, etc. It was clear, 
even at the outset, that the two readings of program were asso-
ciated with divergent understandings of semantics, but at the 
time I felt that the incompatibilities in how programs were con-
ceived had ontological or explanatory priority, with the differ-
ing conceptions of semantics following from it. Over time, in 
what I will here call a “second diagnosis,” I came to feel that the 
semantical differences cut deeper, and that the discrepant no-
tions of program reflected more foundational differences in un-
derstandings of the nature of computation as a whole—on 
what it is to have a semantic value in the first place, on the rela-
tion between programs and processes, and on other structural 
assumptions about the nature of the subject matter. 

In the end, neither diagnosis suffices. Whether taken singly, 
or together, they are ultimately unable to explain the divergence 
in understanding that Lisp revealed. Rather, or so at least I 
will argue, both diagnoses are manifestations of instabilities at 
an even more basic level, having to do with metaphysical and 
methodological presumptions on which the entire field of com-
puter science is founded—something I call the “third diagno-
sis.” 

This chapter attempts to motivate and explicate the first di-
agnosis: the two readings of the notion of a program. Though 
the result is ultimately unsatisfactory, articulating the two 
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conceptions is instructive, not only archeologically, regarding 
the history of the misunderstanding, but also substantively. Just 
one of the conceptions, it turns out, is conceptually compatible 
with the idea of a reflective program in the sense articulated in 
the Introduction, to which the Lisp project was dedicated: a 
program capable of reasoning about and representing the dy-
namic evolution of the program as it runs. Needless to say, this 
is the view on which Lisp and Lisp are based. It is the other 
conception, however, incompatible with reflection so described, 
that is the received view in computer science. This divergence 
goes some ways towards explaining the conceptual confusion 
that Lisp provoked.7 

The second diagnosis is examined in chapters  and . 
Among other things, those chapters analyse the extent to which 
the second diagnosis predicts the first. Those two chapters also 
push on some unexamined but recognized oddities in program-
ming language design. But though the second diagnosis cuts 
deeper, it too fails to lead to resolution. The reasons why the 
situation has never been sorted out not only reach deep into the 
foundations of computing, but into our basic ontological grasp 
of the world. In addition, the comparative analysis in chapter  
also reveals that the workaday understanding of programmers 
parts company, in telling ways, with the understanding embod-
ied in current theoretical computer science and with the con-
ception articulated in the two diagnoses. This is one of the rea-
sons why doing justice to the intentional character of compu-
ting will require a major overhaul of our entire ontological-

 
 
7As noted above, and explored in §,V, below, philosophical accounts 
of computing generally ignore the notion of a program—both the ‘for-
mal symbol manipulation’ view as espoused in classical philosophy of 
mind, and the “pure mechanism” view of such contemporary writers as 
Floridi, Piccinini, etc. (Searle’s “Minds, Brains, and Programs” () 
and Minds, Brains, and Science () talk of “programs,” but he uses the 
term for computing as a whole, not making a distinction between that 
part of the computation that is a program and what a programmer would 
call data structures.) 
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cum-semantical-cum-mechanistic imagination.8 
The third diagnosis starts out by setting readings of specific 

concepts aside, including both program and semantics, and in-
stead assesses the situation from a perspective dealing explicitly 
with metaphysical assumptions undergirding present-day the-
oretical computer science. I argue in chapter  that the field is 
implicitly but resolutely committed to what I call blanket 
mechanism—a reframing of concepts originating in logic and 
philosophy to fit within a strict, narrow version of the philoso-
phy of mechanism. To get there, we need to back up, in chapter 
, to review the intellectual foundations of logic, on which so 
much of our understanding of computing is based—especially 
historically. There are profound lessons in that historical un-
derstanding, I believe—fundamental to any deep understand-
ing of intentionality, reflection, and the meaning/mechanism 
dialectic—that have unfortunately been lost in contemporary 
computer science. 

In chapter  I sketch some preliminary requirements on 
what it will take to resolve the situation. It is well beyond the 
ambition of this book to develop the particulars of the solution; 
spelling out such an approach in detail will be an enormous un-
dertaking. But I can at least sketch some of what will be in-
volved, and describe some of the ingredients that will have to be 
included in any proposed solution. 

The first goal, though, is to explain why the present state is 
inadequate. 

Note to the reader: Since the first and second diagnoses are ulti-
mately rejected, there is a sense in which the remainder of this chap-
ter, along with chapters 4 and 5, could be omitted by a reader look-
ing merely for the position that the book argues for, rather than those 
that it argues against. The genealogy of the two rejected views, 

 
 
8See “The Correspondence Continuum” (Smith, ) for an inchoate 
analysis, and On the Origin of Objects (Smith, ) for a sketch of an 
alternative view. 
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however, reveals numerous nuances that are dealt with in the third 
diagnosis, so those optional sections are nevertheless recommended. 

 2 Two views of programs 
The two views of program were explicitly distinguished in the 
original Lisp papers. The one that figures in computer sci-
ence’s theoretical analyses I called specificational, though I 
might now have chosen prescriptive. The other, which I labeled 
ingrediential, though a more illuminatingly term might have 
been representational, is more strongly connected to logic and 
artificial intelligence. As I will show, the specificational (pre-
scriptive) view is procedurally powerful but semantically un-
clear. The ingrediential (representational) is semantically 
clearer, but procedurally inadequate. As argued in chapter , 
neither does justice to the intuitive understanding on which all 
programmers implicitly rely. Moreover—to repeat a standard 
refrain—the problem is not merely that contemporary concep-
tions are inadequate for purposes of reflection. Rather, analys-
ing reflection forces us to recognize that all reigning formula-
tions of program are inadequate. 

More seriously, to up the ante, even when the inadequacies 
are exposed and explained, no straightforward solution pre-
sents itself. Not only does the field not currently have a concep-
tion of program, I argue, that is both semantically and proce-
durally adequate (i.e., adequate in terms of both meaning and 
mechanism), but what it would be to have such an account out-
strips our present imagination. The resulting situation may 
tempt readers to throw up one’s hands, or even to embrace the 
morass. But “Lo! It is imbricated!” is hardly helpful. The aim of 
chapters  and  is to point in a more fruitful direction. 

 2a Ingrediential View 
Lisp and Lisp were designed according to the ingrediential 
(representational) view, according to which programs are un-
derstood to be effective constituents within the computational pro-
cesses that arise from running them. The view takes computations 
to consist of complex symbolic structures manipulated by 
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formal processes, much in the way that symbols in logical for-
mulae are assumed to be manipulated by a logical inference or 
automatic deduction system, and (derivatively) in the way that 
philosophy of mind has classically understood computation—
e.g., in classical philosophical descriptions of the “computa-
tional” theory of mind. 

On the face of it, the ingrediential view makes no reference 
to a program/data-structure distinction—giving the concep-
tion something of a Von Neumann style. Programs are as-
sumed to be dynamic computational ingredients, ontologically 
and referentially on a par, pace the question of task domain, 
with anything else “interior” to the computation—including all 
data structures. As with all symbolic structures, “referring 
terms” within programs—variables, identifiers, functional ex-
pressions, and the like—are assumed to be mapped by a “se-
mantic interpretation function” onto (what philosophy of logic 
and language would take to be) their referents or denotations. As 
always, this interpretation is assumed to be deferential. The 
“formal” rules governing the symbolic transitions that are in-
stantiated by running the computational process, that is, are 
not assumed to float free—“like frictionless wheels in the void,” 
in McDowell’s phrase. Instead, they are taken to be norma-
tively governed by the deferential semantics.9 

Moreover, and crucially—as suggested in the Introduc-
tion—the deferential semantic relation need not be, and almost 
always will not be, effective. In this logical/referential sense, that 
is, as explained more thoroughly in chapter , semantic inter-
pretation simply “holds” or “obtains.” It is not active, not a pro-
cess, even if reference and interpretation are profoundly dy-
namic in the sense of varying in time and through circumstance 
(and even if, perhaps in a Wittgensteinian, Vygotskian, or 
Whiteheadian spirit, one were to argue that it is processes that 

 
 
9The challenge raised above about how programs are distinguished from 
data structures is at least partly addressed in /Lisp by the norms gov-
erning how programs are processed and what they represent; see §,V. 
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have such semantic interpretations, and/or that the semantic 
interpretations are themselves processes, as might be the use of 
the language or tools).10 It does not take time or energy, or re-
quire execution of a process, for the planet we call Venus to be 
the referent of the phrase ‘the morning star,’ for ‘Mount Logan’ 
to name the highest mountain in Canada, for the name ‘al-
Khwārizmī’ to refer to a long-deceased Persian mathematician 
in whose debt we remain to this day. Even if the meaning of the 
term ‘hod’ is the use of a form of wooden container to convey 
bricks to bricklayers, it does not take time for that to be the 
term’s referent (even if it takes time for a person to say or un-
derstand it). 

Needless to say, this is not the computer scientist’s notion of 
“interpreting a program,” where that term is understood to be 
a gloss on what it is for the program to be executed or run. This 
alternative reading relies on the second, specificational or pre-
scriptive reading, about which more presently (§b). Even more 
profoundly, as explored in chapter , that conception relies not 
only on the specificational reading, but takes that reading (i.e., 
the program) to be neither more nor less than a causal precur-
sor to the behaviour that results from executing it. 

On the ingrediential view with which we are starting, in con-
trast, procedurally processing an expression (a “program,” a 
“code fragment,” etc.) would not in general be expected to in-
volve effective (computational, mechanical) access to the 

 
 
10In chapter  I will discuss semantical approaches in the spirit of Witt-
genstein’s injunction that “meaning is use,” where the use is active, but 
that is a different issue. The present point is merely that, if β is the mean-
ing of α, the connection between α and β is not active, not a process, not 
something that takes time (no matter how much β, or α, is itself an action 
or activity). Even if the meaning of a hammer is how it is used, it still does 
not take time for that to be what it means; it is simply the case. Similarly, 
if I describe a spiral staircase by moving my hand in a helical gesture, and 
the dynamic path of my hand is the signifier of the shape of the stairway, 
the relation between the active path and the shape is, again, not itself a 
process; once again, it merely obtains. 
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referent, which might be abstract (e.g., a real number), exterior 
to the machine (a mountain), or even non-existent (an imag-
ined entity or hypothesized occurrence). Rather, as these exam-
ples suggest, and as more fully explored in chapter , the seman-
tical interpretation of a symbol, in this context, is by default 
taken, as in natural language: 

. At least in the general case, to be determined to be the 
referent or interpretation by wider circumstantial facts, 
perhaps including the user’s intentions or situations of 
use, but in any case (at least in general) not merely by 
local facts about the symbol’s use; 

. To be established as the interpretation, at least in an on-
tological or explanatory if not necessarily temporal 
sense, prior to any issue of processing (the grounds of 
the deference); and thereby 

. To figure in establishing the norms that the procedural 
regimen is obliged to honour—the norms to which the 
regimen must defer—in the course of the symbol’s 
treatment. 

Terms in programs ingredientially conceived are most likely to 
denote or designate entities11 in the program’s (external) task 
domain.12 The ingrediential view thus fits naturally with a rep-
resentational conception of computation discussed in the last 
chapter. In the following definition of factorial, for example, the 
variable «n» would be assumed to denote an abstract (perhaps 
Platonic) integer: 

 
 
11At the moment I am not distinguishing ‘names,’ ‘refers to,’ ‘denotes,’ 
‘designates,’ ‘represents’ or (most generally) ‘has a semantic-L interpreta-
tion.’ At stake is the general conception of semantics-L within which dis-
tinctions between and among these varieties could be drawn. 
12This assumption especially likely to be applicable to functional lan-
guages, such as /Lisp, but the same would be true for object-oriented 
systems, whose object types or classes are most paradigmatically defined 
in terms of the most salient ontological categories of the task domain. 
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 (if (= n ') 
  ' 
  (* n (factorial (– n ')))) 13 

Or to take an only somewhat more complex example, imagine 
that a routine, called highest-paid-employee, given an identifier 
of an institution, is designed to return an identifier of the high-
est-paid employee at that institution. Thus it might be called in 
an expression of the following sort: 

(highest-paid-employee institution-;<)       

The symbol «institution-56», in this expression, whether con-
stant or variable, would be assumed, on this representational 
interpretation of the ingrediential view, to designate—name, 
denote, refer to—the real-world institution in question, such as 
Duke University; the whole complex term, the highest-paid 
employee of that institution (President, Dean of the medical 
school, basketball coach, whatever).14 Procedurally processing 
the expression (evaluating or executing it, as is commonly said, 
though on this ingrediential or representational conception of 
program I believe that a phrase designating a form of term-re-
writing would be more appropriate, such as the ‘normalizing’ 
used in /Lisp) would invoke a call to the routine called high-
est-paid-employee (i.e., associated with the label or identifier 
«highest-paid-employee») which would “return”—this is the 
crucial bit—a name or other identifying label for that person.15 

To state the obvious, the designated person—the living, 
breathing human being—is of a profoundly inappropriate type 
for being “returned.” Slightly less obviously, the identifier 

 
 
13In Python: 
       def factorial(n): 
             return 1 if n == 1 else n * factorial(n - 1)   
14It would not, in particular, be assumed to designate a memory record 
containing information about that employee; see §.V, below. 
15What it is to “return” something from a procedure is not a priori clear. 
Technical answers to this question are typically framed in terms of, ra-
ther than independent of, a governing conception of what a program or 
procedure is. My use of the term here is therefore necessarily informal. 
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«highest-paid-employee», rather than being a name of the com-
putational routine that returned that person’s name, would be 
taken, on the representational conception, to name a function or 
mapping from (actual) institutions to (real, live) employees—a 
function to which the computational routine associated with 
the name is mandated to normatively defer, by providing (re-
turning) a formal or symbolic name, witness, representation, 
analogue or simulacrum. 

Already some sources of confusion are emerging. On the 
one hand, I have said that the routine is called «highest-paid-em-
ployee», but also suggested that that term—«highest-paid-em-
ployee»—in turn names an (abstract) function or mapping 
from institutions to their highest paid employees. This ambi-
guity, about whether the term names a (computational) proce-
dure or a (mathematical) function from institutions to employ-
ees, betrays the fact that there is some equivocation or confla-
tion in its use—conflation that will need sorting out. However 
that goes, it is indisputable, as will come to the fore later, that 
the routine has something to do with the relation between real-
world institutions and living people. That is the only conceiva-
ble reason why the procedure would be so named—and likely 
the only conceivable reason why the procedure would have 
been written in the first place. 

It is sometimes suggested that the intension or meaning of the 
identifier «highest-paid-employee» should be associated in some 
way with the computational routine,16 identified in turn as 
something like the abstract algorithm or step-by-step process 
by which it operates. That is: someone, especially one of com-
putational persuasion, might argue that the intension of the 
term «highest-paid-employee», or perhaps the intension of the 
computational routine of which that identifier is the name, 

 
 
16Or perhaps, in order to step away from issues of lexical or grammatical 
formulation, with the meaning or intension of the routine, if ‘routine’ is 
taken to name something like a program fragment as a piece of text, of a 
sort editable in a word-processing program. 
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should be taken to be a function or algorithm that takes identi-
fiers of institutions as inputs and produces identifiers of people 
as outputs. Extensionally, in contrast, «highest-paid-employee»17 
might be taken to name the function (perhaps mathematically 
modeled—a common but distracting  issue explored later) that 
the routine denotes or, as it is said, “computes.” I will presently 
argue, however, that the practice of associating intension or 
meaning with “means of effective computation,” though wide-
spread, is untenably restrictive, and only defensible if one sub-
mits to the blanket mechanist vantage point explored in chapter 
.18 Note additionally that such an intensional/extensional 
reading would be sustainable only if the procedure is correct, 
which cannot be guaranteed. In fact one of the roles of seman-
tics, as understood in this first conception, is to facilitate the de-
termination of correctness, not to presume it. 

This attitude of viewing computation representationally, in a 
way that is analogous to logical inference (and natural lan-
guage)—a stance which I am here associating with the ingredi-
ential/representational view of programs—will be more famil-
iar to those in the knowledge representation and database the-
ory communities than to the majority of programmers. This is 
why, in the context of defining a reflective dialect, I would have 

 
 
17I am intentionally being ambiguous as to whether I am speaking of the 
intension or extension of the identifier ‘highest-paid-employee,’ or of the 
procedure to which that identifier, as is said in computational discourse, 
is “bound.” (If the identifier is taken to name the procedure, then the 
function from institutions to people would become the designation of 
the designation of the identifier. It is exactly towards sorting out such 
conundrums that the considerations in this book are addressed.) 
18The idea is also philosophically awry; even if ‘the morning star’ and ‘the 
evening star’ have the same extension (the planet second-closest to our 
sun) but different intensions (or sense; I am not commenting here on the 
standard philosophical difference between the two notions), the inten-
sion would not normally be taken to consist of words or symbols; rather, 
the (abstract) intension or sense would be the “(intensional) meaning of 
those words or symbols.” 
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done better to use the term ‘representational’ in place of ‘ingre-
diential’ as the predicate on programs conceived in this way, 
since reflection is likely to bring any notion of program within 
the compass of the overall computation (i.e., is likely to make 
programs into computational “ingredients,” however they are 
conceived), whether or not they are viewed as interior in the 
non-reflective case. With respect to Lisp and Lisp, it is cer-
tainly the presumed representational character of programs 
(and thus their deferential semantics), rather than whether 
they are interior or exterior to the ensuing computation, that 
was viewed as most important fact relevant to the definition of 
a reflective dialect. 

That I adopted an ingrediential/representational stance to-
wards the constituents of reflection in defining procedural re-
flection in general, and the Lisp dialect in particular, was made 
explicit in the dissertation, excerpts of which are included in 
Legacy. In particular, based on the Knowledge Representation 
Hypothesis (KRH) presented in §., I formulated what I called 
the “Reflection Hypothesis,” as follows: 

RH Reflection Hypothesis (1982): In as much as a 
computational process can be constructed to reason 
about an external world in virtue of comprising an in-
gredient process (interpreter) formally manipulating 
representations of that world, so too a computational 
process can be made to reason about itself in virtue of 
comprising an ingredient process (interpreter19) for-
mally manipulating representations of its own operations 
and structures.20 

 
 
19The use of the term ‘interpreter’ here is that of computing, not logic or 
semantics; cf. the discussion in §., below. 
20There are problems with this formulation, which I would frame differ-
ently were I to write it now—for example the pronoun ‘its’ in the final 
phrase “representations of its own operations and structures,” which is 
ambiguous as to whether it means the operations and structures of the 
ingredient process, or operations and structures of the computational 
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The passage does not refer to the ingredients of the reflective 
process as being a program—but since the development of 
Lisp arose directly from this mandate, and because the form 
of reflection that Lisp provides is of reflective programs, it is 
hardly surprising that that is the view of programs on which 
Lisp was founded. 

 2b Specificational / Prescriptive View 
The contrasting view of programs, which in the s I called 
specificational, takes a program not so much to be a part of a 
computational process, at least in the default case (reflection 
complicates the issue), but rather to be a constructive, effective 
specification of what behaviour that process should exhibit—what 
behaviour should result from running or “executing” the pro-
gram. Again, as mentioned above, the  choice of word was 
not ideal; ‘prescriptive’ would have been better, since the way in 
which specifications are typically understood in computer sci-
ence (i.e., the way in which programmers understand the things 
to which they take the word ‘specification’ to refer), as well per-
haps in mundane natural language, places no requirement on 
them to exhibit the first critical property for programs dis-
cussed above: of indicating not only what they specify, but of 
providing an effective means (algorithm, recipe, instructions, 
etc.) for obtaining that specified entity.21 What motivated my 
choice of ‘specificational,’ though, was its assumption that, ra-
ther than being on a par with (other) data structures, programs 
on a specificational view were viewed as being ontologically and 
semantically distinct from data structures: prior to, external, 
and—most importantly—about them.22 

 
 
processes that can be made to reason about itself.  
21It is straightforward to specify an entity non-effectively: “the smallest 
odd number that is the sum of its proper positive divisors,” for an arith-
metic example; or “the candidate who, twenty years from the end of their 
term, would in retrospect be deemed to have done the best job.” 
22Were I to retain these two conceptions, I would undertake to rename 
them here, and start using the new terms here—or perhaps the simpler 
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The difference between the ingrediential (representational) 

and specificational (prescriptive) views is depicted in several pa-
pers in Legacy, reproduced here as Figure 1. The diagram high-
lights two differences, not just one:  

. The specificational/prescriptive view (the standard 
view in computer science, I now believe) locates the 

 
 
‘representational’ and ‘prescriptive.’ As already indicated, however, I will 
not do so. The difficulty in these terms is merely a surface indication of 
the issues at stake. 

Figure 1 
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program outside the process of which it is the program, 
whereas the ingrediential/representational view (the 
view with closer ties to logic, knowledge representation, 
and natural language) locates the program within that 
process—within what I call the process’ structural field 
(roughly: its memory or realm of data structures);  

. Semantically, the specificational/prescriptive view takes 
the program to be “meta to”—i.e., to be about—the 
structural field of data structures. To use the terminol-
ogy of logic, the specificational/prescriptive view sug-
gests that programs can only mention data structures, as 
opposed to the representational/ingrediential view, dis-
cussed above, where a program is positioned so as to be 
able to use data structures as ingredients within pro-
gram expressions (in a “referentially transparent way,” 
as a logician would say). That is: if «employee-9:;» is a 
computational constant naming or referring to a living, 
breathing person, then on a specificational/prescriptive 
view a program can at most mention that computational 
constant, thereby referring to it (to the constant), 
whereas on the ingrediential/representational view a 
program could use the constant to name or refer to the 
person. 

The bottom line is that, on a representational conception of se-
mantics, programs on the specificational/prescriptive view are 
taken to be at “one level of semantic remove” from programs 
understood ingredientially/representationally. Thus, as indi-
cated in the examples cited above, on an ingrediential/represen-
tational view variables and other referring terms within pro-
grams are taken to designate entities in the program’s task do-
main (which would paradigmatically be outside the bounds of 
the program itself,23 unless specifically used in a meta-level 

 
 
23One might say: “outside the computer,” but many programs—email 
systems, compilers, network routers, etc.—have task domains that are 
internal to the computational environment as a whole, but “exterior” to 
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context, such as in reflection). On the specificational/prescrip-
tive view, in contrast, they are invariably taken to designate pro-
cess-internal entities: data structures or memory locations. 

Thus suppose, to be pedantically clear, that, when executed, 
the program fragment «(highest-paid-employee institution-56)» 
in program fragment E, above, were to return the identifier 
«ET>;6:». On a specificational/prescriptive view, the composite 
phrase «(highest-paid-employee institution-56)», rather than re-
ferring to a living, breathing employee who was also referred to 
by the identifier «ET>;6:», would be understood as designating 
or referring to the identifier ET0473 itself, or perhaps as identifying 
or corresponding to a memory location or abstract “record” as-
sociated with that identifier (perhaps a memory location or ab-
stract record that the identifier «ET>;6:» was itself taken to 
name). Similarly—and somewhat perversely, as we will see—
on this same specificational/prescriptive view, variable «n», in 
the factorial example, would be understood as designating a nu-
meral, or perhaps a memory location “containing” a numeral, 
rather than, at least in the first instance, as designating an ab-
stract number. 

It is already evident that confusion lurks only minimally be-
low the surface. It almost goes without saying that program-
mers understand the variable «n» in «factorial»’s definition as 
referring to a number, rather than to a numeral—or possibly 
(more on this presently) as well as to a numeral. Computational 
readers will also immediately point out that denotational se-
mantical accounts of programming languages also take «n» to 
refer to a number. Crucially, however—and surprisingly—I 
believe that these last two claims (that programmers’ and deno-
tational semanticists’ accounts both take «n» to refer to a num-
ber) are conceptually independent, as I will argue in chapter  , 
based on different (in fact orthogonal) semantical “takes.” In 
spite of its name, and pace virtually ubiquitous misunderstand-
ing, denotational semantics models the numeral (or memory 

 
 
the code manipulating them. 
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location) with the number, whereas in programmers’ tacit un-
derstanding, the numeral denotes or designates the number. In 
this case the “results” are identical (the number two associated 
with the numeral «5»), but in the general case they diverge. In 
particular, and crucial to the present discussion: the deference 
runs in opposite directions in the two cases.24 In programmers’ im-
plicit understanding, the numeral signifies, and is deferential to, 
the number. On the denotational semantics account, the num-
ber signifies, and thus defers to, the numeral (or other concrete 
operations or structures inside the machine). 

While rough coincidence of analysis would normally be 
taken to be a sign of theoretical merit (the number two being 
associated with the numeral «5», without worrying too much 
about the directionality of sign vs. signified), I will argue in 
chapter  that in this case it is a distracting conflation—some-
thing that has papered over, rather than resolved, cracks in our 
understanding of computing. 

 3 Discussion 
One natural reaction to the articulation of this distinction be-
tween the ingrediential/representational and the specifica-
tional/prescriptive views of programs would be to deem it ar-
cane and otiose—to feel that «(highest-paid-employee institu-
tion-56)» should be viewed as denoting or referring to, or at least 
should be able to be taken to denote or refer to, both the (exter-
nal) person and the (internal) identifier or memory location, 
depending on context or perspective. 

I have considerable sympathy for this response. One goal of 
a project I call the “fan calculus” is to support, in a technically 
rigorous, scalable, and pragmatically usable way, exactly such 
contextual (and contextually multiplicitous) perspectival se-
mantic interpretation.  In fact I believe that understanding how 

 
 
24In the “denoting” or “designating” case, the numeral ‘;’ is normatively 
mandated to defer to the number two; in the modeling case, the number 
two, qua model, is mandated to be used in a way that does justice to that 
which it models. 
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programs are constructed and conceived in present-day prac-
tice requires a facility with contextual, dynamic semantic inter-
pretation—and thus that the ability to deal with contextual, 
dynamic interpretation is a requirement on any adequate ac-
count of the semantics of computational systems. At present, 
however, no such contextually-flexible theoretical frameworks 
are available for such semantical analysis.25 Sans a crisp account 
of how such flexibility works, nodding in the direction of flexi-
ble, contextually dependent interpretations strategies is not 
enough to lead to a coherent model of reflection.26 

Moreover, to return to the case at hand, /Lisp was any-
thing but semantically vague, and—in spite of my current pre-
dilections—in no way supported contextually dependent se-
mantics.27 Rather than licensing multiple interpretations (in 
logic’s sense), it came down strongly on one side—on the ingre-
diential/representational view—in line with logic, KR, and the 
Knowledge Representation Hypothesis. The fact that this 
choice runs contrary to the default understanding of at least 
most programming language theorists28 contributed substan-
tially, I believe, to the disappearance of the underlying /Lisp 
idea. 

I was perfectly cognizant, in , that one could take different 
perspectives on the notion of a program, and that /Lisp spe-
cifically adopted the ingrediential/representational view. I also 

 
 
25In spite of the contextual complexity with which programming lan-
guage semantics views are used to coping; this is an entirely different sort 
of context. 
26 The point is similar to the one made in the Introduction, about how 
the discursive critique, which would very likely endorse such contextual 
or multiplicitous forms of interpretation, has not engendered anything 
like a sufficiently worked-out proposal to serve as the basis for a workable 
language design. 
27It did support a semantical analysis that dealt with context—but that 
is a different matter. 
28The implicit understanding of working programmers will be taken up 
in chapter . 
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did my best to describe the perspective I was adopting,29 argu-
ing—and this is what mattered—that the ingrediential view 
was a necessary basis on which to build a sound conception of 
reflection.30 What I failed to anticipate was the fact that the ex-
tent to which that perspective departed from what other com-
puter scientists took to be the norm was sufficient to “disap-
pear” the claim that the ingrediential view was necessary for re-
flective clarity.31 But recognition dawned as soon as I encoun-
tered the incomprehensibility with which programming lan-
guage colleagues greeted the semantics even of Lisp—the “se-
mantically rationalized” but non-reflective language on which 
Lisp is based. 

An especially telling event occurred in , when, proud of 
what I took to be its semantical cleanliness, I invited Joseph 
Goguen and José Meseguer,32 well-known programming lan-
guage semanticists of the day, to sketch a “denotational seman-
tics” for Lisp. My plan was to use what they proposed for 
Lisp as the basis for the development (perhaps collaboratively 
with them) of a mathematical analysis of Lisp and its version 
of reflection, and then in turn to use that as a step towards the 
full-scale theory of reflection that I ultimately aimed to develop 
(and knew that I lacked). 

When Goguen and Meseguer presented their analysis, I was 
flabbergasted. What they took to be a mathematically clean 

 
 
29Cf. for example “Reflection and Semantics in Lisp” (), the first 
published paper on 3Lisp, in chapter  (p. ); in particular, the two par-
agraphs starting with “It is natural to ask what a program is…” 
30I am not sure I believe this today, in part because I do not believe that 
semantical strictness (believing that semantics is perspective-independ-
ent) is tenable. The present point, however, is that it is the ingrediential 
view on which both Lisp and Lisp were based. 
31Departing more radically from theoretical computer science than from 
workaday programmers, however—or anyway so I believe. See chapter 
4. 
32Then at SRI International; now at the University of Illinois at Urbana–
Champaign. 
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semantical analysis completely obliterated what I took to be es-
sential to Lisp’s semantical clarity—conflating distinctions I 
had taken pains to maintain, including those between and 
among numerals and numbers and (what /Lisp called) han-
dles and the data structures for which they served as names, se-
quences and the normal-form sequence-designating structures 
I called rails, etc.33 Entities I took to be concrete were treated as 
abstract; the grounds on which I had rested my critique of the 
Lisp conception of evaluation34 vanished; and in general their 
“theoretically clean” version of Lisp underwent a transfor-
mation that not only rendered it wholly unfamiliar to me, but 
also “disappeared,” at least in my eyes, its major contribution—
the very semantical cleanliness that I took to be its distinguish-
ing feature. Even more tellingly, the distinctions I took to be 
criterial for defining and implementing reflection—distinc-
tions between signs and what they signify, and between things 
abstract and things concrete—had also been erased. 

I mean nothing indicting with this tale. Goguen and Me-
seguer were eminent theorists, and generous to a fault; I have 
nothing but the highest regard for both. It was a perfect case of 
what anthropologists would call cultural clash: two parties ap-
prehending a subject matter from different, even irreconcilable, 
perspectives. Yet in spite of good will on both sides, the pro-
posed collaboration stalled. I never did develop a mathematical 
account of reflection—and for reasons that will presently 
emerge, no one else has, either. 

The difficulty, to put it bluntly, is that whereas a divergence 
in perspective on programs might, at least superficially, be con-
sidered a matter of taste, the same does not hold for reflection. 
Striking the right semantical stance towards reflection—strik-
ing, in particular, a tenable version of what I am calling a defer-
ential semantical stance—is a prerequisite for understanding 

 
 
33As described in §.V, rails are defined in /Lisp to be the ordered 
data structures that represent abstract sequences. 
34Including my indictment of its blithe acceptance of «(+ 1 ';)» 
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what reflection even is. 

As I grew clearer on the underlying issues, I began to be able—
especially in conversation—to explain the perspective from 
which /Lisp was designed (even if I failed to convince anyone 
of that perspective’s merit). What was especially sobering was 
that success in describing the Lisp architecture required not 
using the ingrediential vocabulary employed in all of the Legacy 
papers. That is, it depended on my not saying that the design 
(and technical vocabulary) of Lisp was based on a view of pro-
grams as causally effective process-internal ingredients—even 
if I went to some pains to explain the ingrediential/representa-
tional vs. specificational/prescriptive distinction. Rather, I had 
to describe the Lisp architecture from the specificational/pre-
scriptive viewpoint, which at the time felt alien to me: taking pro-
grams to be external, if nevertheless effective, process specifica-
tions. The difficulty was that, to the extent that that strategy 
worked, it thereby rendered the possibility of explaining Lisp, 
and the ensuing model of reflection, that much more difficult, 
if not outright impossible. The reason is explained in more de-
tail in chapter , but among other things it comes down to this: 
adopting a specificational/prescriptive view “uses up” all stand-
ard semantical vocabulary in describing the program-process 
relation, leaving one without any words with which to describe 
what I felt to be the constitutive notion of “aboutness” in terms 
of which reflection must be defined. 

Another anecdote is illustrative, this time from a mid s 
conversation with Gordon Plotkin.35 After failing, using my 
own terminology, to communicate anything about what mat-
tered to me about /Lisp, I decided to adopt his. That is, I 
attempted to “inhabit” the specificational/prescriptive view, 
and said that what I was interested in, in designing even Lisp, 
let alone Lisp, was “the semantics of the semantics of programs.” 

 
 
35Now at the University of Edinburgh; this took place at Stanford’s Cen-
ter for the Study of Language and Information (CSLI). 
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To an extent the ploy must have worked, as I recall Plotkin 
nodding and smiling. But the differences were profound, and 
nothing further came of that conversation, either. Although I 
made some subsequent attempts to explain the differences in 
viewpoints, it seems safe to say that Lisp’s and Lisp’s defer-
ential approach to semantics, on which the latter dialect’s no-
tion of reflection was based—including, for example, the idea 
of theorizing distinct procedural and declarative aspects of pro-
gram meaning, assembled into a single encompassing signifi-
cance function—was sufficiently divergent from consensual 
practice as to have achieved incomprehensibility. 

 4 Merits & Demerits 
Before moving on to the second and third diagnoses, it is in-
structive to identify some of the merits, demerits, and questions 
facing this first one, based on two differing conceptions of pro-
gram. 

I will frame these positives and negatives in terms of the pre-
scriptive/specificational view, since that is the “received” view in 
computer science. On the positive side, somewhat tautologi-
cally, the most obvious advantage of this view is the extent to 
which it meshes with contemporary theoretical discourse—
how programmers talk, how papers in computer science are 
written, and so on. Whether that implies that it does justice to 
how programmers actually understand programs is a separate 
question, to be taken up in chapter . Nevertheless, at least the 
following points can be counted as in its favour: 

PRO- The specificational/prescriptive view makes sense of 
why computer science calls language processors inter-
preters.36 If one takes the semantic value of a program 

 
 
36If the program is compiled, then it is not interpreted directly; but the 
resulting compiled code has to be executed. We do not typically use the 
term ‘interpretation’ for the CPU’s processing of machine code, but if the 
program is compiled into another language, then that language may be 
said to be interpreted. Many Java programs, for example, are compiled 
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or program expression to be the behaviour or results that 
eventuate from its execution (theorized as “the behav-
iour or results that it specifies”), then, sure enough, pro-
cessing it will produce what (from that point of view) 
it “designates,” making sense of the computational use 
of this originally logico-semantical term. 

PRO- To an extent, the specificational/prescriptive view ex-
plains why many theoretical computer scientists are 
interested in constructive mathematics. It is essential, 
in order to understand reflection, to realize that noth-
ing about computation per se mandates taking a construc-
tivist approach to mathematics. If, however, one (i) 
adopts the specificational/prescriptive view, (ii) un-
derstands program execution or processing to model 
or be paradigmatic of human mathematical activity,37 
(iii) takes computation itself to be a mathematical phe-
nomenon,38 and perhaps (iv) pays implicit obeisance 
to something like blanket mechanism,39 then it be-
comes natural to focus on the restriction of mathemat-
ics to its constructive subset. 

A similar argument can be made about intuition-
istic type theory, though in contrast to many 

 
 
into byte codes, which are processed by what is commonly called the 
“byte code interpreter.” 
37One might argue that associating human mathematical cognition with 
the processing (“executing”) of programs follows as a general conclusion 
of the computational theory of mind (CTOM), but I believe that is mis-
taken. Moreover, I suspect that those who subscribe to the idea believe 
it for much more local reasons. 
38I.e., views computation, rather than being something concrete, such as 
a system of symbols that denote or represent mathematical entities, or, 
like any scientific phenomenon, as being a concrete system that can use-
fully be modeled mathematically, but rather as itself a mathematical phe-
nomenon, on a par with numbers, sets, or morphisms—a stance I discuss 
in §., below. 
39See chapter . 
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constructivists and especially formalists, many intui-
tionists—including Per Martin Löf, whose type the-
ory has received so much attention in computational 
circles—are not mechanists of any stripe. Neverthe-
less, if one wants a type theory in order to describe, 
from a program viewed as an effective (i.e., prescrip-
tive) specification, the types of structures it is able 
(mechanistically) to “generate,” there is clear sense in 
selecting an intuitionistic type framework for the pur-
pose. 

PRO- The prescriptive/specificational view also makes sense 
of an otherwise inexplicable passage in Newell’s 
“Physical Symbol Systems” paper, based on his Tu-
ring award lecture with Herbert Simon, in which the 
authors attempt to characterize computing. To a clas-
sical logician or semantical or semiotic theorist, the 
passage verges on the daft:40 

“The most fundamental concept for a symbol 
system is that which gives symbols their sym-
bolic character, i.e., which lets them stand for 
some entity. We call this concept designation, 
though we might have used any of several other 
terms, e.g., reference, denotation, naming, stand-
ing for, aboutness, or even symbolization or mean-
ing. The variations in these terms, in either their 
common or philosophic usage, is not critical for 
us. Our concept is wholly defined within the 
structure of a symbol system. This one notion 
(in the context of the rest of a symbol system) 

 
 
40Newell (), §., p. ; emphasis in the original, underlines added. 

This paper is widely regarded as definitive of the “symbol manipula-
tion” conception of computation—a construal not usually distinguished 
from what I call “formal symbol manipulation” (FSM)—though because 
of the issues of symbol and semantics being here discussed, from a con-
ceptual point of view I take them as almost orthogonal. 
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must ultimately do service for the full range of 
symbolic functioning. 

Let us have a definition: 
 Designation: An entity X designates an entity 
Y relative to a process P, if, when P takes X as 
input, its behavior depends on Y.” 

Four facts about this passage are striking. 
a. Newell’s apparent recognition of the centrality of 

issues of symbols and intentionality is both nota-
ble and salutary.41 

b. Nevertheless, this account could never stand as a 
general account of symbolism (meaning, repre-
sentation, symbolization, intentionality, etc.). In 
the general case, reference, denotation, meaning, 
etc., of symbols are absolutely not “within the 
symbol system.” On the contrary, as emphasized 
in the Introduction, symbols, at least paradig-
matically, are exactly a way of relating a system to 
that which is external—to that which is distal, 
beyond effective reach. I take such distal refer-
ence, and the normative deference accompanying 
it, to be constitutive not only of logic, but of sym-
bolism in general—indeed, to be among the 
most fundamental facts about all of intentional-
ity. 

To put it informally, one might almost say 
that the ability to denote or refer to that which is 
not “wholly…within the structure of a symbol 
system” is fundamentally what symbols are for. 

 
 
41I say ‘apparent’ because, as argued in chapter §.V, it is ultimately un-
clear that Newell’s concerns and intuitions in this passage ultimately 
have anything to do with intentionality, as opposed to being merely a use 
of intentional vocabulary (symbol, designation, etc.) to characterize 
purely mechanical entities and relations. 



122 Computational Reflections 

  
 
122 

c. As is evident from both underlined fragments, 
Newell and Simon are operating within what in 
chapter  I call “blanket mechanism.” The oper-
ative sense of ‘depend’ in their characterization is 
clearly causal, rather than being of the normative, 
non-local, semantical nature on which logic is 
based, and that I believe is fundamental to all in-
tentionality—a conception spelled out in chap-
ter . 

d. Most immediately relevant, this causally-de-
pendent conception of designation (reference, 
meaning, etc.) is not just applicable to, but must 
in fact be directly motivated by, the sort of “effec-
tive specification” view of programs under scru-
tiny here.42 

PRO- The prescriptive/specificational view explains why 
programming language constants, variables, identifi-
ers, etc. are so often taken to be names of memory loca-
tions—in spite of having natural language names most 
commonly intelligible in the realm of the program’s 
task domain («institution-56», «next-floor», «current-

 
 
42Even on a prescriptive/specificational view, the final (underlined) state-
ment is not clear: if a program denotes or designates a process-internal 
ingredient, such as a data structure, then the behaviour of the processor 
(“interpreter”) will presumably affect the data structure (e.g., if a program 
prescribes incrementing a register, then the register will be affected). 
Newell and Simon’s claim would be that the term in the program de-
notes that register just in case the behaviour (of the program? of the pro-
gram’s processor? of the process that results from the processor pro-
cessing the program? It is not clear.) depends on the register. If the be-
haviour is taken to be “that the register is incremented,” then that pre-
sumably does depend on the register, in at least some sense. But the be-
haviour, if individuated finely enough, also depends on what the contents 
of the register were—and one would not normally say that the term in 
the program (e.g., a memory address) denotes the state of the memory reg-
ister. In spite of its fame, the paper is no beacon of clarity. 
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user», etc.). Some accounts take these memory loca-
tions to be concrete; others, as abstract mathematical 
entities, or anyway as mathematically modeled. Mod-
ulo these variations, however, the approach of taking 
names in programs to identify storage locations is uni-
versal. 

PRO- The prescriptive/specificational view makes sense of 
what computer science takes a semantical analysis of a 
programming language to be—a conception that 
would otherwise be mysterious (is mysterious, in fact, 
if one views computation to be formal symbol manip-
ulation in the style so widely assumed in cognitive sci-
ence and philosophy of mind). Three examples: 
a. In contradistinction to what would be true of a 

logical or representational language, the seman-
tical analysis of programming languages is never 
parameterized on an externally-supplied inter-
pretation for the atoms, constants, primitive 
predicates, etc., or for any of the data struc-
tures;43 

b. Since the full semantics for the language is speci-
fied by the semantical analysis, with no room for 
any variation for specific programs and task do-
mains, it can be assumed that the normative con-
straints on implementations are that they be cor-
rect, not merely sound;44 and 

 
 
43A semantical account of a logical or FSM system, for example, would 
typically assume that constants (e.g., ‘SOCRATES,’ ‘P’ or ‘Q’), predicates (e.g., 
‘MORTAL’ or ‘SUCCESSOR’), relation symbols (e.g., ‘LARGER-THAN’ or ‘PRIME’) 
would be given interpretations by a “user-supplied” interpretation func-
tion, which would then be used by the semantical analyses as a basis for 
building up the interpretation of complexes built up out of them, such as 
‘MORTAL(SOCRATES)’ or ‘∀x[PRIME(x) ⊃ ¬PRIME(SUCCESSOR(x)).’ See chapter . 
44Similarly, because the definition of the language includes the interpre-
tations of all of its terms, there is in a sense no salient difference between 
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c. It is standard, in computer science, for denota-
tional and operational semantics to be proved 
equivalent, without that constituting a proof that 
the system is “complete” (which is what it would 
imply if, as some philosophers incorrectly hold, 
operational semantics were an account of the 
“proof-theoretic” behaviour of the system, and 
denotational semantics an account of what, intu-
itively, the system represents or is about). 

These facts, and others that could be cited, constitute strong 
evidence that the prescriptive/specificational view is indeed the 
“official” view of theoretical computer science. 

Two things should be noted, though, before taking that ev-
idence as justificatory—i.e., before taking the points enumer-
ated above as suggesting that the specificational view is correct 
or even preferable. First, it has not yet been argued that this is 
how programmers understand programs, and in chapter  I will 
argue that, on the contrary, the specificational/prescriptive 
view parts company with programmer’s intuitive understand-
ing in several critical ways—casting doubts on its overall ade-
quacy. Second, even if the foregoing points are thought to sup-
port the specificational/prescriptive view (in a moment I will 
argue that they do no such thing), the specificational/prescrip-
tive view is accompanied by an equal or even greater number of 
demerits. If they do not constitute an argument against the pre-
scriptive/specificational view, these infelicities at least suggest 
that it needs to be questioned. 

In particular, here are eight reasons militating against the ad-
equacy of the specificational/prescriptive view (to which others 
could be added): 

 
 
material and logical implication (though because of temporal variation in 
the values of variables, the contents of memory registers, etc., and be-
cause those states are, among other things, relative to unpredictable in-
put, implications may of course sometimes hold and sometimes not). 
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CON- On a specificational/prescriptive view, programs can-
not add numbers, or do arithmetic, or in fact engage in 
any mathematical operations at all. At least this is so 
on anything like a symbol-manipulation construal of 
computing—or indeed any construal of computation 
on which computing is concrete. For if, according to 
this view, the act of a program interpreter is to produce 
what is designated, then the designation (i.e., interpre-
tation45) of an expression such as «5+:»—or its Lisp 
equivalent «(+ 5 :)»—must be a symbol, not a number. 
Or put it this way: if, as commonsense would over-
whelmingly suggest, the interpretation of «5+:» was 
taken to be the number five, then the interpreter would 
be mandated, on the specificational/prescriptive view, 
to produce a number as its result (rather than produce a 
representation or signifier of that number)—an oper-
ation that common sense, as well as most philosophies 
of mathematics, would consider to be metaphysically 
impossible.46 

CON- Semantic analyses of programs, according to the spec-
ificational/prescriptive view: 
a. Cannot make sense of why programmers use 

English or other natural language terms for their 
constants, variables, data structures, etc.—e.g., 
the «institution-56» and «current-floor» used in 
the examples above; and 

b. Rob the programmer and theorist of theoretical 

 
 
45As is customary, I take designation to be the species of interpretation 
applicable to terms. 
46Cf. Dretske (). 

Even if one were a hyperintuitionist, and felt that numbers were in-
scriptions, a program could at best return an instance (token) of a num-
ber, not a number itself. If a computer were given the expression «+ ; >», 
and then damaged before the result could be read, it would be madness 
to say “the number five was lost.” 
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language in terms of which to talk about the evi-
dent relation between those data structures and 
the corresponding task domain entities with 
which they are associated, because such semanti-
cal terms as reference, designation, etc. (i.e., all the 
terms in Newell and Simon’s list) have all been 
“used up” to name the causal relation mediated 
by the language processor. 

If, for example, as the prescriptive/specificational 
view claims, the name «institution-56» designates or 
refers to a memory location, then why does the pro-
grammer not give it the label «memory-location-
;:D9E»? How do we explain the fact that, if such a 
renaming were effected, the resulting program 
would be incomprehensible to programmers and 
maintainers alike? And if there is a three-way rela-
tion among (i) the symbol institution-56, (ii) the 
memory location memory-location-;:D9E, and (iii) 
the institution designated as th in some enumera-
tion, what should that three-way relationship be 
called? 

It is telling, in this regard, that in  Alan New-
ell, widely recognized as a champion of the symbol 
manipulation construal of computing, was forced to 
introduce the otherwise inexplicable notion of “The 
Knowledge Level,” in order to accommodate the fact 
that computational ingredients are, in fact, employed 
in such a way that they bear a semiotic or semantical 
relation to the wider world.47 The very existence of the 
“Knowledge Level” idea betrays recognition on New-
ell’s part that the definition of symbols and designa-
tion in his and Simon’s characterization of physical 
symbol systems was inadequate to comprehend both 
programmers’ understanding and the genuine 

 
 
47Newell (). 
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computation-world relations critical to the very no-
tion of computing.48 

CON- It is for the sorts of reason adduced above that seman-
tical analyses of programming languages do not give 
rise to appropriate semantical analyses of the pro-
grams written in them. That is, these facts explain 
something noted in §.: that computer science has so 
construed symbols, semantics, etc., as to lead to the 
perverse situation that the semantical analysis of a lan-
guage (a programming language, in this case) provides 
no wherewithal with which to understand the seman-
tics of texts written in that language—i.e., no way of un-
derstanding the semantics of programs. 

Whether or not the formal symbol manipulation 
(FSM) view of computation is correct, it is surely correct 
enough that any analysis of real-world computational 
use must provide means to understand the relation be-
tween computational ingredients and task domains 
entities. Most importantly: as Newell himself realized, 
it is the relations to the task domain which establish 
the deferential conditions to which the resulting pro-
gram is held normatively accountable. 

CON- The conception of semantics employed by the pre-
scriptive/specificational view in order to account for 
the effective relation between a program and the be-
haviour that results from processing it is entirely re-
stricted to the realm of the effectively mechanical. All 
issues of deference, normativity, etc., are excluded 
from the discussion—making it emblematic of the 
sorts of “blanket mechanism” restrictions discussed in 
chapter . 

CON- Redefining (torquing, in my view) the notions of 
 

 
48Or to serve as a way of understanding the warrant or correctness of its 
reasoning processes. 
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symbol and semantics to suit the requirements of the 
prescriptive/specificational view of programs leaves 
completely unanswered the deeper question of what 
computation is. It is “symbol manipulation,” on the re-
defined notion of ‘symbol,’ only in the sense that pas-
sive or static symbolic programs are processed in order 
to produce the behaviour that they are (thereby?) 
taken to specify or designate. But nothing is said either 
about the nature of that which is specified, or about what 
it is to specify, beyond that what a symbol specifies or 
designates is what it causally engenders when processed. 

In particular, Newell’s characterisation of a ‘sym-
bol’ as anything that has (partial) causal influence on 
that which it is taken to designate is such that one can 
no longer say that computational processes are symbol 
manipulation in any sense amenable to common sense, 
familiar to philosophy, or consonant with hundreds of 
years of logical understanding. Adjusting dials on an 
automatic milling machine serves to influence what 
metal parts it produces. Does grinding metal thereby 
count as computation, or adjusting the dials as pro-
gramming? Or to move even further away from any-
thing we would pretheoretically call specification, sup-
pose that eavestroughs causally lead rain to flow 
through downspouts instead of over roof edges. Are 
eavestroughs thereby symbols? On Newell’s character-
ization they would have to be counted as such. 

CON- Though how much this would count against the spec-
ificational/prescriptive view would depend on one’s 
theoretical commitments, it is at least noteworthy that 
programming language interpreters, on the conception 
identified in CON-, above, cannot be formal, on the 
standard definition of formality, which requires that a 
symbol be treated independent of its semantics, since, on 
the view being proposed, the interpreter causally pro-
duces that which it semantically designates. 
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Even more telling against the prescriptive/specificational view 
than any of the foregoing six points, however, are two more 
general ones, which not only do some additional work in unset-
tling it, but which also up the ante on what will be required in 
order to provide a theoretically adequate account of computa-
tional reflection. 

CON- Not a single one of the five positive comments about 
the prescriptive/specificational view listed above (PRO-
 through PRO-) have anything to do with the funda-
mental nature of computing. Each speaks only to this or 
that aspect of the way in which computing is currently 
theorized. Moreover, as demonstrated by /Lisp, 
none of them is necessary to the development of a pro-
gramming language, or to the development or under-
standing of programs written in it. 

That is, not a single one of conditions PRO- 
through PRO- is met by (i) any of the /Lisp dialects 
themselves, (ii) the theoretical framework in terms of 
which those dialects were designed and described, (iii) 
the semantical account in terms of which Lisp was 
shown to be semantically rationalized and norma-
tively sound, and (iv) Lisp’s reflective model. In par-
ticular: 
a. There is no need to call the process that gener-

ates activity according to the dictates of a pro-
gram an interpreter. In my view, though the usage 
is common, the terminology only serves to 
muddy the semantical waters. Far better, I be-
lieve, to call such things language processors. That 
terminology leaves open the question of the pro-
grams’ semantics, and of the semantical character 
of the execution process. 

b. As stated above, nothing about computing com-
pels one to endorse (or, for that matter, even to 
take a stand on) constructive mathematics or in-
tuitionism. Symbol manipulation is compatible 
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with mathematical reasoning of all sorts. The no-
tion of computing is catholic as regards philoso-
phies of mathematical entities thereby reasoned 
about. 

c. Newell and Simon’s characterization of designa-
tion (and other semantical relations) is not just 
entirely non-standard, but untenably mechani-
cal. Not only does it obscure, rather than illumi-
nate, the genuine structure of semiotic and se-
mantical phenomena; it also does nothing to ex-
plain the nature of programs (other than recog-
nizing, along with things that are not programs, 
that they play a causal role in engendering behav-
iour).49 

The characterization of language processes as 
“interpreters” also hinders, rather than helps, in-
tellectual communication between computer sci-
ence and surrounding disciplines. In fact the en-
tire “physical symbol systems” (PSS) construal of 
computation, I believe, has done more to hamper 
the wider intellectual appreciation of computing 
than any other single idea. 

d. To take constants, variables, data structures, etc., 

 
 
49Suppose we define relation φ(X,Y) using Newell & Simon’s characteri-
sation: that φ(X,Y) with respect to process P if (and, we can assume, only 
if), when P takes X as input, its behaviour depends on Y. What would 
one imagine φ to be? Basically, it is simply any relation that X bears to 
anything that affects X’s treatment by P. For example, if P is a process of 
lifting X (i.e., suppose P is something like a fork-lift, or fork-lift behav-
iour). Then Y could be X’s mass, or the glue that holds X down, or the 
distance of X from P. But do we want to say that X designates its mass, or 
the glue that holds it to the shelf, or its distance from a fork-lift? Obvi-
ously not. 

Unfortunately, there is no substance to the Newell and Simon ac-
count that prevents these and untold other causal dependencies from 
being called “designation.” 
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to refer to memory locations or abstract memory 
records confuses semantics with implementation, 
in my view, violating what is almost universally 
taken to be a goal of elegant computational the-
ory: of abstracting what matters about a pro-
gramming language away from the distracting in-
fluence of contingent matters of implementation 
(especially implementation on a Von Neumann 
architecture). 

Note, in this regard, that the semantics of 
/Lisp makes no reference to implementation 
of any sort—a fact I take to be to its credit. And 
contra what is often said, characterizing reflec-
tion as a technique for making the implementation 
explicit is not, I believe, an apt or penetrating con-
ception of reflection. 

e. It takes only a few moments to see that, from a 
general semantical or semiotic viewpoint, all five 
facts cited about the current practice of program-
ming language semantics—PRO- through PRO-
—are semantical oddities. For example, it be-
fuddles rather than benefits analysis to lose the 
notions of soundness and completeness—to re-
move, from the theoretical machinery, any ability 
to make reference to the genuine semantical in-
terpretation of the constituent symbols. 

The inapplicability of the semantical model 
implied by the specificational/prescriptive con-
ception of program, mentioned above,50 is a ma-
jor liability for computational theory. 

CON- Finally, above and beyond all of the foregoing points, 
perhaps the most important limitation of the specifi-
cational/prescriptive view, in the present context, is 

 
 
50See §.. 
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that it fails to be an adequate semantical view in terms 
of which even to define reflection. 

Not a single one of these demerits applies to the ingrediential/ 
representational view. On the contrary, the ingrediential/rep-
resentational view: 

. Is compatible with both constructive and non-con-
structive approaches to mathematics, or indeed mathe-
matical philosophies of any other variety; 

. Makes eminent sense of why programmers use natural 
language terms for variables—and even suggests that 
programs should be held normatively accountable to 
the references and denotations that programmers have 
in mind for those terms; 

. Engenders an approach to semantics that is perfectly 
appropriate for treating the semantics of individual pro-
grams, not just languages as a whole;51 

. Is by no means restricted to a “blanket mechanist” ap-
proach to computation (chapter ); 

. Not only makes room for, but in fact provides an answer 
to, the question of what computation is: computation is 
symbol manipulation, with programs being a paradig-
matic example of such symbolic structures; and  

. Does provide a basis on which to define a conceptually 
justified notion of reflection, as evidenced by Lisp. 

Let it immediately be said, however, that none of this is to sug-
gest that the ingrediential/representational view is without its 
own problems. On the contrary, the difficulties it faces are con-
siderable—or at least the difficulties faced by any version of it 

 
 
51The mandated theoretical changes are not straightforward, however, 
and would require that standards of “correctness” are replaced with those 
of “soundness,” since interpretation functions would, as in logic, have to 
be parameterized on a program-specific interpretation of atoms, identi-
fiers, and data structures in general. 
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on which we yet have a decent theoretical grasp. They have to 
do with fundamental issues of ontology, with still-unanswered 
questions about the nature of semantics, with limitations as re-
gards how we understand the semantical or intentional nature 
of activity or process, on issues of deixis, indexicality, and per-
spectival conceptions of semantic value, and myriad other is-
sues. In a way, in fact, the employment of a ingrediential/rep-
resentational view in /Lisp, and the practical as well as theo-
retical failure of those dialects, illustrates not only the ad-
vantages, but also the disadvantages, of any ingrediential/rep-
resentational view that we are currently able to formulate. 

Even more strongly: I would be the first to admit that the 
particular form of representational framework used to design 
and analyse /Lisp is ultimately no more tenable than the 
specificational/prescriptive view. Crucially, though, that fact 
does not supply any warrant for decrying representation in a 
broader sense. There is more to representation than the version 
used in /Lisp.52 

In chapter  I will sketch some ways in which the merits of 
the specificational/prescriptive view might be incorporated 
into a revision or opening-up of the ingrediential/representa-
tional approach, so as to combine their respective merits. But 
that proposal will be merely a suggestion, which would take 
work to develop. We are still a long ways away from having 
forged a theoretical understanding adequate even to present-
day programming practice, let alone to the future of computing. 

 
 
52See  “Rehabilitating Representation” (Smith, ). 



  

 4 Semantics 
  Diagnosis · Second Pass 

We need to dig deeper. 
The first diagnosis distinguished two conceptions of the 

notion of a program. Analysis suggested that that issue is 
merely the tip of an iceberg. En route, we uncovered a range 
of additional issues in need of exploration: about the rela-
tion between the semantics of individual programs and the 
semantics of the programming languages they are written 
in, about the nature of computation itself (e.g., whether 
computers can add), about the relation of computation to 
mathematics, and so on. This suggests a second diagnosis, 
which instead of focusing in on programs, addresses the 
problematic from a more general semantical perspective, 
with the aim of clarifying the structural configuration in 
which symbolic systems are deemed to play a role. 

The problematic has two major dimensions. First, a 
spate of entangled issues are involved, including at least 
program, process, semantics, meaning, interpretation, mecha-
nism, and computing itself. Second, this range of concepts 
needs to be assessed from several viewpoints, of which four 
are already on the table: 

. That on which philosophical logic and KR are based, 
evolved from considerable Cartesian and post-Car-
tesian philosophy, having not only to do with ra-
tionality, reasoning, proof, etc., but also, among 
other things, with a proposed solution to the prob-
lem of “mental causation”; 
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. That embraced by current computational theory, as 
embodied not only in computability and complexity 
theory, but also in existing approaches to program-
ming language semantics (including both opera-
tional and denotational varieties); 

. That on which programmers tacitly rely, in per-
forming their work—assuming that, even if not ex-
plicitly articulated, their collective work is based on 
at least a roughly shared understanding; and 

. That in terms of which /Lisp was designed and 
theoretically framed. 

Each viewpoint makes its own assumptions, embodies par-
ticular insights, has significant merits in some respects, and 
fails in others. The task of this chapter is roughly archaeo-
logical: to give voice, from a workably comprehensive van-
tage point, to the assumptions, commitments, and perspec-
tives of each of the four viewpoints listed above, explaining 
their stance on the enumerated suite of issues (program, 
process, semantics, interpretation, etc.), and in so far as is 
possible at this stage, exposing their relative merits and de-
merits. The hope is to use this catholic understanding as a 
basis on which to develop a map of the whole territory. 
With luck, we will be able to discern, at least in outline, 
some of what will be required in a “successor” approach—
a candidate alternative that integrates the merits of all 
those assessed. I will not present such a successor view 
here, but some initial framing comments are given in chap-
ter . 

The investigation is bedeviled by the issue of conflicting 
vocabularies mentioned in the Introduction. The various 
disciplines being excavated—computer science, logic, 
knowledge representation, philosophy of science, etc.—use 
many of the same words in different ways. Because I expect 
readers of these pages to come from all these communities, 
the presentation cannot assume any single common 
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terminology (as would be the case for example, if this were 
merely an attempt to explicate, from the viewpoint of ana-
lytic philosophy, computer science’s use of the technical 
vocabulary it inherited from logic, or if it were addressed 
to programmers with primarily pragmatic concerns). One 
approach would be to argue for the superiority of one set 
of terminological uses, and then to use that one, but as it 
happens I endorse none. Another would be to introduce 
new vocabulary and/or neologisms, but the exploration 
hardly warrants that (this is a diagnostic endeavour, after 
all, not yet a synthetic one). 

To mitigate these odds, I will adopt a rather formal 
strategy, depicted in figure . First, the viewpoints I want 
to interrogate are four, suggested above but more carefully 
identified as follows: 

V1 The classical “formal symbol manipulation” (FSM) 
view of computation, based on a conception of sym-
bols and semantics inherited from classical logic and 
philosophy of language. Not only is this view widely 
associated with classical artificial intelligence 
(GOFAI), but many philosophers of mind and cogni-
tive scientists1 assume that it is constitutive of what 
computation is. I will not address the broad claim 

 
 
1E.g.,  Van Gelder (). 

 
Figure  
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here (about its adequacy as an overall theory of com-
putation, let alone as a theory of mind); I will re-
strict myself to assessing it as one of several compet-
ing perspectives on the nature of computing. 

V2 What in chapter  I called the “official computer sci-
ence” view, associated with Turing machines, math-
ematical theories of computability, and most ap-
proaches to programming language semantics, in-
cluding denotational, operational, algebraic, and ax-
iomatic. As I have noted elsewhere, outsiders to 
computing are likely to think that V is the same as 
V; one goal of this chapter is to demonstrate how 
far that is from being the case. 

V3 Something that I will presumptuously call “the tacit 
view of programmers”—not a perspective that has 
received theoretical articulation, but my own intui-
tive sense of how programmers in fact understand 
the programs and systems that they build. I have no 
proof that this view is representative or widespread. 
I include it not only because of how far it diverges 
from V, with consequences for reflection and for 
our understanding of both computation and seman-
tics more generally, but also because I believe its ex-
amination will foreground important requirements 
that any successor account must meet. 

V4 The framework in terms of which /Lisp was de-
fined, which started out based on V, but was mod-
ified and extended in a number of ways to deal with 
some of the issues that V treats directly, especially 
having to do with the consequences of dynamic pro-
cessing. 

The strategy will be to ask the same baker’s half-dozen 
questions of each view—regarding its assumptions about, 
and theoretical orientation towards: 
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Q1 The nature of computation; 
Q2 The nature of programs; 
Q3 The character of the program–process relation; 
Q4 The character of the process–world relation, where 

by ‘world’ is meant the program’s (and process’) task 
domain; 

Q5 The nature of data structures; 
Q6 The nature of semantics and interpretation; and 
Q7 The nature of (and prospects for) reflection. 

By the program–process relation (Q), I mean the relation 
between: (i) the static or at least relatively passive pro-
gram—the sort of entity that might be printed out, edited 
before the program is run, etc.; and (ii) the behaviour or 
activity that results from “running” or executing that pro-
gram, whether that is considered merely in terms of an in-
itial input and final output, more richly in terms of ongoing 
activity, or whatever.2 What is critical, for purposes of this 
question, is that the ‘process’ or ‘behaviour’ not be under-
stood “under interpretation” (interpretation-L)—as, for 
example, in “adding the numbers two and three” (at least 
on the formal symbol manipulation view of computing), or 
“ordering students by age.” Though otherwise perfectly un-
exceptional, these descriptions involve at least one level of 
(semantic-L) interpretation of the mechanical or behav-
ioural results, and thus combine issues of both Q and Q. 
An appropriate answer to Q alone, in the first of these two 
cases, would be something along the lines of “two numerals 
are taken as input, and a numeral produced as output, nor-
matively mandated to denote (designate, refer to, etc.) the 
sum of the numbers denoted by the inputs.” 

Questions Q–Q are interrelated, but in different ways 

 
 
2If it is helpful, one might substitute the word ‘behaviour,’ taking Q to 
be about the program–behaviour relation, though I believe ‘process’ is 
more general. 



 4 · Diagnosis — Second Pass 

  139 

for different views. Thus the program-process relation 
(Q3) is pretty much what the official CS view (V) calls “se-
mantics” (Q6), whereas in logic and FSM (V) semantics lies 
closer to the relation between a process and the world (Q4). 
Because of these different associations, in considering each 
view (V–V) I will not always address the questions (Q1–

Q7) in the same order. Moreover, in some cases it may be 
that Q6, concerning semantics, has effectively been an-
swered in the course of addressing Q1–Q5. The point is 
merely that it will be taken as a criterion on our assessment 
of each of the four views that by the time we are done we 
have developed a clear understanding of how that view 
treats each of the seven questions. 

The aim will not only be to identify “what reflection 
would look like” from each point of view, but also to iden-
tify the minimal conditions on a tenable answer, so that, as 
we examine each view of computing, programs, etc., we can 
consider whether it provides sufficient resources for de-
signing an architecture that can lay legitimate claim to be-
ing reflective at all. 

As already intimated, I do not think that V—the offi-
cial CS view—is strong enough to meet that challenge. I 
would also be the first to admit that the /Lisp approach 
(V), while more promising than either V or V, remains 
inchoate and limited. 

One final preparatory comment. Not surprisingly, theoret-
ical discussions about computing, especially discipline-in-
ternal ones, are often conducted in mathematical terms. 
Throughout both science and philosophy, it is controver-
sial as to whether the mathematical entities adverted to in 
scientific explanation, such as numbers, functions, sets, 
vectors, and so on, should be understood as ontologically 
intrinsic features of the subject matter, or whether they are 
better considered as epistemic aids—theoretical equipment 
used to model or understand the subject matter or phe-
nomena in question. 
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The distinction is of philosophical importance in its 
own right, relevant in the foundations of science and fun-
damental metaphysics. In practice, though, it is liable to be 
of little concern to working scientists, who are unlikely to 
confuse the mass of a proton, or the velocity required to 
escape from solar orbit, with the numbers used to classify 
them. In most sciences, that is, the differences between 
measures and what is measured are usually made manifest 
in such techniques as the ubiquitous use of units and coor-
dinate systems (.×− kg, . km/sec, etc.). 

The situation in computer science is considerably more 
vexed. It is absolutely unclear—and in fact I believe there 
is ample evidence that there are differing views among both 
working programmers and theoretical computer scien-
tists—as to whether computing is itself a mathematical do-
main, or whether, as in other parts of science, mathematics 
is used, for theoretical purposes, to model or classify com-
putational phenomena. We talk about computing numbers 
(e.g., “compute the positive square root of ”), but the 
question of whether that phrasing is short-hand for “pro-
duce, via some effective means, a numeral that denotes the 
positive square root of ” is usually left implicit—and I 
suspect any particular answer would be disputed, if posed. 
Certainly on a conception of computation as formal sym-
bol manipulation, as I have indicated several times, num-
bers per se cannot be the output or result of a computa-
tion—for the simple reason that, at least on anything like 
a traditional conception, numbers are abstract, whereas 
symbols (or anyway their instances) are concrete, at least 
symbols of the sort that formal symbol manipulation ma-
chines could produce.3 So if one genuinely believes that 

 
 
3Symbol tokens, at least, are concrete; symbol types, understood in such a 
way as to claim that the expression ‘a=(a+b)’ contains two different sym-
bols, are of course abstract. No types of any sort can be returned by a 
computational procedure, and so it would not help, if one wanted to de-
fend the idea that computation involves numbers, to identify the number 
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computations can issue in numbers, then one must reject 
the idea that formal symbol manipulation is what compu-
tation is. (Note, too, if one’s predilections run concrete, 
that “compute the positive square root of ” cannot 
simply be an instruction to produce a symbol structure that 
denotes thirty-one, since the term “the positive square root 
of ” already does that.) 

These issues are fundamental to any philosophically rig-
orous theory of computation. They also have directly to do 
with the meaning/mechanism dialectic discussed in the In-
troduction. And they not only permeate, but diabolically 
complicate, all the issues with which we are concerned 
here: about programs, semantics, and the design of reflec-
tive architectures. The semantical situation is particularly 
problematic. At a minimum, semantics rests on (among 
other things) a distinction between the realm of the sign 
and the realm of the signified—between name and named, 
representation and represented, term and extension, map 
and territory. This sign/signified duo is frequently 

 
 
with a type of number. 

That is not to say that abstract entities, such as genuine numbers 
(however conceived) may not themselves be used, in some circum-
stances, as symbols—as they manifestly are, for example, in diagonaliza-
tion proofs of the Gödel incompleteness theorem. The point here, 
though, is merely that the formal symbol manipulation construal of com-
putation rests on a notion of concrete symbols, not abstract entities of any 
sort. 

(The suggestion of taking numbers to be types of numeral, one I fre-
quently encounter among working programmers, is problematic for 
other reasons as well. It raises the issue of whether the number of which 
the binary numeral ‘110’ is a token of is a different number from that of 
which the decimal numeral ‘’ is a token, for example. One might at-
tempt to address that issue by taking numbers to be more abstract symbol 
types, so that tokens of the binary ‘’ and of the decimal ‘’ could be 
taken to be [tokens of] the “same number,” of which the number [nu-
meral type] of ‘’ [binary] and [decimal] ‘’ were subtypes. But that 
way lies madness.) 
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amplified with at least one other intermediating realm of 
sense, meaning, or intension. Cross-cutting that issue, it is 
also a widespread practice in logic, philosophy, linguistics, 
and computer science to construct mathematical models of 
these realms, including of signs (symbols or expressions—
often called ‘syntactic models’), and frequently of signified 
(“semantic models”), and of any intermediating realms of 
sense or meaning or intension.4 

Moreover, if this were not enough, the prospects for 
confusion are exacerbated by yet another confounding 
complexity, largely orthogonal to either of the former two.5 
Like everyone else, programmers and computer scientists 
subscribe to a wide variety of metaphysical views and con-
comitant philosophies of mathematics: Platonism, realism, 
idealism, formalism, intuitionism, constructivism, species 
thereof, and likely other variants without common names. 
It is hardly surprising that, even in the human case (leave 
computers aside for a moment), answers to the question of 
whether one computes a number or a numeral would gar-
ner different responses from a realist, intuitionist, formal-
ist, or constructivist mathematician—perhaps even from a 
phenomenologist. 

And to put a nail in the coffin: the realm of computing, 
and of computational theory, is often looked to for re-
sources to illuminate, clarify, and sort out many such con-
fusions. If our understanding of computing itself is plagued 
with unclarity, ambiguity, and divergence of opinion, far 
from clarifying relations between meaning and mechanism, 
it will merely contribute to their mystification. 

For present purposes one moral at least is straightfor-
ward. In my judgment, any attempt to clarify the 

 
 
4Where, perversely, they are also called “models of the sentences,” which 
to the uninitiated is probably best understood as shorthand for “models 
of the semantic interpretation of the sentences.” 
5Only partially orthogonal, needless to say! 
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fundamental nature of computing, semantics, programs, 
and the like must, to the maximum extent possible, avoid 
mathematical entities, examples, models, and techniques 
entirely. “Forget numbers; think about potatoes,” as we 
might say, with Steinian apology.6 As a corollary, I believe 
it is also salutary, at least in such investigations’ initial 
stages, to avoid documents, images, files, characters, and 
other semi-abstract entities, where the intertwined issues 
of identity and concreteness bedevil analysis (How many 
letters are there in the word ‘Boston’?)7 For present pur-
poses, therefore, I will focus on examples of programs such 
as those that control elevators, identify people, and per-
form side effects on (concrete) data structures.8 

 V1 Formal Symbol Manipulation 
Start, then, with the formal symbol manipulation (FSM) 
view, as espoused in philosophy of mind and classical arti-
ficial intelligence. It has the non-trivial merit of providing 
a relatively clear answer to the first question, Q1, regarding 
the nature of computation. As I have said several times, 
computation, on the FSM account, is a process or behaviour 
that results from “formally manipulating” an array or as-
semblage of symbols, where symbols are semantic entities 
(i.e., entities that signify, denote, can be semantically “in-
terpreted-L,” and so on). 

It is sometimes imagined that the symbols must be for-
mal symbols, as if the correct parse of the identifying 
phrase were 

 
 
6Stein (). 
7It is not that I think cases of documents, images, communication, etc. 
(or, for that matter, genuinely mathematical task domains) are unim-
portant. On the contrary, they are so important, particularly in the com-
putational realm, that they are the primary motivating examples for the 
development of the fan calculus mentioned briefly in §.. 
8Side-effects because they establish relatively clear identity conditions. 
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 ((formal symbol) manipulation) 

but it is obscure to know what a formal symbol might be. 
Much better, in my view, to understand the position as 

 (formal (symbol manipulation)) 

understood in turn as consisting of two essential parts. 
First, as is classically assumed in philosophy,9 and as fur-
ther explicated in chapter , it is presumed that the sym-
bols exemplify two sets of properties: 

. So-called formal properties, either themselves con-
crete, in the sense of being properties of concrete en-
tities, or else realised in (perhaps higher-order or 
functional classifications of) physical properties of 
such concrete entities, such as being of a given gram-
matical type, or being constituted of certain con-
crete mereological elements;10 and 

. Semantic properties, such as denoting Mars, being 
true, or signifying the demise of the Egyptian Phar-
aohs. 

Second, what makes the whole situation computational, on 
the FSM view, is that the manipulation process is con-
strained to respond to, and affect, properties only of the 
first, formal sort.11 Formal properties, that is, or anyway all 
of those relevant to computational operation, are all as-
sumed to be effective. Other assumptions about computa-
tion are paradigmatically made by FSM adherents, but in 
my judgment are not foundational to the view, at least in 
respect of the issues I am concerned with here. 

Given this V answer to Q1, turn next to Q6, about se-
mantics. At least in outline, the situation is again relatively 

 
 
9E.g., Fodor (). 
10Leading the whole question to recurse, needless to say, as to what con-
stitutes mereology—what sorts of parts are licensed? 
11Fodor (, ). 
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straightforward, or anyway theoretically familiar. I have al-
ready indicated that the symbols must have a semantic in-
terpretation, either intrinsically or (more likely) by exter-
nal assignment, in order for the view to have any substance 
at all.12 Some seem to view such interpretation as optional 
(since the processing regimen cannot depend on any such 
thing—the whole point of its being “formal”). But espe-
cially if the characteristics deflected in the previous para-
graph are admitted to be contingent, making semantics or 
even semantic evaluability optional evacuates the entire 
proposal of content—reducing it to something honesty 
would compel us to call stuff manipulation. 

Finally, if somewhat more contentiously, and as reiter-
ated throughout these pages, I believe it to be a deep fact 
about the FSM view that the semantical interpretation func-
tion be deferential in the sense identified in the Introduc-
tion, and again more fully explained in chapter . That is: 
the symbols must not only denote or be about, but also be 
normatively accountable to, entities or states of affairs that 
transcend the symbol’s own local physical properties and 
the immediate consequences of those symbols’ treatment 
by the manipulation routine. This is necessary in order for 
the governing normative conditions on the manipulation 
regimen to get any substantive grip. It is absolutely consti-
tutive of the FSM model, be it of logic or language or com-
puting, that “not anything goes” in terms of how the sym-
bols are processed and what results are produced. This is 
why soundness and completeness are such profoundly im-
portant properties, so aptly distilled in Etchemendy’s 
memorable framing:13 

 
 
12In logic, the interpretation function is partially specified in the design 
of the logic—that constants denote objects, that property and relation 
symbols denote properties and relations, respectively, and so on—
though the precise specification of what objects, properties, and relations 
they are taken to denote is left, as it were, to the “user.” 
13Personal communication. Whether Etchemendy said this with an 
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 Soundness · Wanting what you get 
 Completeness · Getting what you want 

“What you want” is cryptic for what is semantically war-
ranted or appropriate; “what you get,” for what is produced 
by the process of formal symbol manipulation. The properties 
are substantial only when the former (semantic worth or 
appropriateness) is not intensionally subsumed by the lat-
ter. 

Suppose, in contrast, that, starting with a Meccano or 
Erector set, we were to call each individual structural ele-
ment in the kit an “atomic symbol,” and define its “inter-
pretation” to be the space of configurations that it can oc-
cupy when attached to another part. The “interpretation” 
of complexes would thus be the spatial configuration of 
possible assemblies made out of them (constrained by 
whatever geometric constraints curtail the ways in which 
they could be put together). And then suppose we define a 
“formal symbol manipulation” regimen to put parts to-
gether subject only to those geometric constraints (i.e., to 
assemble pieces randomly, so long as they fit, can be posi-
tively connected, etc.). By stipulation, the resulting system 
would be sound and complete. And the analysis: vacuous. 
There being nothing deferential about the (so-called) in-
terpretation, the normative conditions on the symbol’s 
processing would be empty; the result, a mockery of the 
FSM idea. 

Note, since issues of reflection will come up presently, 
that I have not stipulated that the semantic interpretation 
must reach out to a semantic realm “external” to the do-
main of symbols—though in practice that is almost invari-
ably the case (with the exception of term models, which al-
most never count as deferential on my view). What matters 
is that there be “more” to the semantics than what happens, 
even in internal (introspective) cases. For example, one can 

 
 
explicit nod to Ingrid Bergman or Dale Carnegie I do not know. 
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imagine a system in which symbols are taken to denote var-
ious non-computable properties of their collective arrange-
ment, configured in such a way that completeness was im-
possible to achieve, and perhaps soundness substantially 
challenging as well, even though all references would at 
least in some sense remain “internal.” But once again the 
awkwardness of the example illustrates the point: it is a 
deep and inalienable fact about the FSM conception that the 
semantics of the constituent symbols be capable of out-
stripping, at least in ontological character, and often in ex-
tension as well, what can be “locally and mechanically” ac-
complished by a physically realizable process defined over 
their formal properties. 

What then is V’s view of programs (Q3)? Curiously, but 
as already mentioned, programs per se are not part of the 
FSM conception at all. Two different things are often infor-
mally assumed, I believe. 

First, it is typically presumed that programs play a role 
in specifying the formal operations that the interior process 
makes in manipulating the symbols. Tellingly, however, 
what constitutes a “formal operation” in the case of pro-
grams is unclear. There are two ways of interpreting what 
the predicate ‘formal’ applies to, in regards to programs; and 
additionally, two ways of understanding what ‘formal’ 
means, leading to a space of four possible readings. 

Re the latter issue, regarding the meaning of formality, 
most discussions analyse the notion in one of two ways, 
usually assumed to be extensionally equivalent: positively, 
as having to do (solely) with the syntactic or grammatical 
type or category or overall “shape” of the symbol structure; 
and negatively, as “not being semantic.”14 In other work I 
argue that what is right about the positive reading 

 
 
14Cf. Fodor’s “Methodological Solipsism” (), the locus classicus of 
where this issue is discussed. 
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ultimately reduces to effective or mechanical—a formal 
property, in this positive sense, is one that a mechanism (or 
physical device) can respond to, independent of whether 
that property is semantical or not. I.e., the notion of ‘for-
mality’ in discussions of logic and allied fields is either 
equivalent to ‘effective,’ or restricted to that subset of the 
effective properties (of terms, expressions, constructions, 
whatever) that are relevant—e.g., compositionally—to its 
semantic  interpretation (to its “semantic-L interpretation-
L"). 

The negative reading, in contrast, I take to be a limit 
case of a fact underlying deference: that semantical proper-
ties are not constrained to be, and indeed are often not (and 
in paradigmatic cases of formal symbol manipulation are 
not), mechanical or effective in this sense. 

As regards the former issue, of formality’s application, 
the ambiguity arises from the fact that to say that a pro-
gram is ‘formal’ is ambiguous as to: 

. Whether its execution engenders formal operations 
on the symbol structures being manipulated—paradig-
matically, formal operations on the program’s data 
structures (i.e., if one were to adopt the specifica-
tional view, where the program is taken to designate 
formal operations over data structures); or 

. Whether the running or execution of the program 
itself proceeds formally, in the sense that whatever 
behaviour the program specifies or engenders arises 
based on formal properties of the program itself (as a 
symbolic structure), perhaps independent of its se-
mantics. 

One might imagine it to be overwhelmingly likely that pro-
grams must be (or are anyway understood to be) formal in 
both respects, if the process is to be automatic. From the 
point of view of the FSM model of computation, however, 
what matters about programs, to the extent that they enter 
the picture at all (or rather: if we forge a conception of 
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them consonant with the FSM model), is the first issue: that 
they specify or engender formal operations. How those oper-
ations come into being is not something on which the FSM 
conception itself takes a stand. 

What the discussion also makes evident is that the very 
idea of a program implies that the overall situation is per-

haps more complex than 
is usually realized: that 
the classical pictures im-
plies the existence of 
three distinct processes, 
as depicted in figure :15 
(i) the overall resulting 
process, labeled R, as-
sumed on the FSM view to 
be constituted from the 
formal symbol manipula-
tion of an assemblage of 
ingredient symbols; (ii) 
an interior process or lo-

cus of agency, R′, that does that manipulation—i.e., that 
operates “over” or “on” those symbols, which in contrast to 
it are viewed as relatively inert or passive; and (iii) an addi-
tional process, R″, not normally explicitly theorized in phil-
osophical discussions of formal symbol manipulation, in-
cluding in discussions of logic, but of central relevance in 
computer science, which takes the program P and generates 
process R′ from it. 

In the case of an “interpreted” programming language 
(‘interpreted,’ in this case, not in the logico-semantic sense 
in which the term is used in logic—not interpretation-L, as 
I am calling it—but in the sense I am calling interpretation-
C: the sense used in the specificational reading of program-
ming-languages, familiar to computer scientists in such 

 
 
15Adapted from figure  in the Introduction of Smith (). 

 
  

 
 Figure  
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phrases as “Java compilers produce bytecodes for an inter-
preted language”): 

. R″ would be the language “interpreter-C”; 
. R′	would be the running program, reified in a way 

that (rather unusually) maintains a distinction be-
tween it and the data structures or symbols that it 
manipulates; and 

. R would be the overall process or behaviour that re-
sults from their interaction. 

Whereas R″ (e.g., the Lisp “interpreterC”) and R (the overall 
running program) are the two processes most likely to be 
individuated as such, especially by programmers, what is 
striking is that, according to the FSM model, it is R′, and 
only R′, that “operates over the symbols,” and that is con-
strained to do so formally. On the other hand—an im-
portant caveat—if, which almost undoubtedly matches 
programmer intuition more closely, one erodes the distinc-
tion between the program itself (P) and the data structures 
on which it operates (i.e., the “symbols” S, but here calling 
them data structures to align more directly with computa-
tional parlance), then R″ becomes the process required by 
the FSM model, with R″ formally manipulating the pro-
gram-cum-data-structure amalgam so as to engender R. 

If program P is compiled, there is a change to the identi-
ties of the program being executed and the “doubly inte-
rior” process R″ that does the execution, but the tri-partite 
process structure remains, as do the identities of R′ and R. 
In particular, the compilation process will take P as input, 
and output a different program –P (most likely in binary ma-
chine language, or in byte codes for an underlying virtual 
machine), able to be “interpreted-C” by a different runtime 
process –R″ (the underlying CPU, if –P is a machine binary, or 
a “byte code processor,” if –P consists of a sequence of byte 
codes), in such a way as to honour this condition: the pro-
cess or behaviour –R′ that results from –R″ (the CPU or byte 
code processor) interpreting-C –P (the “compiled code”) 
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must be “the same” as the process R′ that would have re-
sulted from the language interpreter R″ interpreting-C P di-
rectly. “The same,” here, is defined in terms of an outer 
equivalence: the overall process or behaviour –R that results 
from –R′ interacting with the data structures S must be 
equivalent to the overall process or behaviour R that would 
have resulted from R′ interacting with those same data 
structures—on an appropriate notion of equivalence, which 
commonly does not include timing, to allow –R′ to be faster 
than R′. 

Spelling it out in this way may be more tedious than 
helpful; certainly the points being made are second-nature 
to any working programmer.16 The distinctions start to 
matter, though, as soon as we turn to issues of semantics. 

Start with the process-world relation (Q4). This is the clas-
sical realm of semantics for logic, and by extension for the 
FSM view as a whole. Moreover, as already indicated, in or-
der for the FSM view to have substance (and not to reduce 
to stuff manipulation), the semantic relation must be def-
erential, in order for the symbol-manipulation process R′ 
to be normatively constrained in an appropriate way. Pro-
cess R″, we can assume, is given in advance (a Lisp inter-
preterC, a CPU, whatever). The relevant normative con-
straints are focused on program P: it must be such that, in 
manipulating symbols S, it does so in a way that is seman-
tically appropriate overall—“sound,” in the logical tradi-
tion, though as we will see, the form that the constraints 
take in the computational case may be more complex. This 
is all commonsense: if one develops a knowledge represen-
tation (KRL or Mantiq or any other), one must write 

 
 
16The degree to which they may be unfamiliar, if not opaque, to philo-
sophical readers may be indicative of the extent to which the actual na-
ture of computation remains to be adequately theorized in contemporary 
philosophical analysis. 
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programs P to manipulate the knowledge representation 
structures in such a way as to “make sense” (i.e., honour the 
semantic-L content, in an appropriate way) of those struc-
tures, in terms of their (perhaps attributed) semantic inter-
pretation-L. 

At the most fundamental level, the process-world rela-
tion at issue in Q4 is that between R and its task domain. 
According to the FSM view, normative responsibility for 
this relation is placed on both S and R′.17. Suppose struc-
ture S (∊S) represents the fact that water flows downhill if 
possible and otherwise accumulates, and S (also ∊S) repre-
sents the fact that some particular land region α has no 
downhill outlet. And suppose in addition that, based on 
these S structures, process R′ yields the conclusion S (again 
∊S) representing the fact that water accumulates at α—i.e., 
that α is a lake. Then it is a normative condition on S that 
S and S should be true; if S is wrong, and α is in fact the 
side of a mountain, then R, in yielding S, has reached a 
wrong conclusion on account of a failure in S. If, on the 
other hand, S is correct (R indeed has no downhill outlet), 
but the program P licenses the conclusion that α is a river 
(rather than a lake), then R has again reached a wrong con-
clusion, but this time on account of a failure in P (P is un-
sound). In the vernacular of folk psychology, or anyway 
philosophy’s reconstruction of folk psychology, the first is 
a failure of belief, the second a failure of reasoning; it is un-
doubtedly no accident that the S-R′ distinction mirrors this 
intuitive distinction so closely. 

 
 
17These are the two normative conditions on logic discussed in chapter 
: one on sentences (S), that the sentences be true; the other on inference 
(⊢ in  logic, R′ here), that it be truth-preserving. 

Normative responsibility would be shouldered by S and R′ only if the 
computational parts of this assemblages were capable of being ethically 
responsible agents. The normative responsibility, therefore, is shoul-
dered in the first instance by the programmers, and behind them by the 
institutions and social practices within which they are embedded. 
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What else, then, since we are now well into question Q3, 
can be said about program-process relation P®R, on this 
FSM (V) construal, besides the fact just noted: that P is in-
directly subject to the normative constraints placed on R by 
the deferential semantics of S? In particular, can we say an-
ything about the semantics of P, viewed as a symbolic or sig-
nifying structure? This is the question we must be able to 
answer, if we are ever going to understand reflection. And 
the curious fact is this: 

 On the issue of the nature and (what computer science 
would call) the “semantics” of programs, the FSM con-
strual of computation is completely silent. 

All we have been able to determine as constitutive of the 
FSM view is: (i) that the symbolic structures in S must be 
(formally) manipulated by process R′ in a semantically ap-
propriate way; and (ii) that if the behaviour of R′ is deter-
mined by something called a ‘program,’ in conjunction with 
another interior process R″, then that program must engen-
der such semantically appropriate behaviour somehow. But 
for all the FSM view of computation cares, the program 
could do it by might alone, or by divine intervention, or on 
a whim. Nothing in the FSM view requires the program to 
be a semantically interpretable structure or expression at all. 

One natural extension of FSM to deal with this situation 
has already been suggested: integrate the program, viewed 
as a symbolic structure in its own right, into the field of 
symbolic structures S, and interpret it in accord with the 
same semantical framework that is used to interpret the 
rest of the expressions in S. It would be natural, if the pro-
gram was framed in such a way as to describe or represent 
how other symbolic structures in S were to be treated, then 
terms in the program would refer to or “mention” other el-
ements in S—making the expressions in the program meta-
level structures. What this suggestion amounts to, how-
ever, is no more than the representational/ingrediential view 
of programs explored in chapter ; it is also the approach (V) 
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under which Lisp and 3Lisp were designed. 
As I will argue in more detail below, this suggestion—

of treating the program as an ingredient within the field of 
data structures, semantically interpreted (interpreted-L) in 
the regular way, but including (meta-level) references to 
other data structures—has numerous benefits, including: 
(i) obviating the need, which we have already recognized as 
awkward, of reifying process R′ as a distinct intermediary 
process between R″ and R; (ii) allowing program P to use 
(not just mention) “object-level” or “base-level” terms to re-
fer to external entities, such as numbers and sequences and 
such, in the same deferential way as any other symbolic 
structures in S;18 and (iii) dissolving the issue discussed 
above, about whether the program itself is dealt with for-
mally, or whether the program leads to formal operations 
on data structures (both views become true, essentially au-
tomatically, when the program is taken to be a process in-
gredient). 

For example, consider a program that contains a state-
ment such as «(IF (AGE-OF(COMMITTEE-CHAIR)==47) THEN …)» which 
uses data structures to mention elements of the task domain 
(the chair of the committee, the number forty-seven, etc.). 
That is not to say that symbolic elements of P may not refer 
to other elements of S (rather than D), using quotation, 
mentioning them by name, etc. As the Lisp architecture 
makes evident, making this approach work mandates the 
use of a certain amount of straightforward meta-structural 
machinery. But the bottom line is simple: 

 The FSM view of computing (V) leads naturally to an 
ingrediential view of programs (Q2), in the process 
answering the question about the program-process 
relation (Q3): P derives its semantics (not just its nor-
mative constraint) from the semantics defined over S 

 
 
18I say ‘other’ in this context because the idea is that, on this approach, 
the program P has been included as part of symbolic field S. 
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(Q6), in virtue of being considered to be part of S. 

 V2 Theoretical computer science 
What then of the view of theoretical computer science? 

The stunning fact—and the reason this entire exercise 
is important—is that this second construal’s answers to the 
first six questions differ profoundly from those of the first 
(V, or FSM). To see this, keep in mind that this second 
perspective (V) is about programs, computing and the like 
as theorized in computer science. When we turn to V, I will 
argue that this V theoretical understanding is at least aug-
mented, in the minds of virtually all computer scientists, or 
anyway all programmers, by an additional layer of tacit un-
derstanding, essential to the task of programming, which 
pulls it closer to that of the FSM (V) view. I will even argue 
that the tacit view changes the theoretical nature of the 
predicate ‘computational,’ in ways that are conceptually 
important. But if we restrict our focus to the currently ac-
cepted theoretical approach, the differences between V 
and V are stark. 

Consider question Q1, first, about the nature of compu-
tation. One might expect computer science to be commit-
ted to a conception of computation as something like sym-
bol manipulation or information processing19—i.e., to take 
computing as having something to do with meaning, se-
mantics, or intentionality. But I do not believe that is cor-
rect. Although, as we have seen, computer science’s theo-
retical language is drenched in semantical vocabulary, be-
traying its logical origins, I have come to believe that the 
pressures of a reigning mechanistic philosophy, coupled 
with the idea that science should traffic in causal explana-
tions, has eviscerated the core of computer science of all 
commitments to anything I would countenance as 

 
 
19‘Information’ is as multiplicitous and overloaded a term as any other in 
computer science.  
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genuinely semantic (semantic-L), pulling the entire field of 
computing inside of what I am calling blanket mechanism 
(by “the core of computer sciences” I especially mean to ex-
clude AI, knowledge representation, and some approaches 
to database theory).20 This is manifest in recent theoriza-
tions of information, stemming originally from computa-
tional quarters, which not only take information to be a 
measurable quantity, which already starts to lean away 
from intentional concerns, but defines it entirely mecha-
nistically, in terms of something like the “amount of effec-
tive complexity”—e.g., in the Kolmogorov and Chaitin 
conceptions of the “amount of information” in a signal or 
message being equated with the length of a maximally com-
pressed version of that structure syntactically construed.21 

As regards the underlying “theory of computing,” more 
generally, and the entire enterprise of theorizing programs 
and programming languages, including the entire enter-
prise that goes under the label “programming language se-
mantics,” all senses of deference, as I am using that term, 
have at least been relegated to the wings, if not eliminated 
entirely. Falsehood, incompleteness, unsound reasoning, 
etc., are similarly off-topic (not that entities exemplifying 
such properties cannot be treated as computational struc-
tures of some sort, but the perspective we are considering 
here renders invisible their falsehood, incompleteness, un-
soundness, and so on). 

The easiest way to see this is by considering the hierar-
chy of machine types in terms of which general computa-
tion is often introduced: finite state machines, push-down 
automata, and Turing machines—the latter two consisting 
of finite state machines plus internal ‘memory’: a push-
down stack in the former case, an unbounded tape in the 

 
 
20Cf. chapter , and also Piccinini (). 
21Kolmogorov (,); Chaitin ();  Levin (,); Burgin 
(). 
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latter. Note, for starters, that the states of the constitutive 
finite state machines are in general not semantically inter-
preted. They are atomic “total conditions” that the ma-
chine can be in, whose only defining (and usually individu-
ating22) characteristics are that, when presented with effec-
tively different inputs, they respond differentially, transi-
tioning to a new state, and possibly generating an output 
while doing so. From the point of view of the formal the-
ory,23 no assumption is made, nor any implication even 
mooted, that these states mean, represent, or stand for any-
thing. They are not considered to be of an appropriate type 
for having any visible content or semantic value. (As ex-
plored in more detail in chapter , one does need to inter-
pret them in order to say that they are capable of arithmetic 
operations, such as “adding binary numbers,” itself a se-
mantic mongrel of an idea.) 

More relevant, for our purposes, are the inputs and out-
puts such machines respond to and produce, and the struc-
ture of the internal memory or tape employed in machines 
of the latter two types. Here there are two options, both of 
which can be found in explications of underlying theory. 
From the point of view of the ontology of computing, they 
seem quite different, although I will argue in a moment 
that the apparent differences are relatively superficial. 

Perhaps most commonly, inputs and outputs are char-
acterized as “formal symbols”—but not, in this case, in the 
sense that they can be written, responded to, and manipu-
lated independent of semantics that they nevertheless neces-
sarily possess, in the way that I argued to be essential to the 

 
 
22There is some debate about whether functional/behaviour indistin-
guishability or topological similarity should be used to individuate finite 
state machine types. 
23‘Formal’ as a predicate on theories is usually associated with the theory 
being mathematically expressed, which is a distinct notion from the non-
semantic, “in virtue of shape” idea associated with formal symbol manip-
ulation. See “Foundations of Computing” (Smith, ). 
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formal symbol manipulation view. Rather, in these autom-
ata-theoretic cases, for all intents and purposes the symbols 
are not considered to have any semantic interpretation at all. 
That is, to use the “stuff manipulation” epithet suggested 
above, on the automata-theoretic view, inputs and outputs 
are merely “(discrete) mechanical stuff.” The “mechanical 
stuff” may be theorized as abstract, with the constraints of 
mechanism shouldered by a mathematized version of the 
property of being “effective,” but as I argue in chapter , I 
believe that abstract considerations of computational effec-
tiveness are merely relatively abstract physical constraints 
theorized in a mathematical model. 

The other option makes the point even more obvious: 
computation in computer science is sometimes character-
ized directly in terms of numbers (i.e., the inputs are taken 
to be actual numbers, not numerals or other symbols rep-
resenting numbers; the outputs are similarly numbers; 
numbers are placed into appropriate position in “memory,” 
considered as an abstract mathematical structure; etc.). 
Under this abstract mathematical conception, issues of se-
mantics and interpretation do not even arise. 

In FSM and logic (i.e., in V), to use an analogy I have 
employed elsewhere, semantics plays a role not unlike that 
of alcohol for the temperance union. There is no question 
about its existence; on the contrary, that existence is the 
field’s defining raison d’être. Far from being “out of mind,” 
semantics is very definitely in mind, but for behavioural 
purposes decisively set aside (as a mechanical cause of oper-
ation, in the FSM case; as something to imbibe, for teeto-
talers). As mentioned several times already, even if behav-
iourally eschewed, semantics nevertheless continues to play 
a decisive role, in the FSM view, by normatively governing 
that behaviour (in licensing what formal transitions are 
“good,” in the machine case). 

In the automata-theoretic case, in contrast, semantics is 
not just set aside, but swept off the table completely, dis-
missed from analytic imagination. The situation is not one 
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of its existing but playing no mechanical (causal) role, as in 
the FSM construal, but rather of its not playing any theo-
retical or normative role at all. In this way, far from being 
like the teetotaler’s alcohol, it is more like how physicists 
view the luminiferous ether, or might view the political 
leanings of the mythologically objective experimenter—
something that either does not exist, or if it does, is for the-
oretical purposes irrelevant. As far as the mathematical 
theory of computation is concerned, computational ma-
chines simply “do what they do,” based on how they are 
constructed or defined—unjudged and uninterpreted by 
any external constraint. 

Two facts can mislead an outsider into thinking that, in 
the received theory of computing, semantics or interpreta-
tion is still involved: 

. The range of inputs acceptable or “recognizable” by 
an automata (especially in the case of finite-state 
and pushdown automata) are often characterized in 
terms of grammars of distinctive types. Grammars, 
in turn, are invariably taken to be grammars of lan-
guages. But for purposes of the associated mathe-
matical theory, these are “languages” in form alone; 
no reason is given to suppose that expressions in 
them mean anything. In terms of the Meccano anal-
ogy mentioned above, one could as well have a 
“grammar” specifying the ways in which Meccano 
parts can be assembled. Calling these finite, recur-
sive characterizations of unbounded combinatoric 
spaces “grammars” is at best misleading, in my view; 
at worst dishonest. Meaning is not just kept “out of 
bounds,” but disregarded to the point that nothing 
hinges on whether it exists at all. 

. As we will see when we examine V (programmers’ 
tacit view), in real-world practice—in what I call 
computation in the wild—computers’ inputs, out-
puts, and memory states generally are interpreted 
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(in the philosophical sense of interpreted-L): taken 
as being representations or encodings of infor-
mation about, entities, phenomena, and states of af-
fairs in the task domain for which the system has 
been constructed, as well as representations of and 
information about other internal states (which will 
be relevant when we discuss reflection). In fact I will 
argue that no programmer could write or comprehend 
a program of substantial complexity if they were not so 
interpretedL.24 What matters for V, though, is that 
the mathematical theory of computation does not 
even recognize, let alone treat, these “into the world” 
forms of intentional directedness. 

In sum, theoretical computer science theorizes computa-
tion as moves between and among abstractly specified 
states of equally abstractly specified machines. In my view, 
it is a mathematical theory of abstract mechanism—hook, 
line, and sinker. 

But what then about programs (Q2)? Are they not inten-
tional symbolic entities, subject to semantical interpreta-
tion? After all, is that not what programming language se-
mantics is about?  

Finally we are getting somewhere. 

Note, first, that the so-called mathematical theory of com-
putation—perhaps better (if still not yet adequately) la-
beled a “mathematical theory of computability,” and ex-
tended to include associated theories of computational 

 
 
24The following more general statement used to be largely true: “no pro-
grammer can build or comprehend a system of substantial complexity if 
it is not so interpreted.” But, as is most obvious in the case of deep learn-
ing systems, programmers now write programs that effectively "build 
systems," often based on massive amounts of data, where the resulting 
system (as opposed to the program that generates it) may or may not be 
interpretable. 
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complexity—by and large deals with algorithms, rather 
than with programs per se. While there is no generally ac-
cepted theory of exactly what constitutes an algorithm—in 
particular what criteria play the role of algorithmic individ-
uation, in order to say of one algorithm whether it is the 
same or different from another—an algorithm is generally 
described as a “way of doing something.” The “things,” for 
the doing of which algorithms provide a way, can in general 
include just about anything: sorting socks, deciding who 
should be admitted to university, predicting the outcome 
of an election. But in line with its mathematical character, 
algorithms in theoretical computer science are generally 
framed (perhaps modeled) either in terms of pure mathe-
matical entities (numbers, functions, etc.), or straightfor-
ward encodings of such mathematical entities in “formal” 
symbols. 

The most famous open problem in computer science, 
applicable to the question of whether the prime factors of 
a number can be “computed” in nondeterministic polyno-
mial time, looks, superficially, as if it is an abstract problem 
about numbers. In point of fact, however, both the prob-
lem itself, and what would count as an acceptable answer, 
are relative to the way in which the numbers are encoded 
or symbolically represented. (If numbers were represented 
by concatenations of those numerals that designate their 
prime factors, then “factoring” them would be instantane-
ous—and trivial.) Somewhat surprisingly, the question of 
what constitutes a legitimate encoding of numbers, func-
tions, etc., for purposes of this theory, remains largely un-
theorized.25 

For some purposes, such as calculating complexity, al-
gorithms are the natural subject matter—and in such en-
deavors, issues of symbolism and semantics do not arise. 

 
 
25See “Solving the Halting Problem, and Other Skullduggery in the 
Foundations of Computing” (Smith, ). 
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Programming language semantics, however, does deal with 
programs, not just algorithms, and appears to treat them 
semantically: assigning them meanings, denotations, etc., 
in the familiar compositional way. 

This has been our target since the beginning; it has been 
a long road to get to this point. 

What, then, can we say about the V perspective, with 
respect to our suite of questions? (Keep in mind, as always, 
that V is currently accepted theoretical practice in com-
puter science, not the tacit understanding of programmers, 
which will be dealt with separately, under V, below.) 

First, as indicated earlier, data structure identifiers are 
treated (in this theory) as names of memory locations, or 
as names of entries in a mathematically-modeled “store,” 
not as designators of what a given program uses those 
memory locations to represent. Imagine, for example, that 
a program for an elevator controller contains a constant 
called «NUMBER-OF-FLOORS», and two variables called «CURRENT-
FLOOR» and «FLOORS-TO-STOP-ON-WHILE-DESCENDING» (bound to a list 
or sequence). If the program were to encounter an instruc-
tion such as 

current-floor ← current-floor – 1 

one might reasonably assume that the variable ‘CURRENT-FLOOR’ 
was being used (in the logically technical sense) to denote 
or refer to the floor at which the elevator was currently 
stopped (was passing by, whatever). This “interpretation-
L” is of exactly the sort that was addressed in V, and will 
be addressed again when we get to V. It is not, however, 
what would be theorized by programming language seman-
tics as currently conceived (V). Rather, ‘CURRENT-FLOOR’ 
would be mapped, by the official computer science seman-
tical account, onto either: (i) a memory location used to 
store information about the current floor; or possibly (ii) 
an integer, if for example the variable ‘CURRENT-FLOOR’ was (had 
been declared to be) of type “fixed integer.” 
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Two issues need to be explored: (i) relations among the 
“storage location,” any “mathematical” entities onto which 
these program entities are mapped or with which they are 
associated, the “number” or “numeral” that might be stored 
in that location, and the floor on which the elevator is des-
tined to stop; and (ii) the consequences of those choices for 
our general understanding of computation, particularly as 
relevant to an account of reflection. 

As regard the first issue, the point is elementary. As we 
have already seen, a dialectic exists between viewing com-
putation as concrete or as abstract. Theoreticians often 
treat it as abstract; my own view is that the mathematical 
structures employed for theoretical purposes are (abstract) 
models of (concrete) computation, not the “real thing”—
primarily because I do not believe that the computability 
and complexity results, the sine qua non of any substantial 
theory of computability, can be defended in other than 
concrete terms. In order to remain as neutral as possible 
about this issue here, however, in what follows I will refer 
simply to “the computation,” using the term to cover both 
the abstract and concrete conceptions. 

Given that usage, the most important fact about pro-
gramming language semantics can then be stated very 
simply: programs are taken to be compositionally-con-
structed “symbolic” structures, the execution of which 
leads to computational behaviour. An assignment statement, 
for example, of the form 

 VAR ← EXP 

engenders a change in the state of the computation, such 
that the “binding” of the variable VAR, in the resultant state, 
is to the “value” of the expression EXP in the prior state. All 
these entities—the variables themselves, their “values,” 
etc.—are elements of the computation (abstract or concrete). 
No attempt is made to assign, as the value of a variable, 
anything external to the computation—employees, sala-
ries, elevator states, floors, or anything of the sort. In fact 
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to a programmer that would seem like a conceptually mis-
taken idea: the values of variables must be computational 
entities, on the received view. 

More generally, the “denotations” or “semantic values” 
of all expression types—including not just this assignment 
statement, but also all other composite forms, not just var-
iables or the two ingredient expressions in this example, VAR 
and EXP—are understood to be the elements within the 
computation to which the expressions are taken to “refer” 
or “denote,” or the computational element that they return, 
upon being executed, or activity of change that their execu-
tion entails, or some other internal phenomena of that sort. 
That is: the focus of the analysis is on internal behaviour. 
Informally, if a programmer asks “What is the semantics of 
that construct?,” what they are asking, in effect—or at least 
what theoretical practice in computer science takes them 
to be asking—is What will happen, expressed in terms of this 
mechanism in front of us, when this program fragment is exe-
cuted or run? Or to put it in another way: as described in 
programming language semantics, the “semantics” of a pro-
gram expression or fragment has to do with how it will be 
processed, mechanically or effectively (“how it will be pro-
cessed, syntactically,” an adherent of V might say). 

Complicating the issue for readers from other disci-
plines, analyses of programming language semantics can be 
conducted in a variety of styles, known as denotational, op-
erational, algebraic, axiomatic, etc. As mentioned at the end 
of the last section, a philosopher or logician might imagine 
that “operational” semantics would analyse the mechanical 
consequences or implications of an expression or structure 
(i.e., something like the proof-theoretic implications, or 
the mechanistic consequences of its syntactic profile), and 
that “denotational” semantics would analyse what it refers 
to or denotes, in the sense that those terms are used in phi-
losophy and the FSM tradition (i.e., would analyse its se-
mantics-L). That is, one might expect that the normative 
constraints on the operational semantics would be that it 
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should honour or defer to the denotational semantics, even 
if, perhaps in the presence of prevailing incompleteness, it 
was unable to encompass it entirely. That is, the philoso-
pher or logician might expect a study of the operational se-
mantics of a program or program fragment to be a study of 
those syntactic or mechanical operations that are norma-
tively bound to honour the semantical (semantical-L) facts 
that would be revealed by an analysis of that program or 
fragment’s denotational semantics. These things would be 
expected on an understanding of operational semantics as 
being analogous to proof theory; denotational semantics, 
to model theory. 

It is not so. Rather, within computer science, all these 
forms of analysis (denotational, operational, algebraic, axi-
omatic) account for the same thing, but in different ways: 
the mechanically-produced behaviour that results from 
“executing” or ”running” the program. Though differing in 
modeling techniques, they coincide on (have identical) sub-
ject matters—a subject matter, in fact, that is closer to what 
is studied in proof theory than anything that in the logical 
tradition would ever be called semantic. That is why their 
results are—or anyway should always be able to be—
proved equivalent: not because the system is sound or com-
plete, or is assumed to be sound or complete (notions of 
soundness and completeness do not even make sense in the 
accepted theoretical context of computational semantics), 
but because they are different ways of analysing the same 
thing. 

I take the problems with this approach, with respect to 
an overall view of computation as an intentional process 
(necessary in order to define reflection) to be self-evident: 
there is nothing deferential about such an account; there is 
nothing about it which explains how the computation is 
intentionally and normatively directed to a task domain or 
subject matter. What is called the “semantics” is merely one 
dimension of the phenomenon—the mechanical, opera-
tional or effective one, contrary to what a logician or 
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philosopher would expect—whereas in the general seman-
tical model rehearsed in the examination of the FSM view, 
and described in more detail in chapter , there were invar-
iably two. Because the official computer science (V) ver-
sion is unidimensional in this sense, there are no normative 
constraints—nothing for notions such as soundness and 
completeness to get a grip on. We are back to the realm of 
abstract Meccano: compositional mechanisms whose be-
haviour arises in a systematic, causal way from the nature 
of their ingredients. C’est tout. 

As an example to illustrate the difference between the the-
oretical computer science (V) approach and the FSM (V) 
view, and to foreshadow our discussion of the tacit view of 
programmers (V), below, consider the following flawed 
code fragment:26 

L1) (define factorial        ⎫ 
L2)  (lambda (x)         ⎪ 
L3)   (if (= x 1)        ⎬ ⟸ incorrect 
L4)      1          ⎪ 
L5)      (factorial (- x 1)))))  ⎭ 

Obviously enough, the code contains a bug; the fifth line 
should instead be: 

L5′)     (* x (factorial (- x 1)))  ⟸ correct 

What matters for present purposes is the discrepancy be-
tween the intuitive understanding of the example (subject 
of V) and that provided by the programming language 

 
 
26 In Python:   
L1)  def factorial(x): 
L2)        if x == 1: 
L3)            return 1 
L4)       else: 
L5)            return factorial(x – 1)   
and: 
L5’)           return x * factorial(x – 1)   
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semantics account (V, under analysis here). We humans 
know that the code is faulty, because, for us, ‘factorial’ is a 
term in our language, established by long-standing social 
convention, mathematical practice etc., that denotes the fac-
torial function. When, as programmers, we write code such 
as that above, we are attempting to write a program that 
will calculate values of the function, called factorial, that we 
antecedently understand (or at least produce numerals that 
denote the numbers constitutive of that mathematical 
function). That is why we can say that the code fragment 
is wrong. According to the programming language seman-
tics tradition, however, lines L1–L5 would simply be charac-
terized as an (unproblematic, if inefficient) definition of 
the constant function  over all positive integers (techni-
cally: a function over the those numerals that designate the 
positive integers. All the programming language account 
can do, that is, is to provide an analysis of how the forego-
ing code fragment will behave, independent of anything 
that we humans think its identifiers mean. As such, it is not 
its semantical task to label the fragment wrong; that is left 
as an “extra-theoretical” exercise. 

How could theoretical analysis accommodate our under-
standing of the denotation of the term ‘factorial’, a compu-
tationalist might ask? Sure enough, theoretical analysis 
cannot know, especially in advance, what we have in mind; 
that much is uncontestable. But that does not mean that 
theory is left empty-handed. As explained in chapter , 
logic shows a strategy: theoretical analysis need not itself 
be a closed, formal system. The logical tradition of seman-
tical analysis encompasses, and makes rigorous, an exter-
nally-supplied understanding, paradigmatically by includ-
ing (a formalization of) our pre-existing or at any rate ex-
ternally supplied “interpretation-L” of the terms in virtue 
of which the system under investigation is understood. 
That is, as I have said several times, the analytic semantical 
frameworks of logic are parameterized on the interpreta-
tions-L of all constants in the language; that is the task of 
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the “user-supplied” interpretation-L function. 
This is why the appropriate constraint to place on an 

inference (inference-L) system (the regimen of moving 
from one set of symbols to another, given such external pa-
rameterization) cannot be that it be true or correct—more 
carefully: cannot be that it produces only true and correct 
results—since to know whether something was true or cor-
rect would depend on substantial (‘material’) semantical 
facts about the externally-supplied interpretation function. 
Rather, the formal analysis is restricted to something we 
have already seen, captured in the logical notion of sound-
ness: a normative condition that if the material statements 
made by the user are true, then the results that are yielded 
by the inference regimen must be true as well. By analogy, 
if we had what logic (V) would take to be a semantic anal-
ysis of the foregoing code fragment and associated pro-
gramming language, the mandate on the inference system 
would not be that it provides a correct implementation of 
the language, but a sound one. 

The problem with code fragment L1–L5 could then be 
stated very simply: it is false. The factorial function is not 
as described on the right-hand side; since that complex ex-
pression denotes the constant function , which is not fac-
torial (not what the term ‘factorial’ denotes, the term on 
the left-hand side). 

A deferential analysis of what we call procedure “defini-
tions,” that is, would treat such constructions (of which L1–

L5 is an example) as something like a double claim: 
. Extensionally, the term on the right (the λ-term in 

L1–L5) denotes the function named on the left; and 
. Effectively (or as some, but not I, would say, inten-

sionally), the λ-term on the right specifies an effec-
tive way of “computing” that function, with respect 
to an assumed processing regimen (i.e., with respect 
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to process R″, in the vocabulary of §.v),27 where 
“computing” is understood to be something like 
coming up with a normal-form or otherwise distin-
guished designator of the value of the function on 
the element designated by the symbol used when it 
is “called.” 

In the analysis of V, the theoretical framework underlying 
/Lisp, I will argue that calling the second reading ‘inten-
sional’ is both incorrect and misleading. Nevertheless, I be-
lieve that something like this double claim version of so-
called “definitions” is in fact the way in which programmers 
understand their code. In fact, as I will argue when we an-
alyze V, this double-claim view is almost necessitated by 
the tacit view of programmers—necessary in order for a 
programmer to believe that there could be a bug in their 
code—for what is a bug, other than a discrepancy between 
the behaviour that the code, as written, effectively engen-
ders, and the behaviour that the programmer intended it to 
engender? 

In sum: contemporary theoretical computer science, in-
cluding all styles of programming language semantics (de-
notation, operational, axiomatic, and algebraic): 

. Takes computation to consist of state changes of ab-
stract mechanisms or machines, together with their 
associated inputs and outputs, where the inputs, 
outputs, and the state of any involved “memories” 
are treated as uninterpreted (either empty symbol-
ism, or empty symbolism mathematically modeled, 
or mathematical entities in their own right); 

. Views programs as structured “grammatical” com-
plexes that behaviourally cause or engender or in 

 
 
27And also with respect to an assumed way of representing values of the 
function—as numerals, we can presume. 
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some other effective way impinge upon the resulting 
computational process, where the net behavioural 
consequence, though analysed compositionally, is 
specified without regard to what I am calling seman-
tical-L interpretation (i.e., without deference to a 
larger world or task domain, based on external as-
sumptions from a wider use of language, etc.); 

. Does not address the process-world relation R⟹W 

at all, except in as much as it accommodates inputs 
and outputs, which are taken as uninterpreted to-
kens that “cross the (effective) boundary” of the ma-
chine; and 

. In spite of its pervasive use of semantical vocabu-
lary, neither involves, nor admits, nor theorizes, nor 
in any other way substantially deals with, the sorts 
of non-effective, deferential relations on which, I am 
claiming, the notions of intentionality and seman-
tics ultimately rest. 

Because I take reflection to be a substantial intentional 
phenomenon, crucially involving deference, it follows, at 
least in my view, that mathematical computer science, as 
currently conceived, is not a strong enough theoretical 
framework in terms of which to define, analyse, or under-
stand reflection—and therefore cannot serve as an intellec-
tual framework in terms of which to design a reflective lan-
guage. The following, that is, is the V answer to question 
Q: 

 Genuine reflection will remain forever invisible, from the 
point of view of computational theory as currently for-
mulated. 

Does this mean that V is without merit? Far from it. 
Much more than habit and familiarity recommend the 
view. For one thing, it is purpose-designed to facilitate con-
struction and implementation, against a background of 
well-understood programmer intent. Moreover, as will be 
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argued in §, V’s internally behaviourist perspective also 
allows powerful (and disruptive) ontological insights and 
intuitions to be tacitly accommodated within it—in ways 
that enable programmers, and computational systems, at 
least partially to escape the confines of classical (“formal-
ist”) ontology, and perhaps also to escape equally restrictive 
(if they are taken substantially) constraints on composi-
tionality. But to understand how that goes, we need to 
know more about how programmers actually understand 
the programs that they write. 

 V3 Programmers’ intuitive understanding 
The discrepancy between programmers’ intuitive under-
standing of programs and the analysis provided in theoret-
ical accounts of programming language semantics has sur-
faced several times—in the example of the elevator pro-
gram, in the intuitive discussion of “computing” highest 
paid employees, and in the recognition that the initial (L1–

L5) definition of FACTORIAL is incorrect. I have also suggested 
that this discrepancy is far from theoretically innocent. It 
is impossible to develop or understand a program of any 
complexity, I believe, unless one uses, as the names of the 
constants, variables, classes, procedures, etc., words that 
signify, in a semantically-L substantial way, what those en-
tities represent, stand for, carry information about, con-
cern, address, etc. No theory of the semantics of programs, 
I claim—indeed, no theory of programs at all—can pre-
tend to adequacy unless it includes a theoretical analysis of 
that substantial semantic interpretation (interpretation-
L). 

Every programmer learns something that might be 
taken as countervailing: that English names (or names 
from any other natural language) mean nothing to comput-
ers; programs would compile, run, and “do what they do” 
just as well—identically, in fact—if all their labels were re-
placed with random symbols: «G001», «G002», «G003», etc., 
or any other distinct nomenclature. In the same vein, it 
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might be noted that the difference is equally invisible to the 
programming language semantics tradition, since it focuses 
exclusively on behavioural consequence, mechanically con-
strued. That is: the attributed, referential semantics (se-
mantics-L) of names that is crucial to programmers is “in-
visible” both to what I have called the language processor—
the active locus of agency, called R′ in §.v, that manipu-
lates them—and to the standard theoretical semantical ac-
count (V). 

Someone compelled by these observations might argue 
that using identifiers based on natural language is “purely 
a matter of convenience,” of neither behavioural nor theo-
retical consequence. 

That it is of no behavioral consequence might be taken 
to be what was just discussed: that is one way of under-
standing what it is for programs and computation to be 
“formal.” Note, however, that any claim that the behaviour 
of the program is immune to semantics holds only on the 
presupposition that behaviour is identified (individuated) 
purely mechanically or mechanistically. That is, it is true 
only on a semantically uninterpreted notion of being “equiv-
alent.” If understood as semantically interpreted, the be-
haviour might be quite different. Suppose X and Y, a guilty 
and innocent party, are asked whether they committed a 
crime, and, each pointing to the other, say “No! I am inno-
cent! They did it!” Have X and Y “behaved equivalently”? 
In one (uninterpreted) sense, yes, since they uttered exactly 
the same sequence of words. If their two responses were 
printed out, for example, the two typescripts would be in-
distinguishable. But in another (interpreted) sense, no, 
their responses were different; they disagree. If “behaviour” 
is understood “under interpretation-L,” that is, their re-
sponses differ, since they refer to different people (one 
claims Y is the culprit; the other, that X is the guilty party); 
one has lied and one has told the truth; and so on. 

Contrapositively, suppose one asks two physically sepa-
rated witnesses where the crime was committed, and one 
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says “right here,” and the other, pointing to the first, says 
“over there.” It might well be natural, in such a case, to say 
that the two gave the “same answer,” though in this case 
their words differed (and, similarly, to say that they gave 
different answers, if their words were the same). Similarly, 
when conducting a survey, it might make sense to group 
together, as behaving in the same way, those who plan to 
vote for an incumbent, no matter what words they use or 
how else they indicate that person; and similarly group to-
gether those planning to vote for a challenger, again inde-
pendently of what words they use, even if they used the 
same words as someone else who is voting for the incum-
bent (e.g., if they both said: “the person whose rally I at-
tended last night”). The point is that, when intentionality 
pertains, it is common for our ordinary understanding of 
‘behaviour’ to reach out to encompass the semantic and ref-
erential field of the raw physical events, and to individuate 
behaviour under interpretation.28 It is not clear what, other 
than prejudice, would prevent us from doing so in a com-
putational case. To say that we should individuate behav-
iour mechanistically because computation is a mechanical 
process is simply to argue in a circle. Whether computing is 
constitutively purely mechanical, or whether it is a con-
cretely embodied intentional activity, is exactly the issue. 

That the use of meaningful identifiers in programs (and 
in their input and output) is of no theoretical consequence 
is arguably true given the current state of theory. But so 
much the worse for the current state of theory. What should 
matter is not what theory is currently like, but what theory 
should be like, based in turn on what is the case. And on 
that question my position should be clear: theory should 
be held accountable for (i) articulating the semantics of the 
computational ingredients, however those semantics arise; 
and (ii) accounting for the extent to which behaviour 

 
 
28‘Interpretation,’ again, in the philosophical/representational sense. 
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honours the norms that the semantic interpretation estab-
lishes. 

To open up the possibility that we might be able to de-
velop a theoretical framework that does such justice, re-
member that it is a mistake to argue that world-directed 
semantic interpretation must be theoretically irrelevant be-
cause that kind of semantics cannot play an effective (“for-
mal,” mechanical) role in engendering (mechanically indi-
viduated) behaviour. Formal inference systems for logic 
(V) are blind to the semantic interpretation of their con-
stituent symbols, too, but it does not follow—in fact it is 
patently untrue—that the subject matter of logic and formal 
symbol manipulation is restricted to the arbitrary rear-
rangement of uninterpreted grammatical expressions. The 
study of logic is not the study of abstract Meccano. Rather, 
as I keep emphasizing, logic is—and logical theory a theory 
of—patterns of inference normatively governed by the con-
stituent expressions’ semantic-L content. This is why, as said 
above, the entire subject matter of (what we call) “formal 
logic” is not formal; rather, what is formal is its behavioral 
dimension—its projection onto the mechanical wall of the 
cave. One could claim that logic as a whole is formal only 
by pledging advance allegiance to blanket mechanism, ban-
ishing deferential semantics, and reducing logic to the 
blind manipulation of arbitrary inscriptions—exactly the 
approach I am disparaging as “stuff manipulation.” 

One way to see what is going on is to approach the point 
combinatorically. The number of possible machine states 
is vast (exponential in the size of the memory), of which we 
construct a vanishingly small subset. If, as I approximately 
believe, the work of programming is to construct mechan-
ically effective systems that are normatively governed by 
their relations to their task domains, where “relations to 
their task domains” include not only behavioural interac-
tion but also non-effective semantic interpretation—then 
it should be the job of an adequate theory (i) to take those 
interpretations into account, (ii) to theorize the systems’ 
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mechanically-induced behaviour, and (iii) to theorize the 
ensuing normative accountability—all just as is done in 
theories of soundness and completeness in logic. 

What have we established? At least this: 
. Programmers routinely, and perhaps necessarily, 

semantically interpret (in a representational 
sense—i.e., “semantically-L interpret-L”) the terms 
and other structures in their programs, and the data 
structures kept in computational memory—taking 
them to signify, among other things, entities in the 
program’s task domain, as well as mathematical, ab-
stract, and other non-effective entities of diverse 
sorts. 

. The norms to which the program is accountable al-
most certainly involve the entities in that task do-
main and pertinent mathematical entities that those 
terms and other structures in the programs are 
taken to signify. 

. Current theories of programming language seman-
tics theorize neither this ubiquitous programmer 
interpretation-L, nor the norms (implicitly) framed 
in their terms, but instead use semantical vocabu-
lary for a different purpose—for the program-pro-
cess (P⟹R) relation described under V. 

. It remains an open question whether and how we 
might incorporate this programmer interpretation-
L in appropriate theoretical frameworks. 

As already indicated, the theoretical framework for /Lisp 
was set up to theorize the semantical process–world (R–W) 
relationship, as well as the behavioural consequence of its 
ingredient structures, which in turn were arranged so as to 
honour such an interpretation. It was also claimed—and I 
still believe—that doing so is a prerequisite to defining an 
architecture that can lay any genuine claim to being 
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reflective, because the form of semantic relationship that a 
reflective program (and reflective reasoning more gener-
ally) must bear to the computation on which it is reflecting 
must be of this representational sort, modeled on its non-
reflective process–world (R⟹W) relation, rather than of 
the program-process (P⟹R) sort discussed under V. 

Needless to say, the /Lisp framework does not ad-
dress the task of doing justice to the semantic-L interpre-
tation of data structures in general. This was the task of 
Lisp, which never materialized—for reasons to be inves-
tigated in more detail in chapter .  

 V4 The 2Lisp/3Lisp Framework 
As befits its knowledge representation (KR) heritage, the 
model of computation underlying Lisp and Lisp was in-
itially based on the formal symbol manipulation (FSM) con-
strual—i.e., on V. The V answer to Q1 is thus straight-
forward. Computational ingredients were taken to be sym-
bols, with “declarative” representational content taken to 
consist of deferential intentional directedness towards the 
task domain, formally manipulated by a language proces-
sor. These KR origins are manifest in the Knowledge Rep-
resentation Hypothesis (KRH) presented in §.. As noted, 
however, not only would I no longer endorse the KRH as 
stated, but even if I were today writing about /Lisp as 
those dialects were defined four decades ago, I would not 
frame the conception on which they were based in exactly 
such terms. Among other things, the causal involvement of 
a computational system in its task domain (a constitutive 
condition of reflection) undermines the two parts of this 
claim classically taken to be constitutive of formality: (i) 
that the semantics must be externally attributed; and (ii) 
that the effective manipulation of the symbols must oper-
ate independently of those semantics.29 Nevertheless, the 

 
 
29It is not that I believe that the semantics can itself ever be an effective 
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use of the KRH as a starting point for the development of 
/Lisp makes it perfectly evident that the approach to 
computation being employed (Q1) was indeed, at least as a 
point of departure, that of the logical/FSM (V) tradition. 

It is because of this overall approach to semantics that 
the issue of data structures in /Lisp is so fraught, and 
why the Lisp design study, en route to Mantiq, would only 
have been completed had Lisp been developed as well. 
Purely for purposes of reflection, at least in what in “Vari-
eties of Self-Reference” () I called its introspective as-
pects, and in the modest form exemplified by Lisp, it suf-
ficed to provide the dialect with the ability to mention data 
structures (using an analogue of quotation), to designate 
functions (with normal-form closures), and to represent 
processing by modeling environments and continuations 
with functions. And even within that restricted domain, 
there were limitations. As noted in §., in not even at-
tempting to address such issues, /Lisp fell down on a 
plethora of important topics relevant even in the introspec-
tive realm: general types (beyond those primitively pro-
vided), reference to procedural consequence and intension, 
representation of process and change, among others. 
Though untenably restrictive, however, with respect to Q1, 
involving the presumed nature of computation, /Lisp’s 
position was clear: computation consists of activities de-
fined over representational symbols (“vehicles,” as philoso-
phers would put it) deferentially directed towards their 
task domain. 

/Lisp’s approaches to programs (Q2) and behaviour (Q3) 
were more complex, more controversial, and while I believe 
they made some stabs in the right direction, ultimately 

 
 
force in causing or leading to behaviour. Rather, the notion of “independ-
ence” is in my view too strong a statement of how this non-causal element 
figures in a computational setting overall. 
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unsatisfying. These are the issues, I believe, that underlay 
the gap that opened up between my understanding (V) 
and that of Goguen and Meseguer (V), discussed in §.. 
To understand it, though, we have to consider those two 
views in conjunction with the third, just sketched: the in-
tuitive understanding of programmers (V). 

Most fundamental is the fact that, in /Lisp (V) and 
at least sometimes in programmers’ tacit view (V), terms 
(names, identifiers, “references,” etc.) can be used in a way 
that logicians would call transparent. That is: they can be 
understood as linguistic items that refer to, designate, or de-
note something, such that the way they are treated (in the 
processing of the complex expressions of which they are a 
part) respects that reference, but is in no way constrained or 
expected to interact causally or effectively with that to which 
they refer. Most especially, the appropriate treatment of 
them in no way involves producing that to which they re-
fer—any more than talking about Plotinus, Alpha Cen-
tauri, or Blitzen requires us to interact causally with or pro-
duce any of those entities. As usual, the simplest computa-
tional example is mundane arithmetic: the processing of 
the term «(+ 2 3)» can lead to the creation or returning of the 
term «5», for example, where «2», «3», and «5» are under-
stood to be numerals—symbols representing or denoting 
(abstract) numbers. The reason that the specific numeral 
«5» is returned is the obvious one: it is the numeral that 
denotes the sum of the numbers denoted by «2» and «3». 
As already indicated, this behaviour runs counter to the 
specificational (V) account. It is perfectly explicable as 
“term rewriting” not only under the /Lisp framework 
(V) we are currently examining, but also under the FSM 
(V) and tacit programmer (V) views. 

In terms of simple, transparent reference to abstract en-
tities, to generalize, it seems evident that those three views 
(V, V, and V) that treat reference/denotation transpar-
ently, and operation as orthogonal but deferentially account-
able to it, have the edge—in contrast to the official 



 4 · Diagnosis — Second Pass 

  179 

computer science account (V). 

If reference were all that was at stake, the case I have by 
now assembled against the computer science view (V) 
might be decisive. Matters quickly grow more complex, 
however—and the /Lisp framework begins to fall 
down.30 

The ultimate mandate on programs—to state the ob-
vious, and to go back to the discussion with which chap-
ter  opened—is not merely to refer, but to lead to action, 
to engender (if not actually to specify) the doing of things. 
And not just to engender activity, but to make changes—to 
engender activity that causes “side effects,” to have conse-
quences that in turn impinge on subsequent computations, 
and perhaps on the wider world as well. Needless to say, 
activity and change are not constitutive ingredients of the 
(V) logical framework. Especially these days, logic is often 
“extended” by treating proof-theoretic relations tempo-
rally, which takes a small first step towards incorporating 
activity. Genuine change, though, remains beyond logic’s 
compass.31 

Change is not well treated in the /Lisp framework, ei-
ther; on this issue both V and V are weak. Nevertheless, 
regarding activity per se, /Lisp takes an important step 
beyond logic and V—and also beyond that embodied in 

 
 
30It is also where the merits of the V approach begin to come into their 
own, though it will not be until chapter  that we will be able to under-
stand those merits from a genuinely semantical perspective. 
31To repeat a recurring point: logical frameworks can of course be used 
to reason about change—i.e., in situations where the change is in the se-
mantic domain. That  is an entirely different matter. So-called “dynamic 
logic” (the version that is a modification/extension of modal logic) is a 
case in point—though I myself would call it dynamical logic. 

The term ‘dynamic logic’ is also used in digital electronics for some-
thing that genuinely is dynamic (not dynamical)—though in its case, in 
spite of the statistics of usage, I would challenge its claim to being logic. 
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the analysis of purely functional languages (even though 
/Lisp might be said to fall within the scope of functional 
programming languages broadly construed). This step is 
not only peculiar to these dialects, and critical to Lisp’s 
reflective model; it also makes the /Lisp semantical 
framework sufficiently distinct as to warrant separate in-
clusion (as V) in this list. 

The fundamental approach to activity in /Lisp was to 
distinguish declarative import and procedural conse-
quence32 somewhat in the way that a distinction between 
reference and cognitive role is sometimes advocated in artifi-
cial intelligence and cognitive science, where: (i) declarative 
import, at least roughly, is what terms (including program 
expressions) refer to or represent—i.e., to be what might 
be called their “content” in logic, natural language, V, and 
perhaps V; and (ii) procedural (or behavioural) conse-
quence is the activity, or result thereof, that those terms 
(including programs) engender when they are processed 
(“run,” “executed,” “thought,” etc.). Procedural conse-
quence is thus approximately what computer science [V] 
calls “interpretation-C”—though a careful understanding 
of the relation of V to V will take some work to develop. 

Declarative import and procedural consequence were 
theorized in /Lisp under the labels φ and ψ, respec-
tively—whimsically chosen to connote ‘philosophy’ and 
‘psychology,’ respectively. Thus the /Lisp analysis of the 
corrected program for “computing factorial” (L1–L4 plus L5′, 
above) went approximately as follows: from a declarative 
point of view, the expression «(FACTORIAL 5)» was taken to 
represent (φ) the abstract number one hundred and 
twenty; and from a procedural ⟨behavioural⟩ point of view, 
to lead (ψ) to the production of the numeral «120». The 
production of this procedural consequence developed 

 
 
32If I were defining /Lisp today, I would have called it behavioural con-
sequence. 
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according to a standard procedural regimen: processing the 
original expression—normalizing it, in /Lisp parlance, in 
place of the standard Lisp notion of evaluation—in ways 
that are “effectively indicated” by the structure of the 
FACTORIAL definition. 

What does “effectively indicated” mean?  
In traditional logic (and philosophy of language), the ex-

pression «(FACTORIAL 5)» would be said to have a meaning or 
intension, typically more fine-grained and detailed than the 
reference.33 Critical to any computational processing of 
«(FACTORIAL 5)» would be the link between the term or atom 
«FACTORIAL» and the “definition”34 encoded in L1–L5′, or any-
way the “closure” of that alleged definition (a structure that 
binds in the values of any free variables, including other 
function or procedure definitions). What might have 
seemed a natural strategy for /Lisp, therefore, would 
have been to extend the notion of “intension” to include all 
of this detail necessary in order to determine the nature of 
the processing that would result from processing the ex-
pression (the expression «(FACTORIAL 5)», in the present case), 
under an assumption that what the expression means, in 
contradistinction to what it refers to, incorporates what it 
implies as regards processing. 

The problem with that approach, however, is that it 
would have started to step away from the representational 
view of the program towards that of V—that what the 
program is doing, semantically, is specifying the behaviour 
that will result—but without going the whole way, and say-
ing that that behaviour is what the program term is about. 
But even more seriously, there is nothing about the 

 
 
33This is not the place for an introduction to the philosophy of logic and 
language; I assume that the vocabulary of intensions (intensions as op-
posed to from intentions) will be familiar. 
34Whether a procedure declaration should be taken as a definition at all, 
and if so whether as a definition of declarative import or of procedural 
consequence, is of course exactly the issue under discussion. 
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logical/philosophical/linguistic notion of “intension” that 
involves the kind of semantic ascent that talking about the 
behavioural consequence of a (formal) term requires. To 
use Frege’s iconic example: “the first star to be seen in the 
evening” and “the last star to be seen in the morning” may 
both refer to Venus (i.e., they share Venus—that is, the 
planet second closest to the sun—as their denotation, ref-
erence, or extension), but have different senses or inten-
sions—but there is nothing formal or syntactic or linguistic 
about those intensions, at least on traditional analyses. Ra-
ther, the intensions have to do with relational properties of 
genuine celestial entities, actual mornings and evenings, 
etc. Fregean intensions, that is, are neither formal entities, 
nor solipsist, nor psychological,35 nor in any way internal—
they involve the full-blooded world as much as do the exten-
sions. 

In contrast, to impose an (uninterpreted) notion of be-
havioural consequence into one’s notion of meaning—es-
pecially when behavioural consequence is “wholly defined 
within the structure of a symbol system,” in Newell’s mem-
orable phrase (i.e., is mechanically construed)—is to take a 
fateful step into blanket mechanism—complete with its 
ties to constructive mathematics, computer science’s con-
ception of intuitionism, etc. 

In addition, which will matter more and more as computer 
languages extend from mere programming languages to in-
corporate knowledge representation systems, of the sort 
that Mantiq was envisaged to be, and of the sort that play 
a role in machine learning systems, the fine-grained mean-
ing of a description, term, or other referring expression will 
in general differ from its procedural consequence. Consider 
a natural language expression (term) such as “the ¼ mi-
nute piece Stockhausen composed in ,” or a natural 
language description of a mathematical object, such as “the 

 
 
35Frege was famously anti-psychologistic. 
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smallest perfect number.” The former refers to Concrète 
Étude; the latter, to the number six. Both terms indubitably 
have intensional meanings—the first involving minutes, 
durations, and dates; the latter, sums, divisors, etc. But it 
would be bizarre to associate the meaning of either with 
how people process them (even, in the mathematical case, if a 
constructive method of “finding” the referent can be de-
duced36). 

For these and analogous reasons, in the /Lisp frame-
work I rejected the idea of encapsulating procedural conse-
quence within an intensional notion of meaning. Instead, 
in describing and analysing the dialects, I theorized both 
procedural consequence and declarative import—sepa-
rately but in relationship, with the combination claimed to 
constitute the full (semantical) significance (Σ) of the ex-
pressions. Had /Lisp been better able to deal extension-
ally with intensions (i.e., had either the language itself, or 
even its analysis, been able to refer to or designate intensions 
in an adequate way), procedural consequence and declara-
tive import, as first-class entities in their own right, would 
both have been submitted to both intensional and exten-
sional analysis. 

None of this is to say that the details of /Lisp’s theo-
rization of full significance was especially general or meri-
torious. As detailed in §., the approach had severe theo-
retical problems for which I do not yet have a satisfactory 

 
 
36What it is to find a number is not exactly clear. An intuitionist might 
say that the number can be “grasped,” but on anything like a representa-
tional theory of mind, the question is complex. In computing, we assume 
that to “figure out” a number is to produce a standard numeric represen-
tation (binary or decimal, typically). It is obviously insufficient to say that 
one has found, or “knows,” a number merely in virtue of having a term 
that designates it, since, for six, “the smallest perfect number” does that. 
Presumably the answer would involve something cognitively analogous 
to a numeral—a description in terms of powers of ten, etc., or at least 
from which such represented facts are immediately accessible. 
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solution, and its treatment of side effects was a complete 
hack. But it was critical to the framework, and thus critical 
to understand in order to understand /Lisp’s notion of 
reflection, that it separated the two distinctions, each, in 
/Lisp’s case, rather simplistically taken to be binary: (i) 
between declarative import and procedural consequence or 
effect, on the one hand; and (ii) between intension and ex-
tension, on the other. Far from being identified—this is 
what matters—the two distinctions were viewed as orthog-
onal. 

As always, moreover—though the dissertation and sub-
sequent papers may not have been as explicit on this point 
as they might have been—the procedural consequence (ψ) 
was taken to be deferential to the declarative import (φ), in 
an effort to honour the founding insights of logic, repre-
sentation, and intentionality more generally. A severe lim-
itation, however, was that external attribution of meaning 
to identifiers (and data structures in general) was not in-
corporated into the analytic framework in terms of which 
/Lisp was analysed and designed—that step was reserved 
for Lisp. Embarrassingly, therefore, the incorrect “defini-
tion” of FACTORIAL illustrated in L1–L5, above, would have been 
taken in /Lisp, as in all other programming languages, to 
be a definition, not, as it should have been, as a false claim.37 
In /Lisp’s case, therefore, the declarative content func-
tion (φ) was completely defined, with no room made for 
programmers’ (or other wider social context) 

 
 
37To put this another way, the position occupied by the identifier in 
“function definitions” was assumed to be opaque, not transparent—so 
that the factorial definition was effectively interpreted as “Take the label 
FACTORIAL to refer to the function represented by the following λ-term,” 
rather than what it should have been—what at least in this simple case 
programmers would take it to mean—more along the lines of “take the 
λ-term (on the right hand side) to denote the FACTORIAL function, but in 
such a way that it procedurally indicates a manner of effectively compu-
ting it.” 
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interpretations—i.e., with no provision for contextual pa-
rameterization.38 

Another substantial step, which took /Lisp (V) beyond 
logic and FSM (V), was a denial of the inverse of the usual 
definition of formality: that declarative import (designa-
tion) be independent of behaviour. It follows that the famil-
iar thesis about formality that Fodor championed as the 
essential property of computation is simply false of 
/Lisp. Rather, in an inchoate gesture towards a “meaning 
is use” position, to be examined more in chapter , /Lisp 
allowed for the possibility that what an expression or sym-
bol represented or designated (i.e., its declarative import) 
might be affected or partially determined by how the sys-
tem behaved (its behavioural consequence)—by how the 
system dealt with that expression, by what patterns of ac-
tivity that expression played a role in. This is one reason 
why behavioural consequence (ψ) was not only theorized 
directly (rather than incorporated into something like de-
clarative intension), but more seriously considered to be an 
integral part of the overall semantics (in the general category 
called “significance”), rather than being relegated to a non-
semantical category like proof or formal processing. While 
far from achieving anything that Vygotsky, Wittgenstein, 
or a card-carrying pragmatist would have embraced, 
/Lisp took a definite step in their direction. 

In particular, as described in detail in the papers in Leg-
acy, in order to deal appropriately with side-effects, (the 
theory of) /Lisp takes the full significance (Σ) of an ex-
pression to be the only complete or self-contained inten-
tional/semantic story, with both declarative import and 
procedural consequence (φ and ψ) treated as aspects of the 

 
 
38Whether the /Lisp framework would have been better understood, 
in the wider community, had I succeeded in developing Lisp is an un-
answerable question. 
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full significance, interdefined in terms of it. It was only 
with respect to significance (Σ), not denotation (φ) or pro-
cedural (behavioural) consequence (ψ) that /Lisp was 
even approximately compositional. 

Crucially, however, in spite of this overall approach, the 
framework maintained commitment to the overarching 
mandate that behaviour be normatively governed by (be 
deferential to) representational content. This overarching 
deference—reliant on the fact that, like logic, /Lisp re-
tains two aspects for each expression or symbol or repre-
sentational structure—is demonstrated in theorems 
proved for /Lisp, reminiscent of logic’s soundness and 
completeness proofs. In particular, as proved in the disser-
tation, there were two specific mandates to which proce-
dural consequence (i.e., the result of processing) was held 
in both Lisp and Lisp: first, that it be designation preserv-
ing: 

 ∀α [φ(ψ(α)) = φ(α)]  E1 

and second, that it produce (“return”) a normal form des-
ignator of that which its argument designates: 

 ∀α [NORMAL-FORM(ψ(α))] 

To the extent that the terms apply—using Etchemendy’s 
“want what you get” and “get what you want” epithets, cited 
above—it is the former theorem that is the analog of 
soundness; the latter, of completeness. 

In addition, in order to accommodate reflection, both φ 
and ψ were made “available” in the language, under the la-
bels «DOWN» (abbreviated «↓») and «NORMALIZE», respec-
tively, leading to the following provable properties of the 
system: 

 ∀α [φ(⌜↓α⌝) = φ(φ(α))  

and 

 ∀α [φ(⌜(NORMALIZE α)⌝) = φ(ψ(α))]  
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More details are provided in the Legacy papers. The pre-
sent point is merely that because both aspects are theo-
rized, the mutual constraint that I take to be fundamental 
to intentionality (the constraint that logic captures in its 
norms of soundness and completeness) has a grip on the 
/Lisp framework in a way that is not available to the the-
oretical computer science view (V). 

None of this is to say that the /Lisp framework was 
without problems. One particularly evident one was that 
everything was assumed to have a referent (i.e., all expres-
sions were taken to be terms), and everything had proce-
dural import—a generalization that is ultimately a some-
what blinkered way of treating the full range of semiotic 
contexts that might be computationally useful. In particu-
lar, no provision was made for commands in /Lisp, intui-
tively meaning “do this” or “change that.” Nevertheless, I 
felt that it was important to include at least such “messy” 
constructs as side effects, in order to demonstrate that 
they, too, could be included within a normalizing, term-re-
writing, deferential approach (and could be incorporated 
without difficulty in a reflective version as well). But in ret-
rospect one might charitably say that including such con-
structions was something of a force-fit. 

For example, the /Lisp expression 
(REPLACN 3 '[A B C D E] 'X)          

was intuitively understood (i.e., in something like the V 
interpretation of /Lisp) to mean “replace the rd element 
of the rail «[A B C D E]» with the atom «X»” (rails in /Lisp are 
normal form designators of sequences39). More literally—
and pedantically—the mandate is that that, in terms of 
procedural consequence, the general form «(REPLACN N ARG 

 
 
39In usual computer science parlance, which lacks the habit of distin-
guishing canonical representations of simple mathematical entities from 
the entities thereby represented, /Lisp’s rails would likely have been 
called ‘sequences’ or ‘vectors.’ 
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NEW)» should be understood as follows: assuming that the 
first argument («N») denotes a number (not numeral) N, re-
place the Nth element of the rail denoted by the second ar-
gument («ARG») with the item designated by the third ar-
gument («NEW»)”—in a way exactly analogous, semanti-
cally, to the referential structure of an English sentence of 
the form: “please replace the third item on the shelf with 
the book you are holding.” 

Functionally, this approach worked well enough. The 
semantical infelicity derived from two facts: (i) like all ex-
pressions in /Lisp, the expression as a whole (not just its 
parts) was required to designate something (i.e., was re-
quired to have declarative content as well as procedural im-
port); and (ii) the result of its processing was mandated, by 
the overarching term-rewriting norm, to return a normal-
form designator of that designated item. It was natural, 
therefore, to stipulate that the whole expression should 
designate the result of performing the action, rather than 
designate the action itself—i.e., should designate the rail 
«[A B X D E]» (the same rail as was its original argument, but 
with a new third element changed), so that the expression 
could return (“normalize to”) the normal-form designator 
of that rail—namely, the handle «'[A B X D E]».40 

This is problematic because this interpretation of S as 
being a term (i.e., as having a declarative import) parts 
company with the programmer’s natural (V) understand-
ing of it as fundamentally imperative. In this case, I believe 
that the V interpretation of this program fragment as des-
ignating the change is closer to correct, or anyway more ap-
propriate. I was aware of the problem at the time /Lisp 
was designed: the difficulty was that, were it to have been 
taken to designate the action, the overall mandate that 
/Lisp processing return a normal-form designator of 

 
 
40Handles, notated with single prefixed quotation marks, are the /Lisp 
normal form designators of all internal structures. 
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what its argument designated would have required the re-
turn of a normal-form designator of the action itself—some-
thing that, if not conceptually ill-formed, was at least be-
yond /Lisp’s descriptive prowess.41,42 

Two things can be concluded. 
First, /Lisp took a number of steps in a direction in 

which I believe we still need to travel further. I deem it as 
progress that /Lisp: 

. Dealt with declarative import (with what something 
refers to or describes, with what a traditional FSM 
adherent would refer to as its content) and proce-
dural consequence (how that something is used, 
what effects are engendered by processing it) in a 
relatively flexible and interrelated way, with both 
aspects considered to be part of an expression’s 
overall semantical significance; 

. Avoided the conflation of procedural import with 
intension or meaning; and 

. Recognized that it is possible in some cases to allow 
the declarative import of a particular expression or 
fragment to depend on procedural import, even 
while the overall weight of that dependence leans in 
the other direction, with procedural import hon-
ouring declarative import “in the large,” in 

 
 
41Perhaps I could have introduced something like a computational equiv-
alent of the deictic “It’s done!”—not unlike network “ACKs”—but I was 
not quite up to such inventions at the time. 
42There was a way of requiring that the designation of a /Lisp term be 
produced. The expression ↓exp designates the designation of what exp 
designates; procedurally, processing «↓exp» requires producing a normal-
form designator of exp’s referent; if exp designates a structure already in 
normal-form—call it α—then ↓exp will produce α, returning it as a re-
sult. But this, too, is indirect, and while locally consistent and possessed 
of its own local elegance, it does not deal with the main issue discussed 
in the subsequent paragraph of the text. 
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recognition of the deferential attitude that I take to 
be fundamental to intentionality. 

On the other hand, not only was the /Lisp framework 
inadequate for dealing with any of these issues in full gen-
erality, but the dialects were insufficiently subtle to allow 
even those aspects that were recognized in their theoretical 
analysis to be fully treated within the language. In this way, 
Lisp fails to be adequately reflective even in its own terms. 

In particular, and as already suggested, while a simple 
(i.e., transparent) use of a term α designated—tautologi-
cally, as it were—α’s declarative content, there is no way, 
in /Lisp, to construct an expression β that would desig-
nate the activity engendered by processing another term α. 
The procedural extension of α could be designated, so long 
as processing α was side-effect free, through the use of a 
function (called «UP», abbreviated «↑»)—a processing-
aware version of semantic ascent—that mapped entities 
onto their normal-form designators. That is: «↑α» desig-
nated the normal-form designator of (the designation of) 
«α», implying that «↑α» designated what «α» normalises to, 
so that «↑(+ 2 3)», for example, denotes the numeral «5»—
and thus returns a handle (a normal-form internal struc-
ture designator, written with a preceding single quote 
mark):43 
↑(+ 2 3) ⟹ '5  

But any wider procedural consequences, including side-ef-
fects, were outside the realm to which /Lisp could pro-
vide representational access. 

In part, this limitation was a consequence of the fact 
that, as in computer science more generally, actions were 

 
 
43↑ was declaratively transparent but procedurally opaque, since normal-
form designators are not necessarily unique. ↑α designated the actual 
normal-form structure that α itself (not the referent of α) normalised 
into. 
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not taken to be elements of the semantic domain over 
which /Lisp structures designations ranged. It would 
have been a reasonable requirement on a better version of 
the language—perhaps on Lisp, certainly on Mantiq—to 
have remedied this lack. In a sense, it would not have been 
a radical departure; the declarative content and procedural 
import were theorized in the semantical analysis of 
/Lisp, which analysis was formulated in turn in a lan-
guage based on the λ-calculus, and so terms for both as-
pects of an expression’s significance were close at hand. 

To designate the procedural import of an expression, 
however, is not yet to be a command. I claim no special in-
sight on what it is to be a command, but perhaps I could 
say just this: whereas, in the referential model, the proce-
dural consequence is, in a sense, derivative on the declara-
tive import (content), for commands the ontological prior-
ity is reversed: commands, in the first instance, are about 
what they do, cause, or effectively lead to (or in the more 
general case, about what they enjoin their receivers to do). 
At a minimum, that asymmetry would want to be rendered 
manifest in a language with a wide range of semantical 
types. 

/Lisp had other limitations. As I have already said, no 
facility was provided for constructing a term that desig-
nated either the procedural or declarative intension of that 
or any other term. Types, though fundamental to the lan-
guages’ coherence, were stipulatively denoted with spe-
cially-designated formal constants (basically a cheat). And 
of course, the dialects’ being procedural overall, there was 
no ability to make simple statements—in the sense of affir-
mations—of any sort. These and a myriad other limitations 
were to have been addressed, as appropriate, in Lisp and 
Mantiq. 

The second conclusion we can draw about V has to do 
with a more serious looming challenge, connected to the 
issue of action and change—related, too, to some issues 
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considered in chapter , and tied as well to the difficulties 
facing Lisp. It has to do with the most important ways in 
which programmers’ tacit (V) understanding of programs 
outstrips all of V, V, and V. 

The issue can be illustrated in a simple example. Sup-
pose a program contains an instruction that means, in a 
rough English translation, increment the rank of employee. 
In /Lisp, one might imagine that this would be written: 

 (INCREMENT (RANK EMPLOYEE-27)) 

What is dicey about this statement is that, according to 
/Lisp semantics—or anyway in the style of /Lisp se-
mantics, extended in ways imagined for Lisp—EMPLOYEE-27 
might be taken to refer to an actual employee (a living 
breathing human), and RANK to their actual rank, etc., which 
would imply that the effect of processing the instruction 
would be, or at any rate might be, to promote them. What 
a programmer understands full well, of course, is that, the 
act of promoting the employee is distinct from the engen-
dered computational event of updating the computational 
record of that employee’s rank (if related to it, with the latter 
perhaps honouring or recording or deferring to the for-
mer).44 In this ordinary understanding, that is, the expres-
sion (RANK EMPLOYEE-27) is somehow—perhaps flexibly or 
contextually or simultaneously—taken, by the program-
mer, using ‘signify’ for the moment as a general semantical 
term, (i) to signify the actual rank of the person, and (ii) to 
signify (or perhaps even to be) their employee record. As 
regards the latter interpretation, it seems as if the V se-
mantical view is somehow more appropriate: terms such as 
EMPLOYEE-27 are in some cases taken to denote or represent 
records in computer memory, not real-world entities in 
task domains. 

 
 
44 Programmers of course also understand when the action is meant to 
happen, for example, when debiting an online bank account balance. 
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On the other hand—and this is why the whole subject 
matter begins to outstrip the capacities of any currently 
known semantical framework—the intelligibility of the 
program, and the normative constraints to which the pro-
gram should be held, depend on the fact that that record, 
in turn, represents a real-world employee and their rank. 
That is—or so anyway I believe, though it would take eth-
nographic work to demonstrate that this is in fact the 
case—the programmer must be simultaneously aware of all 
three types of entity: the program identifiers, the computational 
records, and the people and ranks represented by those records. 
The problem with present-day theory is that existing se-
mantical accounts (including that of /Lisp) deal only 
with a single level of designation or representation: from 
sign to signified—with possible inclusions of intermediate 
intensional levels of meaning, character, etc. But all of such 
familiar multiple-stage semantical relations of expression, 
meaning, character, intension, and reference are inappro-
priate approaches for dealing with this triple form of signi-
fication; nor would so-called “two-dimensional semantic 
frameworks” be of use in this context. The computational 
record—the intermediate entity in the present three-stage 
layering of signification—is neither the meaning nor the 
character of the identifier. 

In the next chapter, I will argue that the situation is in 
fact even more complex than three or even four stages of 
signification. Even recognizing just  stages, however, al-
lows for a useful comparison between the computer science 
(V) approach and an amalgam of the /Lisp-cum-FSM 
(V and V) approaches. The computer science approach 
(V) deals with the first stage of designation—from iden-
tifier to (abstract or concrete) memory record—but ig-
nores the second stage, from record to person. Program-
mers, by using natural language names, craft the program 
so as to enable them to understand both stages—second as 
well as first—even if the significance of the second stage 
memory record is invisible in accepted theoretical 
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accounts. The FSM (V) model has no intermediate level of 
(changeable) records, and so is not up to dealing with the 
tri-stage situation at all. 

The /Lisp approach (V) is reminiscent of the FSM 
one, but makes extensive use of quotation (“handles,” in 
/Lisp parlance) enabling the program to refer to data 
structures explicitly. Moreover, using the «↑» operator 
noted above, something like the following expression 
might be used in /Lisp,45 in order to obtain referential 
access to the data structure in question: 

 (increment ↑(rank employee-27)) [E] 

Marking every level of semantic ascent in this way has the 
advantage of permitting unambiguous reference (and ac-
cess) to each of any number of stages on a multi-stage stack 
of representational relations. Also in its favor is the fact 
that it makes it evident that what is being incremented is 
at least at some level of semantic remove from the em-
ployee’s actual rank, and from the employee themself. And 
of course it makes evident the fact that /Lisp programs 
are not prohibited from being about (i.e., being at one level 
of semantic remove from) data structures, as is common-
place in reflection. 

However—and not incidentally—the /Lisp strategy 
also has the ultimately fatal disadvantage of forcing the 
programmer to be relentlessly explicit, always and every-
where, about what level of a multi-stage semantical stack of 
this sort they have in mind. A decisive advantage of pro-
grammers’ tacit understanding (V) is that programmers 
can use context and commonsense to determine which level 
in the referential stack is being dealt with—a plastic and 

 
 
45Needless to say, whether this would work would depend on exactly 
how RANK behaves; (RANK EMPLOYEE-27) would have to normalize to some-
thing other than a simple numeral, in particular, since numerals can pre-
sumably not be incremented in such a way that a subsequent normaliza-
tion of (RANK EMPLOYEE-27) would normalize to the incremented version. 
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fluid contextual skill, as already mentioned, far beyond the 
capabilities of any extant semantical framework. 	

This is a moral we are going to encounter with increas-
ing frequency. Current semantical frameworks in com-
puter science (V) are blind to the genuine semantical facts 
that govern contemporary programming systems. This is 
unfortunate, since these are facts that programmers must 
tacitly understand, in order to construct systems that are 
useful and correct. In that sense, theory has failed us. On 
the other hand, the semantical situation regarding complex 
computer systems dwarfs in complexity anything that can 
be addressed in any current theoretical frameworks, in 
computer science or philosophy or linguistics or cognitive 
science more generally—issues involving perspectival no-
tions of identity, contextual (and multiple) levels of cas-
caded significance, and a variety of other concerns.  



  
 

 5 Comparison 

Which of V-V would I choose today? Not one. I would not 
even select a theoretical reconstruction of contemporary pro-
grammers’ tacit understanding (V), in spite of its considerable 
merits, and notwithstanding its theoretical challenges. Nor do 
I believe—though this remains to be argued—that an adequate 
approach can be constructed, piecemeal, from V–V’s constit-
uents. Doing justice even to computation, let alone to reflec-
tion, will require a more complete overhaul of our semantical 
frameworks than that. 

To make progress in that direction—not even starting to 
frame a full-fledged successor, but starting to appreciate what 
that would require—we need to develop a workable perspective 
from which to survey all the various existing suggestions. 

 1 Procedural vs. Declarative 
A first suggestion is to divide the four views’ approaches to se-
mantics along an informal but familiar dimension, often char-
acterized as follows:1 

. PROCEDURAL: Approaches that put primary emphasis 
on dynamic results, behaviour, the procedural consequences 
of a symbol, expression, or program fragment being 
processed; and 

. DECLARATIVE: Approaches that place primary focus on 

 
 
1Note that I do not agree with these characterizations, nor with the im-
plicit assumption that they are either exclusive or exhaustive. The at-
tempt here is simply to articulate the sense that underlies informal usage. 
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reference, designation and truth—i.e., on what, in a given 
context, a symbol or expression is about, what it names 
or points to in the world, what it represents.2 

Under this distinction, we could characterize the views as fol-
lows: 

α) V (FSM and logic) would fall into the DECLARATIVE 
camp. At least as classically analysed, those traditions 
take semantics3 to be first and foremost representa-
tional or declarative: focusing on the reference, desig-
nation, and/or truth. At least paradigmatically, which 
justifies the ‘declarative’ label, expressions in such de-
clarative formalisms are taken to represent what is the 
case; issues of how to reason with or use such expres-
sions—what to do with them, procedurally—are held 
at bay (specified elsewhere, figured out by a reasoning 
system, etc.). 

Four clarifying points. First, as noted above, the (se-
mantic) representation relation in such systems is 
something that obtains—it is not a process, not some-
thing that takes time. If Alex is Pat’s parent, then 
«(PARENT ALEX PAT)»4 is simply true; it is the case; it does 
not require the passage of any time for it to become true 
(after an utterance or use of that expression, for exam-
ple). The Lisp atom «MT-SAINT-ELIAS» can represent the 

 
 
2Two clarificatory points. (i) It is contentious whether being true or false 
(the primary semantic property of sentences or claims, on this view) 
should be viewed as analogous to, or even (as Frege suggested) special 
cases of, naming; and (ii) truth is not dealt with in a satisfying way in 
/Lisp, in spite of the dialects containing primitive normal-form desig-
nators for truth and falsity ($T and $F). 
3When I say “they take semantics to be α” I mean that most classical anal-
yses of these approach tend to view semantics as α—not that it is impos-
sible or unknown to treat semantics differently in their analysis. So-
called “proof-theoretic semantics” approaches to logic, for example, do 
not fit neatly into what is said in this note. 
4Or «Parent(Alex, Pat)», as it would be notated in logic. 
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second highest mountain in North America without 
that reference involving any activity; the arrow of inten-
tional directedness may span both space and time, but 
it does not take time to do so. 

Second, declarative systems are paradigmatically 
(though not necessarily) what I will call statical:5 what 
represents—what the semantics is defined over—are 
typically states of the system, not processes or activities. 
Again, this is not necessary. If, in response to a child’s 
question about a spiral stairway, you respond by mov-
ing your hand upwards in a helical gesture, the (shape 
of the) staircase would be represented by your hand’s 
dynamic motion, but the representation would still 
count as declarative. 

Third, a state’s being representational, even in the 
statical case, does not imply that that which is repre-
sented need be a state. A statical calculus expression can 
readily represent dynamic motion (as for example in a 
differential equation in physics). 

Fourth, what matters most, from the V perspective, 
is that the states over which semantics is defined (sym-
bols, expressions, formulae), and the meanings or inter-
pretations defined on them, are generally assumed to be 
ontologically and explanatorily prior to process and be-
haviour—prior to and independent of what happens to 
the states over which they are defined. That is: any dy-
namics (process, behaviour, results) of such expressions’ 
treatment—the ways in which they are manipulated, 
and the consequences thereof—are not typically viewed 
as being constitutive of their semantic value. Rather, as 
I have emphasized throughout, in these traditions the 
relation between semantics and behaviour is usually 
taken not only to be fundamentally normative but also 

 
 
5Statical because defined on states—not static, in the sense of not itself 
changing over time. 
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to be “staged.” Process and activity is held accountable 
to whether it honours the (statical6) semantic interpre-
tation of the states and expressions over which it is de-
fined, where that semantic interpretation is assumed to 
be established in advance.7 

This approach, laid out more carefully in chapter , 
is familiar from logical syllogisms and standard exam-
ples of elementary reasoning. In a derivation such as the 
classic: 

` ∀X(MAN(X) ⊃ MORTAL(X)) 
 MAN(SOCRATES) 
 ———————————————————— 
 MORTAL(SOCRATES) 

it is assumed that the semantic facts—that «MAN» rep-
resents the property of being a man, «MORTAL» the prop-
erty of being mortal, and «SOCRATES» the Athenian phi-
losopher—are established or stipulated prior to, and 
independent of, the derivation.8 

β) V (computer science as theorized), in contrast, would 
seem to count as PROCEDURAL, viewing semantics as 
having primarily to do with activity, process, 

 
 
6Cf. footnote . 
7Inference, we say, should be truth-preserving, where truth is a semantico-
normative condition defined on the static sentences; its preservation, the 
derivative dynamical norm defined in terms of it. 
8Strictly speaking, the argument would be held to be valid independent 
of  the interpretation, and so «man» and «mortal» and «Socrates» could 
theoretically, or so it is usually assumed, be mapped onto any properties 
at all; all that is guaranteed by the structure of logic is that, if the premises 
are true, then the conclusion will follow (be true as well). But though rarely 
acknowledged, background conventions govern any such potential as-
signment so as to enable the validity of such analyses to obtain. (If 
«MORTAL» were mapped onto the property “the clause in which this prop-
erty has been predicated is part of a premise of an argument, but not a 
conclusion,” and «MAN» onto “is a premise in an argument,” then the ar-
gument would no longer be valid.) 
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behaviour. “What happens” is taken to be the symbols’ 
and expressions’ semantic value or importance, rather 
than the activity and behaviour merely being account-
able to that value. 

It is this fact that semantic content and causal conse-
quence are taken to be the same thing—a single prop-
erty of symbols or programs—rather than being a rela-
tion between two at least partially orthogonal aspects, 
that makes V’s approach so philosophically peculiar 
(and that explains, among other things, how opera-
tional and denotational semantical accounts are pre-
sumed to coincide, why the idea of requiring proofs of 
soundness and completeness are category errors within 
the computer science context, etc.). How a symbol is 
processed is simply “how a symbol is processed”—how-
ever the underlying architecture works—rather than 
being subject to imposed normative constraint.9 

As this description makes clear, theoretical computer science 
(V) and FSM/logic (V) use the term ‘semantics’ in approxi-
mately orthogonal ways. What is considered semantic in CS 
(V)—i.e., behaviour—is considered non-semantic in logic 
(V), although that behaviour is accountable to semantics. 
What is considered semantic in logic (V)—paradigmatically, 

 
 
9An implementation may be held normatively accountable to the seman-
tics—the semantics specifying how the implementation should behave, 
the implementation actually behaving in some way. Such an approach 
would allow one to ask whether the implementation was correct. But that 
is a separate issue; it would merely be to have the singular content-as-
consequence articulated in the semantic account play the role of a require-
ment on the implementation. Requirements (of this or any other form), 
however, are not considered to fall within the scope of the semantics of 
the system they apply to. Moreover, there is nothing special to computa-
tion in being subject to requirements; the same is true of any engineered 
system. (One could, of course, state in a symbol system’s requirements 
that its task domain be correctly represented—but that merely establishes 
a second normative relation.) 
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relations between the symbols and the task domain—is not 
treated as semantic in CS (V), not because it is treated as being 
something else, but more profoundly because it is not consid-
ered to be relevant to semantical discussion at all. 

γ) V (programmer’s tacit intuitions) has a richer con-
ception of semantics than either V (FSM) or V (com-
puter science)—suggesting one way in which a tenable 
semantics incorporating both of their insights (of 
which V is an example), will be non-standard in form. 
Like V, V (usually) places behavioural issues in the 
driver’s seat, but unlike V it is undergirded by some-
thing like a representational dimension—manifested 
in the choice of names for variables and procedures, 
and more generally in the presumptive representa-
tional significance of data structures.10 Though this 
tacitly recognized representational character is not of-
ficially theorized, virtually every programmer, or so 
anyway I have maintained throughout, would agree 
that this representational dimension is fundamental 
to software’s design, comprehensibility, maintenance, 
and use. 

δ) V (/Lisp) also has a richer conception of semantics 
than either FSM (V) or theoretical computer science 
(V). In that respect it goes some way towards captur-
ing programmer’s tacit intuitions (V). On the other 
hand, whereas V takes behaviour to be primary, 
/Lisp (V) sides with FSM and logic (V) in giving 
(what I am calling) declarative issues pride of place, 

 
 
10It is not just a question of the names being recognized as having mean-
ing by programmers. In all likelihood, the successful functioning of the 
program will depend on the data structures being set up in such a way as 
to “track” or otherwise represent salient entities, events, phenomena, etc., 
in the program’s task domain, to say nothing of meshing appropriately 
with sensors and effectors that connect the system to the task domain 
(being correctly updated, leading to intended actions, etc.). 
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both ontologically and explanatorily. Yet in spite of 
being affiliated with FSM and logic (V), /Lisp (V) 
is unlike both of them in two critical ways—both of 
which draw it closer to V. 

First, /Lisp (V) does not take the declarative (ref-
erential or designational) aspect of expressions to be in-
dependent of the procedural; rather, it is founded only 
on the view that, overall, the declarative facts transcend, 
and via that transcendence normatively govern, the be-
havioural facts. It is this overarching commitment that 
maintains V as fundamentally deferential, while at the 
same time making room for the fact that, in particular 
cases, declarative content and procedural consequence 
may be constitutively interdefined. 

Second, /Lisp (V) treats both declarative and pro-
cedural dimensions of an expression as “genuinely se-
mantic”—theorizing them as partial, interrelated con-
stituents of a single, overall encompassing intentional 
significance function (Σ). I believe that this integrated 
view of representation and behaviour as dual, inte-
grated, equal-weight dimensions of the semantic is 
Lisp’s most distinctive, most important, and least un-
derstood characteristic.11 As well as attempting to 
merge some of the powers of both V and V, it has the 
consequence of moving the normative governance of the 
declarative/representational inside the semantic frame-
work (in FSM/logic the norms are taken to be defined in 
terms of the semantics, but nevertheless to be external 
to them, in the sense that that which they govern—the 
activity—does not affect or contribute to anything’s se-
mantic value). In /Lisp it is the integrated significance 
function as a whole (Σ) that must—and must be shown 

 
 
11Its closest intellectual affinities are to be found in philosophy of 
mind—particularly in the area of what is called “conceptual role seman-
tics” [CRS]. 
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to—satisfy overarching norms reflecting the system’s 
overall deferential attitude to the world. 

 2 Specifying Behaviour vs. 
  Behavioural Specification 

The foregoing summary (call it S1) is not empty, but alas it is 
untenably glib. Why so? Because we have not yet turned up the 
intensity of the analysis enough to force the various views to 
break open and release their innermost secrets. Not only does 
it ignore some fundamental issues, a few of which I have already 
touched upon; even among those it does it address, it glosses 
over a welter of conflations and confusions. The problems are 
especially serious regarding V: the theoretical approach that 
underlies present-day computer science. 

 2a Data structures 
In chapter , I noted that contemporary programming lan-
guage semantics does not treat the ingredients of computational 
processes (the states of the computation, including the states of 
all data structures) as semantic at all. Neither data structures, 
nor states, nor memory, nor behaviour, nor input, nor output, 
nor anything else affected by or resulting from program execu-
tion, is considered, according to V, to be part of the domain of 
semantical analysis—not considered for procedural semantical 
analysis, or declarative, or behavioural, or representational, at 
all.12 These entities are all taken to be in the range, not in the 
domain, of the semantic interpretation function. 

So at least I claimed. But note that there is something 

 
 
12It is this blindness, on the part of received theory, that explains the huge 
gap, noted earlier, between the semantics of programming languages and 
the semantics of programs. I will consider it to be a requirement on a suc-
cessor account that it bridge this gap: that any account it provides for the 
semantics of a language include, perhaps among other things, a frame-
work for accounting for the semantics of programs written in it (includ-
ing for data structures), and for the processes that result from their exe-
cution. 
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puzzling about this statement, at odds with the glib summary. 
Consider data structures (though similar considerations would 
apply to input, memory, etc.). It might have been reasonable to 
expect that data structures would not be semantically inter-
preted in V—if, for example, we wanted (like Newell) to keep 
the analysis “wholly defined within the structure of a symbol 
system.” But, peculiarly, this expectation only makes sense on a 
declarative understanding of semantics. That is, one might im-
agine  that a plausible rationale for ignoring the semantics of 
data structures might run as follows: 

 Sometimes—perhaps even usually—data structures and 
the like will designate (represent, etc.) entities, phenom-
ena, activities, states of affairs, etc., in the world or task 
domain that lies outside, beyond the limits of, the com-
putational process itself. Suppose, at least for the sake of 
this argument,13 that for methodological purposes, like 
Newell, we impose a requirement that the scope of theo-
retical inquiry remain “within” the computational process 
itself. Doing so will enable us to guarantee that the result-
ing analysis will be completely internal, formal, closed, 
etc. (in something of a computation-theoretic analogue of 
Fodor’s “methodological solipsism” approach to cognitive 
science14). To satisfy this criterion, we must bracket the 
semantic content of data structures—leaving them out of 
the purview of the analysis of the programming lan-
guage’s semantics. 

The rationale makes sense, however, only from within a declara-
tive conception of semantics—i.e., from a point of view that takes 
the (potentially ignored) semantics of these data structures to 
have to do with their process-to-world representational content. 

 
 
13With which, needless to say, I disagree. 
14Needless to say, this is a methodological constraint with which I pro-
foundly disagree—but even if pernicious it is intelligible, and I take it that 
some such commitment must underlie the traditional CS view. 
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And, being declarative in orientation, the rationale thus runs 
afoul of what we concluded in the analysis of V, and repeated 
in the glib summary: that computer science takes “semantics” 
to have to do with behavioural consequence in an internal 
sense—i.e., with how things behave, inside and at the edges of 
the machine, with how they are (mechanically) treated. And, 
contra the rationale, data structures manifestly do have proce-
dural consequence—do play a role in affecting behaviour that, 
if construed mechanically, falls within the confines of the com-
putational process. So if semantics is taken to have to do with 
(effective, mechanical) behaviour, not with deferential relations 
to distal subject matters, why is the profile of behaviour associ-
ated with data structures not theorized as their (procedural) se-
mantics? That is: if one’s approach to semantics is fundamen-
tally procedural, then why is a rationale for ignoring the seman-
tics of data structures even needed? Surely a card-carrying pro-
ceduralist should embrace the task of providing a semantical 
analysis for data structures as well as programs—viz., a proce-
dural semantics—rather than leaving them outside the scope of 
semantical analysis entirely? 

Is this what a procedural (V) semantics for object-oriented 
programming languages comes to? The objects, on such a sug-
gestion, could perhaps then be mapped by a resolutely CS (V) 
conception of semantics onto the behaviours that result from 
their methods being called. 

This suggestion has legs. It merits investigation. 

 2b Declarative specification of 
  procedural behaviour 

A second hint that something is awry with the glib summary 
has to with programs themselves. What are we to make of the 
fact that computer scientists view what they call a denotational 
approach to semantics to be the strictest, most rigorous ap-
proach? Sure one might have expected the term ‘denotation’ to 
be associated with (and thus to preferred by those who em-
brace) the declarative/referential/truth-value tradition? The 
use of mathematical techniques fails to explain the choice of 
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terms. Why is the mathematical modeling of the behaviour 
that results from running programs called denotational—rather 
than behavioural or procedural? 

The issue is more than terminological. If programs are 
treated as the “procedural” form of expression par excellence, 
then one might expect them to be a “locus classicus” for a be-
havioural conception, wherein the meaning of the program 
would be something like how the program will be used. But the 
awkwardness of that wording is telling. Programs themselves 
(programs qua programs), or at any rate the expressions within 
them, are not exactly used—certainly not in the logical sense of 
‘use.’ Surely what is “used,” in standard programs, are data 
structures! “What the program will do” would be the more nat-
ural phrase, when speaking about programs. 

If one thinks about it, in fact, it is clear that, if one is forced 
to make the distinction, programs are both understood and 
theorized: (i) not as indicating how they themselves will be used 
(treated, manipulated, processed, “interpreted” in the com-
puter-scientist’s sense, etc.); but rather (ii) as specifying how 
the data structures that they “deal with” will be used—con-
structed, deleted, manipulated, rearranged, etc. And ‘deal with,’ 
in this phrasing, has an intentional, “directed towards” mean-
ing. 

The point is that, on the classical computer science view, 
programs, at least theoretically, seem, contra to what I have said 
before, to specify, at least somewhat declaratively, the behaviour 
in terms of which they are semantically analysed. “What a pro-
gram means,” that is, is taken to be “what behaviour the pro-
gram effectively specifies,” where the word ‘specifies’ is inter-
preted in a manner not all that different from how it might be 
used in English—e.g., in specifying the procedure to follow 
when applying for a visa, or specifying the equipment one 
should take on a canoe trip. That is, like a calculus expression 
signifying activity in physics, there is at least some sense to be 
found in the idea that the activity germane to programs may be 
in the semantic content of the program’s terms, rather than as 
properties of those terms themselves. 
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Contra the glib summary, that is, rather than saying that 
programs have behavioural semantics, it seems as if it might 
make more sense to say that programs declaratively, but never-
theless effectively, specify behaviour—or, perhaps more insight-
fully, effectively but declaratively specify effective behaviour. The 
two conditions—being procedurally meaningful, on the one 
hand, and declaratively representing something procedural, on the 
other—are not the same. Saying “You are a despicable fool!” 
may have behavioral consequences, but at least in the first in-
stance the statement is not about behaviour.15 Conversely, such 
phrases as “the transition of an electron from a s to a p or-
bital” or “adding milk to a roux”—or for that matter, the 
mathematical terms in the equation: 

 
!(#) = !! + '!# +½	*#" 

 
are about temporal behaviour, but in ordinary contexts16 would 
be expected to function as unexceptional declarative expres-
sions. They are perfectly ordinary referring terms, which hap-
pen to refer to activity and process. 

So should we say that programs are effective, declarative 
specifications of behaviour that takes place at the level of data 
structures, on a much more traditional conception of semantics 
than the analysis in chapter  would lead one to expect? The 
suggestion fits with the comment made earlier (and depicted in 
the specification view of Fig.  ): that programs are often taken 
to be at one level of semantic remove from the activity or behav-
iour that their execution engenders. Not incidentally, the sug-
gestion also fits with my choice,  years ago, to call the tradi-
tional computer science view ‘specificational.’ It squares, too, 
with the widespread sense that, at least in general (and espe-
cially in the case of statically typed languages), it is possible to 

 
 
15Even if it was the addressee’s behaviour that led the speaker to come to 
hold, and utter, the judgment. 
16E.g., when used as referring terms in referentially transparent contexts. 
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“determine the meaning” of a program statically—as for exam-
ple during processes of compilation, and when a programmer 
“figures out what the code means” by reading it. Both facts sug-
gest that the dynamic execution context is not needed in order 
to determine, in at least some pre-theoretic sense, what pro-
grams mean. 

Which view—themselves being procedurally consequential, or 
being a declaratively (if nevertheless effectively) meaningful way of 
specifying (effective) behaviour—is closer to the one that com-
puter science attributes to programs? The glib summary en-
dorsed the first; these last considerations suggest the second. 
Perhaps the distinction is otiose; perhaps neither construal is 
sufficient on its own. Perhaps the framing conflates two senses 
of “behave”: one being the form of behaviour that takes place in 
the process to which the program gives rise, where objects and 
data structures are the “objects” or “patients” of the behaviour; 
the other being the fact, mentioned but as yet unanalysed, that 
programs have to specify that behaviour effectively, in the sense 
of being causally sufficient configurations so as to produce that 
(effective) behaviour. Does that means that the computer sci-
ence view (V) is intended to be an admixture of both? And if 
an admixture, how do the two behaviours relate? Is the answer 
that programs are supposed to combine both aspects at once—
to be a behaviourally effective way of specifying effective behaviour? 
Perhaps, to make it more explicit yet, programs should be un-
derstood as effective in a double sense, and as implicating two 
distinct forms of declarative semantics as well, along something 
like the following lines: 

S2) Programs are an effective (as well as declarative) way of 
specifying effective behaviour conducted over declaratively 
meaningful data structures (plus inputs and outputs). 

Pedantry looms. But no matter how obscure, there is insight 
in suggestion s. Buried within it are hints about the answers to 
four issues that got us here: (i) why computer science calls the 
most rigorous form of programming language semantics ‘deno-
tational’; (ii) the idea that programs exist at one level of 
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semantic remove from data structures (which very statement, it 
should be noted, is framed in terms of a declarative notion of 
semantics, not a procedural one); (iii) why processes that take 
programs and produce the behaviour that they specify are 
called interpreters; and (iv) why, as addressed in the rationale, 
the declarative semantics of data structures is debarred from 
computer-science internal theoretical analysis.  

 3 Data Structures Revisited 
Look at the situation in yet a different way. Suppose we were 
not to take programs to be procedural in the way claimed in the 
glib summary, but were rather, as suggested in the last para-
graphs, to view them as (effective in some as yet to be explicated 
sense, but nevertheless roughly declarative) specifications of ef-
fective procedures or behaviour. And second, and contrary to 
what has been said so far, suppose we were to claim that data 
structures (not programs) are being assigned semantics after 
all—procedural semantics, at that—but in a roundabout way. 
Could we not say, in particular, that, for whatever reason, com-
puter science has settled on the following practice: 

S3) Rather than (i) analysing the (procedural) semantics 
of data structures directly, by having the data struc-
tures figure as the explicit domain of a (procedural) se-
mantic interpretation function, which explicates the 
behavioural or causal consequences they would play a 
role in engendering in the course of a process’s tem-
poral evolution, theoretical computer science has in-
stead adopted the custom of (ii) assigning procedural 
semantics to data structures indirectly, via the (denota-
tional) semantics of the programs that (effectively) 
specify how those data structures are to be (effectively) 
manipulated? 

That is, to caricature a bit: the suggestion is to understand the 
declarative semantics of a program to be the procedural semantics 
of the data structures over which that program specifies behav-
iour. 
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Suggestion S3 is convoluted, but has merit. It is programs, 
after all, that are thought to determine how data structures “are 
used”17—so the suggestion seems appropriate in allocating re-
sponsibility for that behaviour to programs, while acknowledg-
ing that what the behaviour concerns is the data structures. It 
also renders intelligible the fact that the range of program be-
haviour is restricted, in these traditional analyses, to the “inte-
rior” of computational processes—since this is procedural se-
mantics we are talking about—and the interior of the process, 
along with the input and output activities that cross its border, 
are what falls within effective (mechanical) range. Ironically, 
third, it makes sense of something I have mentioned several 
times: why we say that programs are interpreted, and of why 
program reference to data structures is taken to be genuine ref-
erence. (I call this point ironic because it requires a declarative 
notion of semantics to understand the sentence’s use of the 
terms ‘interpret’ and ‘reference’.) Fourth, if we take programs to 
be effective, declarative specifications of effective behaviour to 
be conducted over data structures, then it at least seems as if 
much of our familiar logical, philosophical, and natural-lan-
guage based conceptions of naming, reference, etc., might be able 
to be retained. 

Moreover, suggestion S3 raises a theoretically intriguing 
possibility. If we wanted to convert the program’s indirect spec-
ification (of the procedural semantics of its data structural ob-
jects) to a direct one—if, that is, we wanted to know the proce-
dural semantics of some particular data structure or structural 
type—we could do something analogous to “Ramsifying” the 
entire program,18 thereby associating with each data structure 
(or type) the full suite of behaviours in which it could play a 

 
 
17They do determine how they are used, of course—in one obvious sense. 
But the data structures themselves also play a role in causally influencing 
the outcome. We think that the program is “the director” of this activity, 
and the data structures more like its objects or “patients.” But the merit 
of that asymmetry is partly what is on the examining table. 
18Rey (). 
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part. That is, to use a visual metaphor, instead of having the 
semantical analysis “pick the program up” by the functions, 
methods, and procedures etc., with the whole web of actions 
and behaviours and interconnections over myriad data struc-
tures hung from that “factoring” of it, we could imagine a 
(Ramsified) analysis that instead picked up the web of pro-
gram-cum-data-structures by each data structural type, with the 
program and procedural interactions hanging from or spread 
out underneath that. 

I.e., to put this in language that will be more familiar to com-
puter scientists: the proposal is to conduct something like a 
more fundamental, higher-order refactoring than normal: or-
ganizing the program by the data structures, first, with the be-
haviour-specifying procedures being subsidiarily organized un-
der them, rather than the other way around. 

 4 Object-oriented languages 
As already intimated, this last suggestion is basically the strat-
egy underlying the shift from functional/procedural to object-
oriented programming, with “methods” (specializations of pro-
cedures) organized by the types of data and records and so on 
they apply to, rather than being assembled into a single large 
procedure.19 The proposal may seem different in one respect, 
though presumably not an orthogonal one: whereas object-

 
 
19Informally, if one views the complex somewhat matrix-like graph of a 
program plus its entire associated plethora of data structures as a mass 
of spaghetti, “functional” or “procedural” programming can be viewed as 
a strategy of “picking the graph up” by each of the procedures, and having 
the specialization to different types of data fan out below them as cases, 
whereas object-oriented programming (class-based, etc.) can be viewed 
as picking up the same mass of spaghetti by the types of data structure, 
and allowing the various types of procedure (called “methods” in this 
case) fanning out below them. The difference, thus, can at least at a su-
perficial level be viewed as one of how programs are presented, rather than 
as an inherent property of abstract structure—though that is not to deny 
that the difference may lead to substantial differences in how problems 
are factored, how code is (otherwise) organized, etc. 
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oriented programming is a practice of organizing programs in 
this way for effective reasons (how they are arranged as texts, 
and how they are processed), our proposal is framed in seman-
tical terms, as regards their analysis. The fundamental insight 
underlying the idea of compositionality, however, is that both 
syntax (i.e., effective structure) and content (semantic meaning) 
are compositionally configured in roughly parallel ways. So the 
two approaches may have more in common than might at first 
appear. Perhaps they can be—maybe they even already are—
combined, as follows: architecturally, if a procedure-cum-data-
structural configuration is organized as an object-oriented pro-
gram, then the way theoretical computer science (V) presently 
analyses its semantics could be counted as—again, contrary to 
the glib summary—a direct analysis of the objects’ (not their 
methods’!) procedural semantics. 

This analysis suggests that, with respect to V, the summary 
should at a minimum be revised as follows, yielding a somewhat 
less glib version that I will call the “revised summary,” consisting 
of α, γ, and δ, describing V, V, and V, respectively, as above, 
but with β, describing V, modified as follows: 

β′) V provides an indirect account of the procedural se-
mantics of the process’ constituent data structures, in-
puts, outputs, etc. (and also, as we will see in a mo-
ment, of its objects, classes, types, etc.), by giving a di-
rect account of the declarative semantics of the pro-
gram, where programs are taken to be effective speci-
fications or prescriptions about (in the classic declara-
tive sense) effective activity, process, and behaviour. 
“What happens,” on this reading, can be understood 
both (i) as the declarative interpretation of the pro-
gram, and (ii) as the procedural semantics of the data 
structures, objects, etc. to which the program (declar-
atively) refers. 

If the revised summary makes more sense than the glib one, 
which I believe it does, should it be adopted straightaway? 
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Alas, no—for a host of reasons, including at least the following 
four. (We are not “there yet,” but we are making progress; while 
the revised summary β′ cannot be accepted as is, the suggestion 
contains within it ingredients that will figure in the proposed 
synthesis of V–V to be suggested in chapter .) 

. As stated, revised suggestion β′ remains vulnerable to 
the Meccano critique. It overstates the case to interpret 
any suite of behaviours that a set of complex configura-
tions of parts can undergo as their procedural semantics. 
Some warrant must be provided for interpreting the sit-
uation as semantic or intentional in the first place. It is 
not enough that the program indicates that suite of be-
haviour in a recognizably semantic way—viz., by speci-
fying them in something like a language, which is 
mapped onto those behaviours in something like a tra-
ditional denotational fashion. That might justify using 
the term “the declarative semantics of the program,” but 
it does not justify calling that which is thereby specified 
“the procedural semantics” of anything. One could as well 
say, to return to a previous example, that a program for 
a milling machine (declaratively but effectively) specifies 
the “procedural semantics” of the pieces of metal upon 
which it operates.20 Or claim that what a recipe specifies 
are the procedural semantics of the flour, butter, and 
yeast that it recommends combining. 

. The revised suggestion (β′) provides no way of connect-
ing the program’s “specification of procedural behav-
iour” with the as-yet-untheorized but, as we saw, fun-
damentally important “reaching into the task domain” 
semantics that programmers attribute not only to data 
structures but to procedures (program fragments) 
too—taking them to designate, or represent, or bear 
some sort of intelligibly intentional relationship to enti-
ties and phenomena in the program’s task domain. For 

 
 
20Roughly this point is made in “ Billion Lines of C++” (). 
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example, the revised suggestion would provide no ac-
count of what program fragment 

current-floor ← current-floor + 1 

has to do with elevators or floors, or what 
(highest-paid-employee-of institution-27)       

might have to do with employees, institutions, and sal-
aries. Because of this, the proposed framework does 
not even begin to provide wherewithal with which to 
begin to understand the norms that, in any intentional 
system, must govern the system’s behaviour overall. 
That is: it does not work to rationalize V with what I 
took to be the substantial merit of V. 

. The third point is related to the first two. Although, in 
the revised view, the semantics of programs is charac-
terized as declarative, no genuine sense of deference has 
been retained, emptying the suggestion of substance 
that I take to be fundamental to any enterprise worthy 
of the label ‘semantics.’ Programs, on this view, specify 
whatever behaviour over data structures they specify. 
Nothing more—and therefore nothing interesting—
can be said. Since the data structures being manipulated 
are not in turn understood as standing in deferential se-
mantic relation to any domain (task or otherwise), no 
norms on their treatment are theoretically visible. De-
rivatively, as a consequence, no norms come into view 
for programs, either.21 

. To bring the analysis full circle, the revised suggestion 
remains utterly ill-suited for dealing with reflection. As 
is so often true, what is foregrounded in—in fact what 
is crucial to—the reflective case turns out to be 

 
 
21Cooking recipes are presumably held accountable to a background 
norm that what is cooked be good to eat. On the revised suggestion 
(without declaratively interpreting the data structures), nothing even 
that general is on the table for programs. 
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diagnostic of problems in our contemporary under-
standing of computation in general. The problem, to 
put it most baldly, is this: 

Reflection can neither be defined nor understood 
in purely mechanical or behavioural terms. 

Reflective systems are systems that reason, manipulate 
structures, etc., that are about the system itself, where 
the critical notion of “about” is, and must be, declara-
tive or representational—and in virtue of that fact, def-
erential. And because data structures are theorized, in 
the revised conception, only procedurally, that revised 
conception is not powerful enough to comprehend re-
flection at all. 

The equivocation between the term ‘program’ and ‘process’ in 
the last point (#) indicates the real difficulty with the revised 
suggestion. If it is the program to which reflective reference is 
made, during the course of execution, then the program must be 
part of the computational process—i.e., must exist, along with 
other data structures, as a structural form capable of being in-
spected, manipulated, changed, etc. But then a problem arises. 
On the suggestion under examination, two forms of declarative 
semantics are implicated for reflection: one in order to allow the 
reflective program to refer to the program, program fragment, 
contextual information about the program’s dynamic behav-
iour, and the like, of a sort reminiscent of (if not the same as) 
that in terms of which we have understood V and called “de-
clarative,” and a second one, relating the thereby-referred-to 
program to the behaviour that it will or does engender, upon 
being executed. That is, the program-process relation (labeled 
‘α’ in figure ), stipulated on the current suggestion to be un-
derstood effectively but nevertheless declaratively, becomes a 
constituent in the on-going dynamic reflective process (and in 
the general case, as is certainly true in Lisp, becomes a relation 
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that itself needs to be able to be referred to22). But according to 
the suggestion, the only “semantical” properties of process con-
stituents visible to theoretical analysis are procedural ones. Not 
only would the revised summary render invisible, for purposes 
of theoretical analysis, the fact that the program/process is re-
flective, but the constitutive relation between programs and the 
processes or behaviours they give rise to when executed—the 
very subject matter of the semantical analysis of programs, accord-
ing to the revised suggestion, to say nothing of being evidently 
fundamental to the reflective situation—would also not be con-
sidered semantic, and would therefore also be rendered invisi-
ble, on the terms of the suggestion. 

(In passing, it is worth noting that one of the signal virtues 
of /Lisp’s integration of both declarative and procedural as-
pects of a program within a general integrated notion of seman-
tical significance is that, by design, it allows for all of these rela-
tions to be considered explicitly: the procedural consequences 
of the data structures, the declarative import of those same data 
structures, the procedural consequences and declarative import 
of reflective programs, and the procedural consequences and 
declarative import of the programs being considered by the re-
flective code.) 

With respect to the current discussion, however, it becomes 
clear that, even as revised, the suggestion starts to disintegrate. 
And not just the suggestion, but the entire discussion. So ab-
struse do the intricacies grow between and among programs 
and processes, procedural and declarative interpretations, exte-
rior and interior processes, implementing processes and imple-
mented processes, behaviour mechanically understood and be-
haviour understood under (representational) interpretation, 
etc., that confidence slips away as to whether the morass will 
ever be sorted out. (I hereby offer a bottle of single malt to any 

 
 
22Cf. footnote  in §,V about Lisp’s ‘↓’. Note the declarative import 
of ‘↓’ is that it denotes the denotation function: φ(↓)= φ.  
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reader who has not yet abandoned ship.) 
On the other hand, for better or worse, the accumulating in-

tricacies in no way undermine the importance of the overarch-
ing goal: to understand how deferential, representational con-
tent can be accommodated within a programming framework 
in such a way that the analysis of that declarative, representa-
tional semantics meshes coherently with what computer sci-
ence currently calls semantics, in turn in such a way that the 
(mechanically engendered) behaviour can be held normatively 
accountable to it. 

Meeting that goal is a prerequisite to defining reflection. 

 5 Discussion 
At least half a dozen issues are on the table. 

. I have argued that programs, data structures, and the 
objects and classes in object-oriented and class-based 
languages all warrant semantical analysis—semantical 
analysis that, perhaps among other things (in particular, 
in addition to their role in and impact on processing) 
deals with their deferential relation to their task domains 
or worlds. At a general level, both the form of analysis 
that this will require, and the relations between and 
among these types of entity, remain unspecified. 

Are programs about data structures, or are data 
structures parts of programs? If the program/data 
structure distinction is real in classical cases (e.g., in 
functional or imperative languages), is the same distinc-
tion maintained, even if structurally configured differ-
ently, in the object-oriented case—e.g., with the “pro-
gram” function shouldered by “methods”—or is the 
merit of the object-oriented approach that it dissolves 
the very distinction? How are we to understand refer-
ential and other “aboutness” relations internal to a com-
putation (and fundamental to reflection) in relation to 
referential and “aboutness” relations to the wider world? 
And so on. 

(All of these questions are pertinent to anything that 
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might be swept up in the phrase “programming .,” 
based on machine learning networks.) 

. An implicit but intuitive distinction, as yet unmen-
tioned, infects our informal understanding and formal 
analysis of programs and data structures, even if it is not 
yet clear how to define it: between passive entities, on the 
one hand and active processes or behaviour, on the other. 
Needless to say, ‘passive’ does not mean static. Data 
structures are usually (though not always) dynamic, in 
the sense of being created, changed, updated, deleted, 
etc., during the course of program execution.23 These 
changes, though, typically result (or so at least we con-
ceive of it) from their being patients or targets of agency 
imposed from the outside—typically, agency arising 
from the “running” of the program or methods associ-
ated with them. Not being active agents or agencies in 
their own right, data structures do not typically “up and 
do things” on their own—or anyway, again, that is not 
how we understand them. In spite of being dynamic, 
they are not (or we do not typically conceive of them as) 
active agents in their own right.24 

Strictly speaking, of course—and curiously—pro-
grams, qua programs,25 count as passive, too, even if their 
raison d’être is to engender behaviour. If they are “self-
modifying,” as may be true in cases of reflection, they 
may be dynamic in the sense of being altered during the 
course of execution. But like data structures, programs 

 
 
23If they were not dynamic in this sense, a good optimizing compiler 
would or should convert them to constants when the program is com-
piled. 
24This is even true in contexts, such as in Haskell, based on lazy evalua-
tion: the activity that affects (or even creates) data structures happens “at 
run time,” but one says that the data structures are evaluated then, not so 
much that they do things according to such a temporal regimen. 
25I.e., the “texts” or symbolic structures of which semantical analyses are 
given. 
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are also not usually understood to be processes or agen-
cies in their own right. Rather, they are taken as guides 
to or specifications of active behaviour—behaviour that 
arises from, or as I have been saying, is engendered by, 
their being “executed” or “run,” during which they are 
treated as patients or objects of their activity-engender-
ing “interpreters” (what in Legacy I call “processors”).26 
This is manifest when we edit programs, for example: 
we edit something both passive and, at that moment, 
static (the “program text,” as one might put it), not an 
active agency.27 

Admittedly, we often use the term ‘program’ to refer 
to the active process resulting from its execution: “the 
program is indexing the array,” “the program is loop-
ing,” “wait till the program issues a prompt,” and so on. 
Yet it is probably most consonant with current theoret-
ical frameworks (V), and perhaps with tacit program-
mer understanding as well (V), to understand such 
phrases metonymically.28 The passive, textual or struc-
tural entity—the edited program, written in a program-
ming language, to which (crucially) we assign “seman-
tics” (even if it is semantics of a Meccano variety)—has 

 
 
26The separation of the locus of agency from the millions of data struc-
tures is a critical part of all contemporary architectures—not obviously a 
feature of the brain, for example. What it would be to have a genuinely 
active field is an interesting question. 
27Think of the difference between working on an airborne drone, on the 
worktable, between flights, to adjust its motors or wings or whatever—
vs. trying to catch an errant bat loose in one’s living room. Editing pro-
grams is like the former activity, not the latter. 
28At least it is metonymic given current views of computational ontology. 
Cf. “The Correspondence Continuum” and the discussion of the fan cal-
culus at §.. The distinction between the static specification of the ac-
tivity and the activity thereby produced (when the program is “run”) 
could be treated, in the fan calculus, as a distinction that can be “opened” 
or “closed,” depending on context. 
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ontological pride of place.29 So we have two types of 
passive entity, programs and data structures, contrasted 
with active processes or dynamic behaviour.30 

Except in cases of self-modifying programs, that is, 
we might say that: (i) data structures are typically 
viewed as passive, even if (typically) dynamic; (ii) pro-
grams, as static (unless “self-modifying”) but dynamical, 
in the sense of denoting—and engendering—activity. 
Whether either distinction (program vs. data structure 
and active vs. passive) is maintained or dismantled in 
the case of object-oriented languages is, as I have said, 
unclear. Illumination awaits proper theoretical treat-
ment. 

. Within the realm of processes, in §.v I made a three-
way distinction among: (i) an outer process R; (ii) an in-
ner process R′ that results from the execution or inter-
pretation of the program, whose “domain” is the field of 
data structures or records on which it operates (a realm 
of data structures that in /Lisp I call the “structural 
field,” and which, as we have seen, denotational analyses 
of programming language semantics mathematically 
model and take to be the semantic range of programs); 
and (iii) a doubly-interior process R″ that is the locus of 
anima or agency that “runs” (or as many computer 

 
 
29Though pedantic, it does not contravene sense to say “the process that 
this program engenders when being executed,” but “the passive text that 
causes this program to exist when it (the text) is run” is not just akward 
but conceptually awry. 
30Though ‘procedure’ is not a term I use technically, here, I will take pro-
cedures not to be active or behavioural, per se—but also not to be passive 
like programs, in the sense of being something that could lead to a pro-
cess being created through the agency of an interpreter or processor. Ra-
ther, I will take procedures to be “abstract” entities, roughly on the model 
of being “a way of doing something.” Thus a program might be taken as 
specifying a procedure; a process, as realizing or implementing it. 
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scientists would say, “interprets”) the program.31 
. There is the issue of  input and output (I/O). Questions 

arise not only about how to treat I/O in its own right, 
but also about its relation to the types of entity just dis-
cussed: programs, data structures, and both outer and 
interior processes. And of course the question remains 
open—in fact as yet unasked—as to the semantics, if 
any, of the input and output “signals.” If light reflected 
off a traffic arrow impinges on an autonomous vehicle’s 
light receptor, causing an internal data structure or 
memory record T to be constructed, which data struc-
ture T in turns leads the vehicle to veer to the right, 
should structure T be considered to represent the 
(proximal) impinging pattern of light, the (distal) ar-
row, the route towards which the arrow points, the di-
rection the system should (or does) turn, or something 
else entirely—or not to represent anything at all? And 
what about the pattern of light that impinges on the 
light receptor?32 

. Though I keep broaching the topic of object-oriented 
languages and their kin,33 we can hardly be said to have 

 
 
31One might view analysing the outer process R as the computational 
equivalent of understanding the human case at the “personal” level, and 
treatments of both interior processes R′ and R″ as computational ana-
logues of “sub-personal” analysis—something I will in general call “inte-
rior” analyses. (One might think that ‘sub-system’ would be a more nat-
ural generic term. But as this section will argue, I believe we get a deeper 
understanding of computation by giving processes and activity greater 
ontological priority, rather than (as is almost universally done today) 
treating them as “systems that behave.”)  Moreover, as is evident, this 
three-way distinction is relative to frame of reference (and potentially re-
cursive); what is “interior” from one perspective may be “outer” from an-
other, and vice-versa. 
32Note that the confusion of this situation should not lead us to abandon 
semantical analysis, because the normative deference remains. 
33By ‘their kin’ I mean to include class-based systems such as Simula. 
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a semantical grip on them of the requisite sort. At least 
paradigmatically, it would seem that the sorts of type or 
class34 defined in object-oriented programs represent 
(stand for, model, or in some other way intentionally 
signify) kinds of entity in those programs’ task domains—
or perhaps more significantly, kinds of entity that, if not 
themselves part of the task domain, are nevertheless 
normatively accountable to that domain, or that play a role 
in the normatively accountable behaviour of the program as 
a whole towards that domain. Needless to say, as I have 
been saying throughout, what currently goes by the 
name of “programming language semantics” for object-
oriented languages does not deal with these deferential 
real-world relations at all. 

The point holds even for entities that might be con-
sidered “within the program’s purview,” if not outright 

 
 
34At this level of generality I am not distinguishing types from classes—
just as I am not distinguishing a variety of semantical notions (semantic 
value, meaning, significance, denotation, etc.). Both sets of distinctions 
matter, and would need to be made once a tenable semantico-ontological 
frame was in place. My aim here, though, is prior: to determine what 
would make a proposed semantico-ontological frame tenable in the first 
place. 

It should be noted that the topic of what, if anything, distinguishes 
types from classes is vexed in computer science. On one common intui-
tion, the ‘type’ of a (computational) object has to do only with its “inter-
face” (the sorts of messages or requests to which it can respond; the sorts 
of “answers” or “behaviours” it can produce), whereas classes deal with 
how the object is “implemented”—a conception that would assign types 
but not classes to primitive entities (where no issue of implementation is 
supposed to be revealed). This distinction is not universally agreed, but 
it betrays a fact that likely is: that what it is to be a type, or a class, or for 
that matter an object, has to do with its (mechanical) behaviour within 
the computational setting. Nothing about what I am here calling genu-
ine (deferential) semantics is admitted into the discussion—in spite of 
the fact that, as evident in §.v’s discussion of programmers’ tacit intu-
itions, such types and classes are invariably named for, and in my judg-
ment represent or in some other way (genuinely) semantically signify. 
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internal. Suppose a graphics program defines a class 
RECTANGLE, for example, of which it then passes around 
instance T. Needless to say, T is not itself a rectangle, 
being neither two-dimensional nor rectangular. Rather, 
T would presumably “correspond” to a rectangle in 
some way—it might correspond to (and thus to repre-
sent, in at least some sense) a rectangle already drawn 
on a screen, or perhaps it might serve as a template or 
procedure that could be used to (actively) draw such a 
thing.35 Similarly, the program fragments discussed 
above, if written in object-oriented form, might define 
such classes as EMPLOYEE or ELEVATOR. What are (how 
should we understand) the semantics of such classes—
of their instances, their “methods,” their behaviour, 
etc.—including both the behaviour that they engender, 
upon being “called,” and their relation to actual rectan-
gles, in-the-world employees and elevators, etc.? 

. A tremendously important question, as yet also un-
addressed—of particular but not unique importance 
for reflection—has to do with how issues of semantics 
relate to compositionality and complexity. Note, for 
starters, that the five foregoing points attest to the com-
plexity of even the simplest computational systems. Ad-
equate analysis will need to be able to expand to include 
streams, modules, APIs, processes, servers, packets, 
locks, recursively-defined data structures, distributed 
processes, and a veritable host of other by-now com-
mon computational sorts of entity. And at a more mun-
dane level, beyond the suggestion in §.V that pro-
gram definitions be semantically treated as double 
claims, we have yet to say anything very detailed about 
the semantics of complex expressions, or about entities 
“defined” by complex expressions that take definitional 
form. 

 
 
35Or to a class of such rectangles! 
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Whether, from a semantical point of view, the se-
mantics of such computational types can or should be 
able to be defined in terms of the semantics of the 
smaller or more elementary pieces in terms of which 
they are defined is yet another issue that is not clear. 
That is: if a computational construct α is effectively “de-
finable,” in the ordinary computational sense of that 
word, in terms of a suite of more elementary constructs 
α–αn,36 grammatically assembled according to arrange-
ment or configuration β,37 the question has to do with 
whether the deferential semantics of α is or should be 
definable in terms of, or even be determined by, the def-
erential semantics of α–αn—perhaps in ways specified 
by a rule associated with β, as would be the case if the 
semantics of α were traditionally compositional, or per-
haps in some other way. The “double claim” proposal of 
§.V suggests that the answer is no. If that is correct, 
then current practices of semantical analysis will require 
an even more thoroughgoing overhaul. 

For example: suppose class POINT (designed to repre-
sent points on a two-dimensional plane or surface) is 
defined in terms of a pair of representations «X» and «Y» 
taken to represent real numbers. At issue is the ques-
tion of whether the deferential (representational) se-
mantics of instances of the class POINT can be defined in 
terms of the deferential (representational) semantics of 
«X» and «Y». The evident answer is again no. Instances 
of POINT, in particular, deferentially represent points in a 
two-dimensional plane, whereas «X» and «Y» would def-
erentially represent real numbers. There is of course a 
relationship between the point and the represented 
numbers—with «X» and «Y» most likely representing 

 
 
36Perhaps including recursive mention of α itself. 
37 I.e., so that the constituents α1–αn would be indicated as the leaves of 
the parse-tree ζ of the complex expression α. 
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either the x and y (or ρ and θ) coordinates of the point 
with reference to a presumed measuring frame. But the 
point itself is not the pair of real numbers, any more 
than an airplane is its balsa model.38 

I will moot just one suggestion, here, to be picked up 
later, about why this discussion might ultimately lead to 
a positive outcome. Note, to set the stage, that the prac-
tice of defining a class or abstract data type is often de-
scribed as being pragmatically beneficial—beneficial for 
purposes of program readability, maintenance, modu-
larity, type-checking, etc.—but nevertheless as being 
“semantically neutral.” The program would be the 
“same program”—or at least so it is commonly 
thought—if the abstraction were eliminated and the 
implementation details that it hides exposed. This is 
manifest in norms on compilation, which (unless the 
classes are exported) is usually free to dispense with the 
abstraction overhead and merely “implement” the be-
haviours of the methods and procedures directly in 
terms of the implementing structures. 

Given this context, suppose that a programmer de-
fines a class C in terms of a variety of “class-internal” 
methods and data structures c…cn. On the analysis 
suggested here, C itself, and c…cn, will have declarative 
meaning or semantic significance, in addition to what-
ever procedural effect they give rise to, when executed. It 
may be—likely will be, in fact, given the way these lan-
guages work—that the procedural consequence of C 
may be “implemented” by the procedural consequences 

 
 
38It will not do to argue that the point and the pair of real numbers can 
be “identified” because they are isomorphic domains, under certain cir-
cumstantially operative conditions. They remain different things. In the 
reflective case, if a system is not only to represent but to operate on, and 
perhaps to modify, some of what it represents, it must know the differ-
ence between two things that are isomorphic, lest it modify the wrong 
one. 
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of c…cn. However the declarative import of C may not 
be evident at all, from the declarative import of c…cn—
and, more importantly for the present discussion, as just 
argued in the case of class POINT, will very likely not 
merely be an assembly of the declarative imports of 
c…cn in any sense. 

Why does that matter? Because the norms that gov-
ern the behaviour of C (implemented by the behaviours 
of  c…cn) may be intelligible only with respect to the 
declarative semantics of C. Understanding the norms 
governing the behaviour of the class’s methods, that is, 
will always depend on understanding what the class is in-
tended to represent. Suppose class CIRCLE is defined with 
the following methods: 

SET-RADIUS(R)    ; SET RADIUS OF CIRCLE TO R 
SET-CENTER(X,Y)   ; SET CENTER OF CIRCLE TO <X,Y> 
RADIUS()     ; RETURN RADIUS OF CIRCLE 
X-CENTER()      ; RETURN X-COORDINATE OF CENTER OF CIRCLE 
Y-CENTER()     ; RETURN Y-COORDINATE OF CENTER OF CIRCLE 
ON-CIRCLE(X, Y)   ; TRUE IF <X,Y> LIES ON CIRCLE, ELSE FALSE 

It will presumably be a norm on the behaviour of ON-
CIRCLE (assuming SQRT “is” the positive square root 
function39) that: 

C.ON-CIRCLE(X, Y) will be TRUE just in case 
  C.RADIUS() == SQRT((X – C.X-CENTER())^2 + (Y – C.Y-CENTER())^2) 

The reason that this norm governs is because in-
stances of C represent circles. Only knowing that that 
is C’s declarative import makes that fact intelligible. 
(Ontologically: it is circles being C’s declarative import 
that makes the fact true.) 

That is: far from being a matter of mere convenience, 
defining classes and abstract data types may be 

 
 
39“Is” that function in the sense that it would be universally understood 
as computing it. In /Lisp terminology, SQRT would be understood as 
designating the positive square root function, and returning the numeral 
(fixed or real) that is a normal form designator of that square-root. 
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semantically critical to the issue (let alone to the determi-
nation of the issue) of whether a program is sound. We 
are a long way from having programming environments 
(IDEs) that check the soundness of our programs, but 
the possibility of working towards such a goal is the 
kind of consequence that ought to come out of an ade-
quate semantical analysis along the lines suggested here. 

It is unlikely that these six issues exhaust the challenges that 
need to be addressed before we can genuinely claim to have a 
grip on the semantics of computational procedures. But at least 
these six can stand witness to the character of the task ahead. 
They also stand witness to the astoundingly impressive tacit 
understanding that programmers bring to their work; navi-
gating all of the complexities cited in this chapter, and others 
besides, are part and parcel of the workaday life of any compu-
tational practitioner. And they remind us, finally, that our cur-
rent semantical frameworks occupy a very modest corner of the 
full semantical-cum-ontological territory of contemporary 
computational systems. 



  
 

 6 Logic 

What can we conclude from the analysis so far? At least this: 
what separated the /Lisp approach from standard construals 
of computation ran deeper than a simple divergence in under-
standings of the term program. That was just the tip of an ice-
berg. In an attempt to reach deeper, chapters  and  shifted the 
focus to semantics and associated models of computing. But 
these analyses also failed to lead to a satisfactory resolution. 
Though the investigation has yielded undeniable insights en 
route, it has also been dauntingly complex, verging more than 
once on the scholastic. 

Can we find a simpler approach, in terms of which the intri-
cacies revealed so far can be explained—maybe even predicted? 

Developing such a vantage point is the goal of chapters  and 
. The result is no panacea. It resolves none of the detailed tech-
nical issues. But it explains, in relatively simple terms, why we 
have ended up in the situation we are in, makes sense of the 
baroqueness of the first two diagnoses, and explains various ad-
ditional oddities encountered en route, including our emblem-
atic example of Lisp’s taking the value of both «3» and «(QUOTE 

3)» to be «3». It also reveals, in stark terms, the task that must 
be undertaken to develop a better alternative—a successor ac-
count of meaning and mechanism adequate to computational 
practice in general, including to the notion of reflection. 

As explained here, the fundamental issue bedeviling the 
analysis springs from an irreconcilable conflict between (i) the 
thoroughly mechanist (effective) conception of computing that 
pervades computer science, which has been a stalking horse in 
this discussion since the beginning, and (ii) the non-effective 
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semantical nature of symbols, meaning, interpretation, etc., 
that has permeated our understanding of intentional phenom-
ena for centuries, including the model of logic on which com-
puter science was founded. More specifically, computer science 
has given the effective mechanism dimension of computing 
pride of place, and sidelined the non-effective semantical or 
meaningful dimension: issues of representation, semantics, and 
intentionality more broadly. An adequate understanding of 
computing, I have argued since the beginning, must give these 
non-effective meaning dimensions as much attention as the di-
mension dealing with effective mechanism, and provide a 
framework for understanding how they are integrated in com-
putational systems. Instead of doing this, the field has swept all 
genuinely semantical issues under a blanket, projected the en-
tire subject matter onto pure mechanism, and distractingly re-
defined all semantical vocabulary to refer to mechanical entities, 
phenomena, and effective relations. 

To explain the situation, and put it in historical context, this 
chapter takes a step back and lays out the framing assumptions 
of logic, prior to and free from any computational considera-
tions. In some respects this will be familiar ground, but the 
analysis is unusual in five respects: 
. It pays greater than usual attention to the background 

intellectual and metaphysical assumptions on which our 
classical understanding of logic relies; 

. It resists premature tendencies to reduce logic to syntax 
or formal operations; 

. It postpones analysis of the mechanization of logic until 
the complete picture of logic is in place; 

. It eschews all notions of modeling (e.g., as in model the-
ory), in order to get at the underlying issues being mod-
eled; and 

. It is otherwise framed in very general terms—so that, to 
take just one example, the resulting framework applies 
just as well to clocks and other “meaningful mechanical 
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systems” as to the sorts of sentential systems we take as 
paradigmatically logical. 

One reason for reviewing the basics is because many computa-
tional perspectives on logic omit or gloss over what I take to be 
essential not only to but about the logical tradition. Evidence 
that something is awry can be seen in the clash in the two fields’ 
respective use of technical terms. As we have seen throughout, 
they have a tendency to use the same terms for different things: 
interpretation, reference, semantics, etc. But the terminological 
discrepancy is symptomatic of more profound conceptual di-
vergence. Disambiguating the terms reveals the extent of the 
difficulties; per se, it does not resolve them. That task remains 
for us to take on—or at least to take primitive steps towards—
in a later chapter. 

 1 Preliminaries 

Half a dozen preliminaries. 
. PROPERTIES. It is customary in the basic sciences, and 

often in the philosophy of science, to assume that every-
thing fundamental is causal—that the only “real” prop-
erties are causal properties: that those causal properties 
are what science is about; that causal properties are “in-
trinsic,” as opposed to others characterized as “extrinsic” 
or “relational”; that scientific explanations must be given 
in terms of causal properties; and so on. Being square, 
made of titanium, or having a density of o grams per 
cubic centimeter would on this account be considered 
real or intrinsic—“proper” to their subjects. Being more 
than  miles from the nearest bristlecone pine, having 
been owned by Elvis Presley, or resembling the Mona 
Lisa would be viewed as relational or extrinsic—and, for 
that reason, as outside the realm of scientific interest, at 
least as science is traditionally conceived. 

Cognitive science and the philosophy of mind, which 
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are not basic sciences, have extended their compass to deal 
with what are called functional properties. Functional 
properties are defined not in terms of the physical consti-
tution of the item that exemplifies them, in the ways that 
strictly causal properties are, but in terms of the way that 
the item functions, or the role it plays, in a larger system. 
“How something functions,” or “what role it plays,” in 
such characterizations, is nevertheless informally consid-
ered to be something like “how it functions causally,” or 
“what causal role it plays.” For this reason, instances of 
functional properties (i.e., the functional property exem-
plified by a particular concrete individual—sometimes 
called “property instances” or “tropes”) are assumed to be 
causal. In one system the functional property of opening a 
door might be played by pressing a lever; in another, by 
releasing a spring. The fact that each instance of a func-
tional property is causal does not legitimate characterizing 
the overall property causally, however. The fact that func-
tional properties support multiple realization blocks any 
specific causal power from being part of the property’s 
identity conditions. This is one reason why I have used 
the term ‘effective’ to characterize such properties; an ef-
fective property is one that on each occasion is instanti-
ated by a causally effective property. 

These considerations might suggest, if we are aiming 
for an intellectual account of computation, that it would 
suffice to restrict our discussion to effective properties. 
While this is a mandate that computer science has 
adopted, in my own view nothing could be further from the 
mark. To impose such a restriction, especially in advance, 
is to abrogate the entire discussion of what computation 
is. At issue in this chapter are issues of semantics, logical 
interpretation, meaning, reference, intentionality, and so 
forth. And as I have emphasized since the outset, and as I 
will repeatedly stress here, many of these phenomena es-
sentially involve properties and relations that are not ef-
fective—not causal even in particular cases, and thus not 
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functionally effective in the current sense. One of my pri-
mary intellectual goals, in fact, is to identify which prop-
erties (and property instances) in both logical and compu-
ting systems must be functionally effective, and which 
ones not. Doing so requires approaching the subject with 
a methodologically open mind. 

In what follows, therefore, I use ‘property’ broadly, to 
include not only intrinsic, causal, and effective properties, 
but also those that would classically be deemed relational 
and/or extrinsic, and other sorts. Similarly for such affili-
ated terms as state. It follows that every object, by my ac-
count, at every metaphysical instant, exemplifies an un-
bounded number of properties, and is in an unbounded 
number of states—many of which are constantly chang-
ing (such as whether, at any given instant, the object in 
question is, or is not, or most closely approximates being, 
an even number of centimeters from the apex of the 
Washington Monument). So be it. My concern is to iden-
tify which vanishingly small subset of this unmanageable 
profusion matter to its status as a logical or computational 
system—which of them, to put it etymologically, are 
“proper to” their exemplification of being logical or com-
putational, or at least of being parts of systems of those 
types. 

. EFFECTIVENESS: It does not follow from the foregoing 
that issues of causal efficacy will not be of central im-
portance here. I have used the term effective to label 
those properties that, when exemplified (i.e., in their 
property instances), are capable of causing an at least 
potentially observable or consequential physical reac-
tion or change in something else (that is: of causing a 
correspondingly effective reaction in something else). I 
mean, in characterizing it this way, to get at the sense in 
which theoretical computer science is considered to be 
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a theory of effective computability.1 
Some may protest that the term ‘effective’ is used in 

computer science to refer to entirely abstract properties of 
mathematical functions, unconstrained by considerations 
of physical causality. As made evident in chapter , I disa-
gree with this claim, but in any case will presently set aside 
ascribing computational properties to purely abstract 
structures altogether, so the objection is moot at least in 
the present context.  

. MECHANISM: Again as has been suggested since the In-
troduction, I am using the term mechanism broadly, to 
include any causally-connected nexus or closure bound 
together by a network of effective properties, and func-
tioning as a unit (again, in some appropriate sense of 
‘unit’). 

There are some, especially in biology and cognitive sci-
ence, who opt to use the term ‘mechanism’ more narrowly, 
to include only those systems or devices whose overall op-
eration can be understood via something like the sum of 
the operations and functions of their parts, in the manner 
in which they imagine that traditional mechanisms such 
as clockworks and engines are understood by their design-
ers. Their aim is to contrast mechanisms so conceived 
with complex systems exhibiting (so-called) emergent be-
haviour, with some supporters of this distinction believing 
that the properties of the parts of such “non-mechanical” 

 
 
1There are those who believe that computability and complexity results, 
which implicate the notion of effectiveness, can be formulated com-
pletely abstractly, as a branch of mathematics. This is not the place to 
address this issue (though see point , below), but for the record I do 
not believe such claims—and it is my sense that, although this was once 
a widely-held view, it receives little endorsement today, especially among 
young computer scientists. As is increasingly recognized, constraints of 
physical causality permeate the foundational assumptions that under-
write the mathematical assumptions of computation and computability 
theory. 
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(in their view) systems require an inverted form of expla-
nation, with the parts derivatively understood in terms of 
the function of the whole (using such notions as “down-
wards causation”). Systems with emergent behavior, on 
such a view, are dubbed “non-mechanical.” 

I make no such distinction here. For one thing, I be-
lieve the considerations motivating views on emergence 
are largely epistemic, whereas my present concern is with 
the ontological conditions on logic and computing. Sec-
ond, as an engineer, I am suspicious of the idea that tradi-
tional mechanisms can be understood solely in terms of 
the workings of the parts, treated as isolated individual 
(physical) units. Even ontologically, the type identity of 
parts of traditional mechanisms (e.g., being a power sup-
ply) is surely at least functional, rather than purely causal, 
depending on systemic properties of the system into 
which it fits. And it is not traditional to call such func-
tional properties emergent. But be all this as it may, it will 
not help the present project to separate out emergent 
properties or complex systems, or to restrict the use of the 
term ‘mechanism’ to a subset of those systems that work 
in virtue of the total causal interaction of their ingredients 
taken as an ensemble. 

In what follows, therefore, I include, within the cate-
gory of  mechanisms, non-linear and complex systems 
with what is called emergent behavior—including many 
contemporary machine learning networks. 

I will admit one further fact about effective (and me-
chanical) properties, and about mechanisms themselves: 
that they apply to entities that we would informally say 
have “functions”—have a telos, are for a purpose (though 
that purpose may well, like intentional interpretation-L, 
arise from external attribution or context). If I say that, on 
a walk, I found an old mechanism in the woods, it is rea-
sonable for you to ask me “What is it for?”, “What do you 
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suppose it was intended to do?”, etc. While this notion of 
function is relevant to the idea of functional properties, it 
is not the construal of (proper) function popularized in 
theoretical biology, derived from its role in evolutionary 
fitness or survival. Beyond that I will not say, as the notion 
of function will not play a central role in the analyses to be 
developed here. 

. OSTENSION: Systems of formal logic, and not a small 
number of computational ones, are often introduced by 
example, or at least via schematic template—i.e., by os-
tension—in such a way that various aspects of critical 
importance for our purposes are exhibited without 
comment or analysis (shown, as it is put, not said). 

It is common for an introduction to a logic, for exam-
ple, to present it as consisting of a set of syntactic expres-
sions formed from variables xi, x, …, predicates P, P, …, 
relation symbols R, R, …, atomic sentences Pi(x), Rj(x, 
x, … xk), etc., plus various complex forms recursively de-
fined in terms of them, some assembled using logical op-
erators ‘Ù’, ‘∨’, ‘¬’, and ‘⊃’, and so on. But as discussed be-
low, little if any attention is paid, in such ostensive defini-
tions, to the question of what constraints govern the no-
tion being syntactic—i.e., to what sorts of things would be 
legitimate, within such an enumeration. These and simi-
lar questions will come up for discussion below. As much 
as possible, therefore, in this discussion I will avoid reli-
ance on ostensive definitions. 

. MATHEMATICS: In part because of the support of mul-
tiple realizability that underlies talk of functional rather 
than causal properties, effective properties (in logical 
and computing systems) are typically not identified in 
terms of units (kilograms, seconds, etc.), in the way that 
is standard in the physical sciences. When logical and 
computational (and perhaps mathematical2) subject 

 
 
2I would considered mathematics itself to be mathematized when 
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matters are mathematized, therefore, numbers and 
other mathematical structures are used simpliciter; 
viewed as dimensionless, not ratios to standard metrics. 

Whether for this or other reason, as has already been 
pointed out, logical and computing systems are frequently 
not only mathematically modeled, which I believe is what 
underlies this practice, but theorized as if they themselves 
were mathematical structures. In our case there are two 
problems with this practice. The first was identified in the 
Introduction: confusing/conflating the concrete and the 
abstract obscures the critical role played by issues of effec-
tiveness in computing—a notion foundational to the 
whole subject matter. A second problem is one that often 
plagues ostensive definitions: implicit norms satisfied by 
the provided exemplars can play a crucial but unacknowl-
edged role in the ensuing theory. A salient example in the 
case at hand—definitions of Turing machines—is reli-
ance on “reasonable encodings,” obscuring the centrality 
of considerations of efficacy and physical realization.3 

In what follows, therefore, in order to make these fun-
damental constraints maximally visible, I will eschew 
mathematical models entirely (for syntax, semantics, and 
interpretation in logic, and in all discussions of computa-
tional systems). 

. The final preliminary has to do with time—specifically, 
with the fact that whereas computation is fundamen-
tally concerned with process, the same is not true of 

 
 
mathematical entities are defined in terms of models—e.g., when the 
number two is defined as “the set of all sets that have two members.” But 
nothing hangs on this here; one might take mathematics to be inherently 
mathematized by its very nature—or to be dimensionless per se,  or 
something else. 
3See “Solving the Halting Problem, and Other Skullduggery in the 
Foundations of Computing” (Smith, ). 
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logic, especially as classically conceived. In spite of that 
issue’s great overall importance, and indeed centrality to 
computing, however, temporality will not impinge on 
the analysis to be given here, given the level of abstrac-
tion at which the issues will be considered. 

 2 Overview 
Turn then to the nature of logic—in particular, to what is 
known as “formal” logic, as it has been framed over approxi-
mately the last  years. 

At the simplest level, logic is concerned with meaningful ex-
pressions in a language, and with relations between and among 
them. The expressions are assumed to be about something—to 
have a what is called a semantic interpretation, in the logical (not 
computational) sense of that term. As already noted, I label this 
sense interpretation-L, to distinguish it from the computa-
tional sense of interpretation, as for example in claims that Java 
is an interpreted language, which I label interpretation-C.  

A diagram of the simplest possible such expression is given 
in figure . A single expression σ is taken to be “about” some 
entity or state of affairs or world τ. But logic does not just study 
individual expressions—even complex ones. Rather, it has to 
do with relations among expressions—in particular, with rela-
tions between one or more expressions σ, σ, … σk, sometimes 

called the premises to an inference, and 
another, σ′, sometimes called the con-
clusion, that—still speaking 

 
Figure  — Symbol interpretation-L 

 
Figure  — Logical inference-L  
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informally—follows from σ, σ, … σk. A more useful diagram, 
therefore, is given in figure . S is the realm of expressions; D, 
the world of entities or situations the expressions are about (i.e., 
the realm of semantic-L values); and I, the interpretation-L re-
lation between the expressions and their semantic values, the 
elements in the semantic domain that they are about. Every-
thing having to do with the semantic interpretations-L—the 
relations I, and the entities in realm D, are informally (and of-
ten not very systematically) referred to under the label “seman-
tics.” 

All sorts of complexities are typically defined, allowing the 
construction of complex expressions from simple ones, distin-
guishing notions of meaning from interpretation-L, etc. (e.g., in 
Frege’s famous example, in order to say that “the morning star” 
and “the evening star” differ in meaning—or, as it is said, in 
sense—even though they coincide on their interpretation-L, 
what in this case might be called their denotation-L). Neverthe-
less, the fundamental structure of figure  underwrites all more 
elaborate versions. Moreover, this simple version will be suffi-
cient in terms of which to develop the vantage point under dis-
cussion here, to compare logic and computing. 

At least in formal logic, the realm of expressions S is taken 
to be syntactically individuated. As noted above, what ‘syntactic’ 
means is not usually explained (a convenience of ostensive in-
troduction). Intuitively, expressions are thought to be the sort 
of thing we can write down—to be immediately accessible to 
perception, to “wear their syntactic properties on their sleeve.” 
Three criteria are essential to that idea. First, the syntactic 
properties of an expression are assumed to be definable without 
reference to their semantic interpretation-L—that is, are as-
sumed to be formal, on one understanding of that vexed term. 
Second, the claim that syntactic properties are individuating 
means that if α and β are syntactically indistinguishable, then 
they are assumed to be identical (to be the same expression) for 
all other logical purposes as well. Third—an issue that will 
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come to the fore when we talk about the mechanization of logic 
and computing—the syntactic properties of an expression are 
assumed to be properties of the sort to which a machine or au-
tomatic procedure can differentially respond. If α and β differ 
syntactically (implying that α ≠ β, by the second criterion ),	
then it is assumed that it must be possible, at least in principle, 
to construct a machine that can turn on a light switch in re-
sponse to a concrete realization of α and turn it off in response 
to a concrete realization of β. Similarly, assuming again that α 
and β differ syntactically, it is assumed that a machine could 
produce concrete tokens of some other syntactically distinct ex-
pressions α′ and β′ in response to concrete tokens of α and β, 
respectively, in such a way that a machine or automatic proce-
dure could similarly respond differentially to tokens of α′ and 
β′. That is, to employ the vocabulary of this book, in machinic 
contexts syntactic properties are assumed to be effective. 

The fundamental challenge that logic addresses can now be 
characterized—again a challenge not usually formulated as 
such, but fundamental to the entire logical project. Logic is in-
terested in what sentences or expressions “follow from” others. 
There are two ways in which this question can be addressed. 
Intuitively, whether a statement follows from another one is a 
matter of meaning and semantics—of what they are about, 
about what they mean, about the world or those situations that 
the statements point to. If I say that Alex is currently in 
Tromsø, then whether it follows that it is currently raining 
where Alex is, or that Alex is now north of the Arctic circle, 
depends on	facts about a place a fair ways from where this is 
being written. If I claim that Bobbie is taller than Caitlin, on the 
other hand, then, independent of the truth of my claim, 
whether it would follow, if what I said were true, that Caitlin 
would then be shorter than Bobbie, depends not on facts about 
Bobbie or Caitlin, but about the notions (meanings) of tall and 
short. If, in contrast to both of these cases, I say that Alex be-
lieves that Bobbie is taller than Caitlin, then whether it follows 
that Alex believes that Caitlin is shorter than Bobbie depends, 
not on facts about Bobbie’s and Caitlin’s heights, but on facts 
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about Alex’s mind. 
The problem, for inference, is that we typically do not have 

direct access to all of the facts pertinent to whether one state-
ment follows from another. The world—the total situation—
is not directly inspectable. How then do we know anything? 
How can we figure anything out? For those facts or states of 
affairs that are effectively manifested in situations we have 
causal (effective) access to, we can often learn from perception 
and direct encounter. But it is fundamental to thinking that we 
can also reason—derive knowledge, or at least come to conclu-
sions, from beliefs we already have, from things we have learned 
from others, by reading, etc. And—the crucial point, or anyway 
so it is assumed in logic—in such situations we can learn things 
because they follow from other things we know or have learned 
merely (or so anyway it is supposed in formal logic) from their 
syntactic structure or “shape.” 

If transitive relation R (such as being taller than) holds be-
tween x and y, and between y and z—that is, if R(x, y) and 
R(y, z)—and if the transitivity of R is also explicitly represented, 
such as by the expression ∀x, y, z [[R(x, y) Ù R(y, z)] ⊃ R(x, z)], 
then it not only follows that R holds of x and z, but that fact 
(that R(x, z)), can be determined without needing access to x, y, 
and z (without needing effective access, that is, to the entities 
that the terms «x», «y», and «z» denote), or to the meaning of 
R. The sentence R(x, z) can be concluded merely from the syn-
tactic structures of the expressions R(x, y), R(x, y), and the fore-
going statement of the transitivity relation. And as I have just 
emphasized, syntactic structure, to be syntactic structure, must 
be immediately and directly accessible—must be effective. 

Consider the canonical case. If, in the world, all men are 
mortal, and if Socrates is a man, then Socrates must be mortal. 
This holds independent of anyone’s representing it, knowing it, 
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or figuring it out.4 Socrates’ being mortal is a blunt ontological 
consequence of how the world is laid out. If, however, in addi-
tion to these ontological facts, we know that all men are mortal, 
or at least write it down, and we know or write down that Soc-
rates is a man, then we can figure out that Socrates must be mor-
tal, merely by examining the syntactic structure of the senten-
tial representations of those two facts. 

It follows, as depicted in figure , that there are two separate 
relations between the premises (σ, σ, … σk) and the conclu-
sion (σ′). One, called formal derivation or formal inference, 
symbolized as «⊢», as in «σ, σ … σk ⊢	σ′», and contained 
wholly within the upper half of fig. , corresponds to what can 
be determined to follow from the premises purely in virtue of 
their syntactic properties5—those properties in virtue of which 
they are the elements of the syntactic domain S. The other, 
called entailment, and symbolized as ‘⊨’ (i.e., «σ, σ … σk ⊨	
σ′»), corresponds to what follows, in the world or semantic do-
main, from the semantic interpretation-L of the premises—
that is, to do with what must be the case, in semantic realm D, 
given the semantic interpretations-L τ, τ, … τk of σ, σ, … 
σk. Or to put it more precisely, entailment corresponds to what 
follows, in the world, from other situations in the world—
namely, from the semantic interpretations-L of the premises, as 
represented in the language of S. In terms of figure , entail-
ment, like derivation, is a relation between items (sentences) in 
the upper half of the diagram, but, crucially, whereas derivation 
stays within the upper half, entailment reaches through the 
lower half. 

In sum, to continue with this exercise of stating the obvious, 

 
 
4This is not the place to consider constructivism, whether the property 
of being a man, or mortal, exists independently of anyone “registering” 
the world in such terms, as I would put it. What matters is that the moral 
towards which this chapter is driving holds just as crucially and reso-
lutely under such metaphysical views as they do in the naïve realism view 
being assumed here. 
5These are sometimes called their formal properties. 



242 Computational Reflections 

 
 
 
 
 

242 

derivation has to do with what can be figured out, syntactically, 
from the premises; entailment, with what follows from them, 
semantically—i.e., what must be the case in the world, given 
their interpretations-L (or rather, again, more precisely, how 
one represents, in the language being used, what must be the 
case in the world, given the interpretations-L of the premises). 
The overall system is considered formal just in case the syntactic 
properties are independent of the semantic properties (inde-
pendent of the interpretation-L) of any of the expressions in-
volved.6 

Nothing guarantees that derivation (⊢) and entailment (⊨) 
will align. On the contrary, as discussed more below, it is a nor-
mative condition on the design of a logic that it be formulated 
or set up in such a way so that they align as much as possible. The 
fact that it is possible to set a system up, at least in limited con-
texts, in such a way that this correlation holds, at least approx-
imately, is at heart the fundamental insight of the logical tradi-
tion. Derivation is what is formally possible—something that 
an automatic effective procedure can do (or at least check). The 
derivation will be correct, however, only if what can be derived 
is also entailed. This is where the two norms considered earlier 
(§.v), and so aptly summarized by John Etchemendy, come 
into play. A system is said to be sound just in case what can be 
derived is entailed. The rough idea is that, if something can be 
derived that is not entailed, then the system is unsound, and re-
sults of the inference procedure can no longer be trusted—the 
system has made a mistake. A system is said to be complete 
just in case everything that is entailed can be derived—a goal 
achievable in only the very simplest systems. 

 
 
6 Or, given σ, σ, and σ′, one can check that σ′ is in fact derivable from 
σ and σ. 
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 3 Framework 
To facilitate later comparisons, and at the risk of stating what 
is obvious even more pedantically, this basic sketch of logic can 
be summarized in a scheme. I will say that a system of (formal) 
logic consists of six ingredients: two domains, one function, two 
relations, and a norm. 
. DOMAINS 

a. A syntactic domain S,7 consisting of a set of ex-
pressions or formulae σi, typically written or con-
structed in a formal, recursively-specified, composi-
tional language, where formal, as well as meaning 
precise, unambiguous, determinate, and a number of 
other things, is taken to imply that the syntactic 
properties of the expressions are defined without re-
gards to their semantic interpretation-L (I, below); 
and 

b. A semantic domain D, whose structure is subject 
to no a priori constraints whatsoever, though for the 
logic to be interesting D will usually have a structure 
relevant to the interpretation-L of the expressions in 
S. One common strategy is to take D to be a set of 
possible worlds, of which one—the so-called “stand-
ard interpretation-L”—is assumed to be the real (ac-
tual) world, and where worlds in general are taken 
to comprise objects, properties, and relations, plus 
facts and/or propositions, possibly states of affairs 
(objects exemplifying properties and standing in re-
lations), etc.—i.e., to exemplify a configuration of 
what in Promise I called formal ontology. 

. FUNCTION: An interpretation-L function I, mapping 
elements of S onto elements of D—i.e., onto their se-
mantic values or “interpretations-L.” (The expression 

 
 
7 The names S, D, and I in this exposition are my own, as is the use of σ 
(σ1, σ2, σi, etc.); the symbols ‘⊢’ and ‘⊨’ are standard. 
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«I(x)» is commonly written «⟦x⟧».) Different kinds of 
expression (subtypes of S) are typically mapped onto 
different kinds of semantic interpretation-L (in D), 
with terms being mapped onto objects (often called the 
term’s denotation or referent);8 predicates onto properties; 
and n-place relation symbols onto n-place relations. If σ is 
a sentence, then its interpretation-L I(σ) (or ⟦σ⟧) is usu-
ally taken to be either truth or falsity, the set of possible 
worlds in which that sentence is true, or sometimes the 
situation in the world which makes the claim true.9 

Thus in our example, the expressions «MAN», «SOCRATES», and 
«MORTAL» would be stipulated to be elements of the syntactic 
domain S; and Socrates, the fifth-century BCE philosopher, 
plus the properties of being a man and being mortal (perhaps 
along with other people, facts about who exists, who is a man, 
who is mortal, etc.), to be elements of the semantic domain D.10 
The interpretation-L function I would be set up so that the in-
terpretation-L of «MAN» was the in-the-world property in D of 
being a man, «MORTAL», the property of being mortal, and 

 
 
8Chomsky once suggested that the linguistic category ‘noun’ was used for 
elements of natural language that were used to refer to objects—suggest-
ing, that is, that in natural language the syntactic category noun derived 
its identity from its elements’ semantic values. That would be illegal in 
formal logic; the identity conditions of any subcategory of expressions 
must themselves be syntactic. 
9This is far too simple; see discussion point  below. 
10In general, for any syntactic domain, there will be rules of composition, 
formulated via a recursive grammar over elements of S in virtue of their 
exemplification of syntactic properties, , specifying classes of complex ex-
pressions (and thus also elements of S) that may be formed from simpler 
ones. If our example was of a quantificational logic, the rules of compo-
sition would likely license (among other things) these three complex ex-
pressions, all classified as sentences: ‘MAN(SOCRATES)’, ‘∀X[MAN(x) ⊃ MOR-
TAL(x)]’, and ‘MORTAL(SOCRATES).’ 
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«SOCRATES», the once-living and breathing philosopher. The 
premises (σ and σ) and conclusion (σ′) in the classic inference 
would be sentences—symbolized, in quantificational logic, as 
«∀(x)[MAN(x) ⊃ MORTAL(x)]», «MAN(SOCRATES)», and «MORTAL(SOC-

RATES)».) 
. RELATIONS 

a. A derivability relation, ⊢, instances of which hold 
between one or more expressions σ, σ … σj of S 
and another element σ′ of S. 

c. An entailment relation, ⊨, instances of which, like 
⊢, hold of one or more expressions σ, σ … σk of S 
and another element σ′ of S, just in case, in the se-
mantic domain D, the interpretation-L I(σ′) is a se-
mantic consequence of the interpretations-L I(σ), 
I(σ) … I(σk). 

A standard notion of semantic consequence is that I(σ′) be true 
in every possible world in which the interpretationsL I(σ), 
I(σ) … I(σk) are all true. 

Derivability and entailment are typically defined over those 
elements of S that are sentences11—not over particular sen-
tences, but over sentence types:  that is, sentential composites in 
virtue of the exemplification of syntactic types of their constit-
uents (with those types assumed to be intrinsic).12  While 

 
 
11It is not an absolute requirement that derivation and entailment be de-
fined over sentences. For example, they could be defined over states of 
affairs (objects exemplifying properties and standing in relations, as for 
example denoted by such gerundial phrases as “my windbreaker’s being 
torn”), in which case what it is entailed might be taken to be other situa-
tions that must be the case, if the “premise” state of affairs obtains, and 
what can be derived to be what can be figured out to be the case, from 
(the syntactic representation of) the premise. 
12If the sentence «FEMALE(US-PRESIDENT(2032))» were my favourite sentence 
in some syntactic domain S, the interpretation-L function I, derivabil-
ity relation «⊢», and entailment relation «⊨» might all apply to it, but 
none can do so in virtue of that sentence’s being my favourite. 
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theoretically any old syntactic relation over sentences could be 
called derivation, logic systems are set up (because of the ubiq-
uity of governing norms) so that derivation corresponds to 
what, informally, can be “inferred” from them.13 
. NORM: A norm—or rather an interrelated system of 

norms—placing conditions on how the whole system is 
tied  together. 

Logic is a fundamentally normative enterprise in at least two 
senses. 

First, a variety of overarching background norms govern the 
whole project. Logic is intended to be a model of thought, or of 
the rational ideal to which thought should be held accountable, 
or at least of the truth relations between and among sentences. 
The aim of logic, that is, is to focus on sentences that are true—
to focus on truth—and to elucidate how true conclusions relate 
to true premises. It is in order to deal appropriately with truth, 
and with truth relations among sentences, that logic is 

 
 
13From «P(x) Ù Q(y),» for example, understood to symbolize the conjunc-
tion of I(P(x)) and I(Q(y)), the derivation rules will typically license the der-
ivation of either of the conjuncts, «P(x)» or «Q(y)», on its own (a derivation 
rule called “and elimination”). They would similarly allow, from 
«∀x[MORTAL(x)]», the derivation of any instance without the quantifier 
(«∀…») in which the variable («x» or «y») is replaced by a name, such as 
«MORTAL(SOCRATES)». And if «σ ∧ σ ⊢ σ» is an expression, for sen-
tences σ,	σ, and σ, it will generally be the case that that σ can be for-
mally derived from σ and σ. 

Technically, once a given system of logic is established, then what can 
be inferred, syntactically, from a sentence, is typically defined to be what-
ever «⊢» maps it onto. My point here is that an intuitive notion of what 
can be inferred, presumably based on an intuitive sense of what the sen-
tences mean or designate (i.e., with reference to an intuitive sense of their 
interpretation) guides the way the syntax is defined, so that formal in-
ference can, as much as possible, mirror not only entailment but also that 
prior intuitive sense. 
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fashioned in the way it is. 
Logical inference is concerned with valid or worthy reason-

ing, with deriving true (not false) conclusions from true prem-
ises.14 More generally, the discipline of logic represents an at-
tempt to formalize good reasoning, or at least to articulate the 
conditions on truth relations among sentences that good rea-
soning should honour—reasoning we can trust, reasoning on 
which our understanding of the world can rely. A system of 
symbol manipulation in which sentences were not mapped 
onto anything resembling truth, or at least onto some norma-
tively interpreted value or otherwise assigned some degree of 
worth—or even in which symbols were mapped onto “the true” 
and “the false” but in a haphazard way, of no consequence or 
relation to how the inference procedure worked—would have 
no claim to being a logic at all. 

The normative dependence on truth, taken as a semantic 
notion, arises from a more general normative stance with re-
spect to semantics that underlies all of logic. As I put it in Prom-
ise, and have said here earlier, it is a constitutive condition on 
anything warranting the name ‘semantics’ that the relation be-
tween sign, symbols, and other interpretedL entities and the en-
tities, states of affairs, etc., towards which they are semantically 
oriented, be deferential. The world holds the cards, as regards 
what matters. It sets the standard on sentences and expres-
sions; it establishes the conditions that hold on inference and 
reasoning. When words and world part company, the world 
wins; we must adjust our words to match. Yes, we can make 
things happen, through action; we can stipulate, for purposes 
of exegesis and hypothesis; we can order and promise and oth-
erwise “do things with words.”15 All these things will come to 
the fore when we turn to computing. But everything that is 
done is done in a world that transcends the doer and the 

 
 
14Deriving false sentences—or at least responses without caring about 
whether they are true or false—is generally trivial. 
15Austin (). 
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doing.16 
When logic, representation, and intentionality are in play, 

what it is to do anything, what can be done, what consequences 
arise from their being done, all arise not purely in the syntactic 
realm, but in the semantic domains towards which our words 
point, towards which the users of the words are oriented. It is 
thus not possible to understand what matters about logic ex-
cept in terms of this overarching deferential stance. One does 
not understand logic, that is, if all that one thinks about is syn-
tax and mechanism (proof theory). Even if one imagines that 
one is thinking only about syntax and mechanism, matters of 
semantic interpretation-L undergird that thinking, if it makes 
any sense whatsoever. 

Logic is a normative endeavour in a second sense. In addition 
to the background deferential norm on sentences, inference is 
mandated to meet a foreground normative criterion that (i) de-
rives from the (deferential) semantics, and (ii) applies to the 
formal or syntactic operations. In the sentential case, it is most 
easily stated as that truths should lead to truths; more gener-
ally, it is that the outputs of the formal derivation should se-
mantically follow from the inputs. In the sentential case, in par-
ticular, in any situation in which the inputs σi are true (i.e., 
I(σi) = true, as it is sometimes put, or ⟦σi⟧= true), then the out-
put σ′ should be true as well (I(σ′) = true, ⟦σ′⟧= true). Or 
slightly more generally, as it is normally stated: an output σ′ 
should be derivable from inputs σi just in case in all situations 

 
 
16It may be argued that in performative cases, as for example in the mat-
rimonial “I do,” that the state of the world defers to the action under-
taken, rather than the other way around. But even in such cases, the over-
all nature of the situation remains deferential; who it is that has prom-
ised, for example, and to whom the promise has been made, have their 
identity in the world in which, and towards which, the performative ac-
tion is taken. 
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(worlds) when the inputs σi are true, the output σ′ is true.17 
That is, the aim of developing a logic system is to define the 

system and its inference rules so that what is derivable is en-
tailed—i.e., such that what can be formally produced semanti-
cally follows from the inputs (technically: where σi ⊨ σ′ obtains 
in every case where σi ⊢ σ′). It is when this criterion is met—
when what is derivable is entailed—that, as stated above, the 
system is said to be sound. A logical system is worthwhile only 
if it is sound. Unsound systems, in the context of logic, are to 
be discarded. 

These normative criteria, foreground and background, arise 
from the most important fact about intentional (semantic-L or 
interpreted-L) systems: they are oriented to the world. To use 
Brentano’s metaphor,18 intentional systems point to the world, 
manifesting an “arrow of directedness.” That is not to say that 
the logical system, per se, says or places restrictions on the ex-
pressions’ semantic values or interpretations-L. In a way that 
will matter when we come to talk about computing, that role is 
supplied, in the case of logic, by the interpretation function—a 
function that a computer scientist might call a “user-supplied 
parameter.” What matters about logic, about semantical sys-
tems in general, and about computing, derives not, or anyway 
not solely, from the local, causal, behavioural, effective conse-
quences of the system, but from the wider context: from the 
extent to which those local, causal, observable behaviours hon-
our the state or configuration of the world towards which they 
are semantically directed. 

Overall, as I have been putting it, although all logical, seman-
tical, and computational systems must “work,” syntactically or 
causally, in virtue of material or effective properties, they are 
normatively governed by facts deriving from their semantic 

 
 
17MORTAL(SOCRATES) is considered to be entailed by the premises 
‘∀(X)[MAN(X) ⊃ MORTAL(X)]’ and ‘MAN(SOCRATES)’ because in all worlds in 
which Socrates is a man and all men are mortal, Socrates will be mortal. 
18Or at least Brentano as interpreted by Chisholm (, p. ). Also 
see McAllister (, pp. –) and Dupuy (, p. ). 
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interpretation-L.19 

A couple of quick points of discussion. 
. In any realistic system, the logical structure would be far 

more complex than suggested above. The interpreta-
tion-L relation I, for example, is usually taken to be at 
least two-stage, with a first stage mapping expressions 
onto something like their intension, meaning, or sense; 
and a second stage mapping that first-stage value onto 
the expressions’ extensions, referents, or denotations. It is 
the latter that I have, rather informally, gathered under 
the term ‘interpretations-L.’ This double-stage strategy 
allows logics to deal with belief and other so-called 
“non-transparent” contexts, in which the meaning, but 
not the interpretation-L, is relevant to the truth of an 
enclosing sentence—such as “Robin did not believe that 
 is the square root of ,” even though the interpre-
tation-L of “,” the number seventeen, is identical to 
the interpretation-L of “the square root of .” 

Some of these complexities will come to the fore later, 
especially in chapter 6; but we need not be concerned with 
them here. 

. The word ‘formal’ is sometimes used in place of ‘syntac-
tic’—for example, to refer to the formal properties of ex-
pressions—but I believe this is a conceptual mistake. 
‘Formal’ can be coherently understood as a predicate on 
any element of a logical framework only with reference 
to the whole structure—including both the syntactic 
and semantic aspects. To say that inference is formal 
may imply that derivation is defined in terms of the syn-
tactic properties of the premises and conclusion, but 
that only makes sense against a background assumption 

 
 
19Cf. The Promise of Artificial Intelligence (), p. , footnote . 
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of semantic interpretation-L. Transforming one set of 
expressions to another without any implicit reference to 
a background semantical interpretation-L has no claim 
on being logical inference. As I put it in §.v, such a re-
gime would be better called stuff manipulation. 

. I have focused on the requirements on a logic for it to be 
called formal not only because it is typically assumed, 
nowadays, that if one is talking about logic one is talking 
about formal logic, but also because it is universally as-
sumed that anything logic-like or inferential done by a 
computer must perforce be formal, and because it was 
systems of formal logic that gave rise to computation as 
we have come to understand it. I disagree that compu-
tation must be formal in this sense, but the chief insight 
I want to unearth here from the logical tradition is easi-
est to appreciate in the formal case, so in this chapter I 
assume, throughout, that we are talking about a formal 
logical system. 

 4 Effectiveness 

I assumed, in the development of /Lisp, that the overall na-
ture of logic, as roughly sketched above, and independent of the 
details of any particular logical system, could be assumed as part 
of the background intellectual context within which computer 
science operated. The papers describing the Lisp model of re-
flection assumed it needed neither introduction nor explana-
tion. It soon became evident, however, that was an illegitimate 
assumption, especially in computer science. 

Part of the problem stems from overlapping terminology 
that I have talked about since the beginning (different concep-
tions of program, for example, and distinctions between inter-
pretation-C and interpretation-L). As noted, though, the mis-
communication had a deeper foundation. To bring it into the 
open, it helps to address the following question: 

 EFFECTIVENESS: Which of the five elements of a logic—
the syntactic and semantic domains (S and D), the 
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interpretation-L function (I), and the derivability and en-
tailment relations (⊢ and ⊨)—are assumed, each in its 
appropriate way, to be subject to a criterion of effective-
ness, in the sense of ‘effective’ that underpins the notion 
of effective computability, as discussed in §.v? 

Formulating this question precisely takes some technical work, 
but the issue can be put into plain English. Which of the fol-
lowing operations are mandated, in logic, to be effective or me-
chanical—i.e., to be capable of engendering causal (electronic, 
mechanical, etc.) consequences? 

P1 [SYNTAX] Responding to expressions in virtue of their 
syntactic properties (S); 

P2 [SEMANTICS] Responding to expressions in virtue of 
their semantic properties (D); 

P3 [INTERPRETATION-L] Mapping expressions onto 
their semantic values or interpretationsL (I); 

P4 [DERIVATION] Mapping expressions onto other ex-
pressions formally derivable from them (⊢); and 

P5 [ENTAILMENT] Mapping expressions onto other ex-
pressions that they entail (⊨). 

To address these questions, we need to move from pure logic 
conceived as a mathematical or abstract structure (in which the 
above relations simply hold; there is no “active process of map-
ping”) to something closer to a “logical machine.” That is, we 
need to address the mechanization of logic. 

As suggested earlier, the project of mechanizing logic was 
not strictly speaking part of the formalization efforts per se, in-
itiated in the mid to late th century (by Boole, Peirce, and 
Frege, among others), and more fully developed in the first half 
of the th (by Russell and Whitehead, Hilbert, and others). It 
is difficult, today, to appreciate how stunning it was, in those 
decades, to see that something like reason or rational inference 
could be exhibited in a “mere machine.” It hardly needs to be 
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said that the development of such mechanisms, among which 
Turing’s / paper must be counted, had enormous impli-
cations not only within logic and the philosophy of mathemat-
ics but for general philosophy and intellectual history more 
generally. The entire development of computing can be seen as 
part of this history. 

Crucially, however—a point that in some sense it is the 
overall brief of this chapter to demonstrate—what the mecha-
nization of logic meant, historically, and how computing is cur-
rently understood, part company. The five questions listed 
above allow us to get at that divergence. On the logic side, I will 
address them from the point of view of a logical inference ma-
chine or theorem prover, designed in accord with the five-part 
framework. 

From a default realist position, I take it that in the logical case 
the answers would be taken to be unambiguous: 

P1 Syntax must be effective, in the sense that the syntactic 
properties exemplified by expressions in S must be ef-
fective properties. That is: for any expression x in S, it 
must be effectively determinable whether or not x ex-
emplifies any particular syntactic property Sj—it must 
be possible, that is, to construct a mechanism to turn 
on or off a switch, depending on whether x does or 
does not exemplify Sj. 

P4 Derivability (⊢) must be effective, in the sense that 
those expressions derivable from a given expression x 
in S must be effectively enumerable—or at least, for 
any other expression y, it must be effectively decidable 
whether y can be derived from x. 

These two answers can be understood in terms of the basic pic-
ture given in figure : the syntactic realm or syntactic “level of 
abstraction”—the upper half of the diagram—is the one that is 
subject to causal or mechanical constraint. If one were to define 
a “logic” that violated either of these two principles, it would 
thereby be evacuated of intellectual substance and all 
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theoretical interest—would be thereby deserving of ridicule. 
And note that the vacuity of violating either of them holds true 
of logic in general, not just of logic in the context of mechaniza-
tion. Suppose, for example—since systems of formal logics are 
human constructions—that one were to stipulate “true in the 
standard interpretation-L” to be a syntactic property of arith-
metic sentences, and were similarly to stipulate, as a rule of log-
ical inference, that β could be derived from α (i.e., that α ⊢ β) 
just in case β is true in any world in which α is true. Then, con-
trary to Gödel, common sense, and all that is right and good, 
one would thereby have generated a sound and complete axio-
matization of arithmetic. That is, to put it bluntly, in the devel-
opment of a logic, to violate either of the above two criteria is to 
cheat. 

On the other hand—and this is what matters about logic in 
general, about the Lisp and Lisp architectures described in 
this book, about computation more generally, and about my 
fundamental opposition to a totalizing mechanism—there is no 
reason whatsoever that any of the other three elements be required 
to be effective, be restricted to the realm of mechanism: 

P2 The semantic domain D itself (i.e., the exemplification 
of properties by elements in D denoted by expressions 
in S); 

P3 The interpretation-L function I; or 
P5 The entailment relation ⊨. 

On the contrary, it would be the height of perversity—intellec-
tual folly—to suggest that any of the last of these three entities 
was subject to effectiveness constraints. Formal logic, and the 
wider mechanistic approach to reason that it unleashed, is un-
deniably significant and powerful, but it is also strikingly and 
famously limited. It is important and interesting, moreover, 
precisely because of the interplay of both factors: the source of 
the power and the reason for the limitation. And the im-
portance and power, on the one hand, and the limitation and 
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constraint, on the other, arise, metaphysically, from the same 
fact: by restricting oneself to the effective or mechanical, one 
can achieve extraordinary results as regards reasoning and 
proof about a much, much wider world—specifically, a world 
that is not so restricted. 

It was this recognition—that a purely effective mechanism 
could exhibit the behaviour of rational deliberation—that was 
of  epochal significance to philosophy, psychology, and theories 
of mind in the first half of the th century. It was also the in-
sight that led Haugeland to formulate his famous “formalists’ 
motto”: 

 Obey the formal rules of arithmetic…and your answers 
are sure to be true. This is the deep, essential reason why 
interpreted formal systems are interesting and important 
at all. Hence it deserves a memorable name and phrase: 

 FORMALISTS' MOTTO: If you take care of the syntax, the 
semantics will take care of itself.20 

Haugeland’s point was never that syntax and formal operations 
would generate the semantic interpretation, as he is some-
times—and unfortunately—misinterpreted as saying. On the 
contrary, his assumption was that, with the semantical frame-
work in place, then the results of the formal operations would 
be governed by the same semantical framework, and thereby 
automatically receive their appropriate interpretation-L.. 

 5 Representation 
Mechanizing logic, in sum, did not mean mechanizing the en-
tire subject matter of logic. That would have been lunacy, rob-
bing the result of any warrant to being called logic at all. Rather, 
it was the role of semantics and interpretation-L—the crucial 
ingredients in P, P, and P—to relate the mechanically re-
stricted realm to the wider, non-restricted one. Ultimately, in 
fact, I believe that that is what semantics, and the intentional in 

 
 
20Haugeland (). 
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general, is for. 
We humans, along with any other physically possible sys-

tem, including those things we call computers, are stupefyingly 
hobbled in virtue of being physically embodied. Our nerves and 
systems can only respond to what is locally proximate, what im-
pinges on us at our immediate laminar surface. I cannot even 
detect you, standing there across the room, directly. If I am 
looking at you, all that presses in on me, in a strictly physical or 
mechanical (effective) sense, are waves of electromagnetic radi-
ation that have reflected off your laminar surface, and are trans-
iting my eyeballs and generating patterns of electrical energy on 
the cells in my retina. The stunning achievement of my brain 
and body, along with long-evolved configurations of environ-
ment and culture, and increasingly the impressive capacity of 
the machines we build, is to use these proximal disturbances to 
set up semantic (non-causal) relations to that which is beyond 
my laminar surface—i.e., to you, in the present example, but 
also to home and to loved ones, to yesterday and tomorrow, to 
the world we inhabit, to the distant stars, and indeed to all we 
know of and contemplate and imagine. 

This tension between the radically limited capabilities of 
what is locally  effective and the unlimited reach of all that exists 
beyond its confines establishes a fundamental dialectic under-
lying all semantic and intentional systems (including logic, 
mind, and computing)—something I call the intentional di-
alectic. The dialectic, which lies at the heart of the relationship 
between meaning and mechanism, poses a profound challenge 
for intentionality. All systems directed towards the wider 
world—systems that think and represent and believe and com-
pute—in virtue of their concrete physical embodiment, are lim-
ited by the physical nature of the world. All such systems can 
do, therefore, in any active and consequential sense, is to acti-
vate, exploit, and adjust their proximal physical organizations 
and structures. From a mechanical point of view, that is, all they 
can do is to reckon that which is local and effective. But what 
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matters about them has to do with their relation to the phenom-
ena and entities and states of affairs towards which they are in-
tentionally directed—their relation to what is distal and effec-
tively inaccessible. 

This intentional dialectic places all intentional systems un-
der the scope of what I have elsewhere called the Representa-
tional Mandate:21 

 REPRESENTATIONAL MANDATE: The proper function-
ing of any world-directed system—any system that is 
thinking about or representing or processing information 
about the world—must be governed by normative crite-
ria applying to its mechanical operations that are framed 
in terms of situations and states of affairs in the world 
that the system represents, reasons about, or is otherwise 
intentionally directed towards—which situations and 
states of affairs will not, in the general case, be within ef-
fective (causal) reach. 

The treasure at the heart of logic—the reason I have taken the 
time to explicate its structure in such detail—is that logical sys-
tems illustrate, in an extremely limited domain, a remarkably 
general way of meeting the mandate’s challenge. Stripped of 
particularities, the solution is something I will call the core in-
tentional architecture. It can be explained by unpacking the 
mandate into an statement of the fundamental dialectic, fol-
lowed by a statement of the architectural approach required to 
meet it. 

CORE INTENTIONAL ARCHITECTURE 

Conditions (DIALECTIC) 

C. An intentional system must work, locally and effec-
tively, in virtue of the effective properties of its con-
crete physical embodiment. 

 
 
21See The Promise of Artificial Intelligence (), chapter , p. .  
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C. Overall, it is normatively directed towards the world 
as a whole, including much that is not effectively 
available (including what is distal); 

C. Being neither oracle nor angel, it has no divine (magi-
cal) access to those non-effectively-available states 
that it cares about.22 

So what does it do? (ARCHITECTURE) 

C. It exploits local, effective properties that it can use, but 
does not (intrinsically) care about—including both: (i) 
interior effective properties (such as the configura-
tions of its internal mechanical structures), and (ii) in-
teractions with local, effectively available aspects of its 
environment, including effective configurations of 
proximal entities 

C. To “stand in for” or “serve in place of” properties and 
relations of state of affairs it cannot be effectively cou-
pled to, in order to 

C. Behave appropriately towards those remote or distal 
(non-effective) states that it does care about, but cannot 
use. 

C is an acknowledgement of overarching physicalism, and a 
recognition of the extraordinarily restrictive constraints of ef-
fective causality. C summarizes the defining property of inten-
tionality and intentional systems. C articulates the intentional 
dialectic that follows from these two. C–C are effectively a 
definition of the nature and function of representation: any 

 
 
22“That it cares about” is informal. On their own, logical inference sys-
tems care about nothing. What is meant is that these states—or rather, 
the semantic relations linking the systems to those states—are what the 
users of the system care about. To put it in terms of the framework: these 
states figure constitutively in the governing norms. 
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available effective configuration whose normatively sanctioned 
role is to enable the system in or for which it plays a role to be 
intentionally directed towards its subject matter. C is framed 
so as to include both internal representations (memories, data 
structures, configurations of ingredients, etc.) and external rep-
resentations (maps, signs, images, external language, and the 
like).  

In logic, the upper half of figure —syntax and proof-theo-
retic operations—are the local effective properties referred to 
in C. “Behaving appropriately” (C), with respect to the rea-
soning processes or truth-relevant relations modeled by logic, 
is defined in terms of the lower half: coming up with true con-
clusions from true premises, where truth is defined in terms of 
the interpretation-L relation to the semantic domain D. 

A possibly helpful analogy. Imagine the expressions of logic as 
statues, in the shapes of letters and words, perched on a cliff at 
the edge of the sea. Each of the words points out into the dark-
ness, towards distal situations far beyond any immediate access. 
Overall, the words are arranged so as to form sentences describ-
ing those distal worlds and continents. Inference rules are like 
(instructions to) functionaries who run around at the top of the 
cliff, inspecting expressions, moving them around, constructing 
new ones, etc. The norms on both the expressions and the func-
tionaries’ movements are governed by facts about the distant, 
inaccessible situations towards which the expressions inacces-
sibly point. 

What is present, one might say, are the expressions and the 
functionaries’ effective operations conducted on them. What is 
absent is the world, the semantic domain, towards which such 
structures are directed. What matters about expressions—
what matters about language and logic and mind and compu-
ting—is that the sentences be true. Au fond, that is, what mat-
ters is that the present stands witness to the absent. 

Some things, such as rocks and electrons, are merely pre-
sent. Some things, such as the tress and the grass, carry infor-
mation about the absent, but they themselves do not point 
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towards it, and are not normatively accountable to it. What dis-
tinguishes intentional phenomena and entities is that they do 
so point, and are normatively governed by them, via those far-
reaching semantic relations. 

 6 Discussion 
A few points of discussion. 
. NATURALISM: Note that it poses no challenge to an 

overarching physicalist  worldview to admit that alt-
hough the syntactic and proof-theoretic realms in logic 
(S and ⊢) are required to be subject to constraints of me-
chanical effectiveness, none of the semantic entities (D, 
I, and ⊨) are so restricted. The bounds of local effec-
tiveness are more stringent than the bounds of overall 
metaphysical coherence. Relational properties show 
this immediately: being right now a little more than four 
light years from Alpha Centauri poses no threat to 
physicalism, but in no practical sense is it an effective 
property. 

. REPRESENTATION: Needless to say, the notion of rep-
resentation implicated in the characterizations given 
above is extremely broad. Representationalism is widely 
decried, in contemporary cognitive science and philoso-
phy of mind—viewed as excessively focused on truth, 
incompatible with contextual dependence, dependent 
on a sharp subject/object divide, and guilty of a variety 
of other epistemic ills. But nothing in the mandate, as 
stated, imposes any such restrictions; it is compatible 
with embodied, enactive, constructive, pragmatist, and 
other ontological and epistemic stances. The funda-
mental insight about representation, to which many of 
these contemporary movements are blind, is something 
that any account of intentionality must acknowledge. 
The straightjacket imposed by the intentional dialectic 
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is profound. Only by exploiting available degrees of free-
dom in the local and effective is it possible for any phys-
ically embodied system to be appropriately oriented to 
that which is beyond its causal reach. That blunt meta-
physical truth cannot be obscured by any convenient 
metaphysical worldview. 

. EXTERNALISM: Philosophical readers may expect the 
term externalism to be used to name the semantic ap-
proach that I claim underlies our traditional under-
standing of logic. But that term is misleading—espe-
cially in the case of reflection. Externalism, as normally 
understood in philosophy, has to do with the role of the 
“external world” (i.e., the role of elements of D) in the 
determination of the meaning or content of a sentence or 
thought—not with the externality of its reference or 
logical interpretation-L. All but a solipsist philosopher 
would take reference or logical interpretation to be ex-
ternal in this sense. The restriction to a totalizing mech-
anism of the sort to be described in the next chapter 
proscribes even referential externalism of this sort. 

 7 Summary 
Formal logics form a radically narrow, limited subset of the 
range of possible intentional systems. My aim in this chapter 
has not been to endorse logic—either as a model of human cog-
nition, or as a basis for a theory of computing. Computational 
systems routinely deal with a wide range of issues—dynamics, 
context sensitivity, action, input and output, communication, 
and a myriad other complexities, all of which lie beyond the 
boundaries of anything considered to be within the scope of a 
“system of logic.” Any realistic model of thinking will similarly 
need to deal with context, time and process, relations to activity 
and perception, evidence, subject matter, motivation, hypothe-
ses, narratives, and a host of other things. Neither do I endorse 
logic’s strict separation between the realm of effective activity 
(syntactic and proof theory) and the semantic realm, and in 
general its traditional reliance on a classical, formal conception 
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of ontology. As suggested in Origin, I believe our commonsense 
ontology arises out of an inexorable pattern of participatory 
practices—practices in which, as I put it there, we “register” the 
world, find it intelligible, in ways that are arise out of our pro-
jects, purposes, and practices. 

What matters about logic, for our purposes here, and about 
theorem provers and other systems based on logic, is merely a 
single and focused, but unutterably important, fact: their 
demonstration of the core intentional architecture—of how a 
concrete, mechanically implementable system can be norma-
tively governed by a system of deferential semantics. Though 
the details of specific formal logical systems have been worked 
out in highly restricted, formalized contexts, the basic model 
that underlies them, of a concrete system normatively governed 
by its semantic relations to the world, is an insight of unsur-
passed power. This core architecture is a general condition, ap-
plicable to the entire range of intentional systems. 



  
 

 7 Blanket Mechanism 
  Diagnosis · Third Pass 

What then of computation? Is computer science, as it is prac-
ticed today, a study of the realization, in systems of great com-
plexity, of the core intentional architecture described in chapter 
? 

As should be evident by now, the answer is no. But it is a 
complex no. Computation in the wild, as I have argued, is gen-
uinely intentional. Real-world programs and processes are in 
fact instances of the core intentional architecture. I believe these 
truths are tacitly understood by all programmers. But com-
puter science does not study programs that way. As currently 
formulated, computer science disappears all the non-effective 
relations. It thereby disappears the true nature of semantics, 
and the normative constraints governing programs. Contem-
porary theoretical computer science operates within the grip of 
what I call blanket mechanism: a fusion of: 
. A substantive belief that the phenomenon of computing 

is exhaustively constituted by issues of effectiveness—
by “what happens,” by the structure and behaviour of 
machines, abstractly or concretely construed, where ‘be-
haviour’ is restricted to what happens, causally, within 
the effective boundaries of the machine; and 

. A corresponding methodological tenet that causal 
and/or mechanistic explanation, even if analyzed math-
ematically, is sufficient to explain all of computing’s the-
oretically relevant aspects. 
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The combination of substantive belief and methodological 
tenet leads to an overarching assumption that all theoretical 
discourse about computing should be restricted to the mechan-
ical—to mechanical entities and effective relations among 
them. Embrace of the substantive belief reflects what is taken 
to be true. Allegiance to the methodological tenet constrains 
what alternative ideas are treated as legitimate. Suggestions run-
ning counter to its precepts are not so much thought false as 
“ruled out of court”—making it difficult to raise the substantive 
belief into view, so that its adequacy can be questioned. 

The aim of this chapter is to unpack blanket mechanism—
to understand what it says, how it arose, what it includes and 
excludes. and how it affects computer science’s treatment of the 
subjects of this book: programs, programming languages, and 
semantics—and how they come together in reflection. 

As we have seen, computer science does not ignore semantic 
phenomena altogether. Analysis would be much simpler if it 
did; the alleged mechanical character of computing would be 
evident, intentional discussion would be obviated, and compu-
ting would collapse into stuff manipulation (abstract Mec-
cano). But the enduring use of semantical vocabulary betrays 
that this is not the field’s strategy. Rather, several tactics are em-
ployed to move non-effective semantic relations off-stage. 
Sometimes they are simply assumed—absorbed into the back-
ground, without being made theoretically visible, as in the uni-
versally recognized but untheorized use of (radix-based) nu-
merals to denote numbers. More generally, in order to honour 
blanket mechanism’s strictures, non-effective semantic rela-
tions are projected onto the “nearest available” effective proxy 
lying within the machine’s mechanical boundary. Terms classi-
cally used to describe semantical

L
 phenomena, such as reference 

and meaning, are redefined—folded back within the system, 
and used to refer to whatever local, effective structure is selected 
to serve as their proxy. 

This “projection strategy” works in two ways. In the first, 
when the true semantic-L relation, though itself non-effective, 
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would nevertheless point at an effective internal structure, an 
effective access relation to that location serves as a proxy for the 
non-effective semantic relation—providing an effective con-
nection between the same relata. For example, while a pro-
grammer will likely think of an address as a reference to an in-
ternal memory location, it will be implemented so that its use 
leads a process to be able to directly access the location to which 
it points. Theoretical analysis can then mirror the implementa-
tion. 

In the case of binary addresses the difference between refer-
ence and access may seem small. In a higher-level program, 
though, a programmer is likely to understand program identi-
fiers, such as «LIST-OF-FLOORS» or «CURRENT-USER», as refer-
ences to real-world objects—the objects relevant to norms gov-
erning the program’s design and behaviour. But theoretical 
analysis again takes the semantic values of these identifiers to 
be that to which they provide effective access—internal memory 
locations. In this second case, access and genuine reference part 
company. And once again theory mirrors implementation. 

When a semantic-L relation is directed towards something 
not effectively accessible, that is, an appropriate accessible in-
ternal object is pressed into service as a proxy. That then allows 
an effective access relation to that proxy object to stand in for 
the non-effective relation to the original (abstract or distal) tar-
get. These moves are hidden from theoretical view by the fact 
that the appropriate semantical terms—reference, denotation, se-
mantics, etc.—are redefined to refer to those proxies, instead of 
to the original entity. 

An analogy may help. Imagine semantical-L relations as 
beams of light, emanating from the meaningful structures and 
behaviors of an intentional system, aimed at their referents—
i.e., aimed towards their interpretations-L in semantic domain 
D  in the wider world that the system is about.1 In terms of this 

 
 
1Needless to say, the analogy is fatally flawed. Genuine reference is stag-
geringly more powerful than light. It is able to reach through solid 
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image, theoretical computer science can be imagined as having 
placed mirrors at the boundaries of the mechanism, reflecting 
all emanating light beams back inside the machine, so that they 
land on some other causally-individuated internal ingredient. 
All semantical-L vocabulary that would have referred to the 
things that the light used to illuminate, and to the relations that 
the system bore to them—terms such as ‘interpretation’, ‘refer-
ence,’ etc.—are then redefined so as now to refer to the me-
chanically individuated proximal ingredients. The result allows 
the external world to be removed from theoretical view, and 
theoretical analysis to proceed as Newell originally wanted: 
“wholly within the machine.” 

Crucially, however, though the non-effective relations and 
external objects are no longer theorized, they continue to un-
dergird the normative conditions that the computational sys-
tems are designed to honour. As in all intentional architectures, 
the normative conditions arise from the realms that the systems 
are “about.” But since the official semantical story no longer 
makes reference to the external world, semantics ceases to be a 
“topic” in which normative issues (analogous to soundness or 
correctness in logic) can be discussed. 

The projection strategy props up computer science’s apparent 
naturalistic credentials. By treating its subject matter entirely 
mechanistically, the field is construed to fit within an overarch-
ing mechanist philosophy, and can thus take its place within 
reigning conceptions of science. But these merits are achieved 
at a price. In fact the strategy is something of a cheat. One con-
sequence, just mentioned, is that it disappears the normative 
considerations applicable to computation—considerations 
which in logic are kept within explicit theoretical view. Another 
consequence is that, for reasons explored in this chapter, the 
strategy almost inexorably leads to a conflation of the two 

 
 
objects, outside the light cone, backwards to the past and forwards to the 
future, to non-actual and hypothetical worlds as well as the real one, 
without fading, losing precision, or taking time. 
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dimensions of overall significance distinguished in the /Lisp 
architecture: (i) procedural consequence, ψ, having to do with 
the effective or causal treatment of a signifying structure, and 
(ii) declarative or referential import, φ, having to do with what 
that structure represents, describes, or is intentionally about. 

Understanding reflection requires distinguishing these two 
aspects (ψ and φ): having a clear sense of how they relate, how 
they differ, what normative conditions accrue to each, and how 
to integrate them into a single encompassing theoretical frame-
work that does justice to both, including to their interaction. 
As noted in §.v, this is the fundamental idea undergirding the 
notion of “soundness” embodied in the Lisp mantra: that im-
plementing reflection is simple on a semantically sound base. If 
the two aspects are conflated, the base is thereby rendered un-
sound, reflection cannot be coherently described, and clean re-
flective architectures are precluded. 

Unpacking blanket mechanism will allow us to explain how 
computer science is blinded to these facts, and to explain many 
perversities we have encountered en route. It will also reveal 
both what is right and what is wrong about the first and second 
diagnoses. 

 1 Preparation 
Four preliminary comments.  

 1a Mathematics 
As noted throughout the book, first, much theoretical analysis 
in computer science is conducted in mathematical terms. Per 
se, that is a methodological statement, about the analysis of 
computing. The deeper issue is ontological: (i) whether com-
puter science uses mathematics to analyse, perhaps at a rela-
tively high level of abstraction, what is fundamentally a concrete 
or mechanically constituted phenomenon; or (ii) whether com-
putation itself is fundamentally abstract, along the lines of 
prime numbers and Abelian groups. 

The following argument is often cited in favour of the sec-
ond, abstract reading: one can start by enumerating simple 
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mathematical objects—numbers, elementary functions over 
them (successor, addition, functional composition, etc.)—and 
from that basis build up to computability results, complexity 
classes, and various other fundamental results in theoretical 
computing. But this argument shares a difficulty with ostensive 
definitions: it starts with a stipulated basis for the construction 
(called the “initial functions” in recursion theory), without ex-
plaining the warrant for that particular choice. Mathematical 
functions are by and large understood extensionally: as sets of 
pairs of numbers <xi, yi>, where in each case ƒ(xi) = yi. Why 
should the successor function ƒ(xi) = xi +  be included in the 
base, for example, but not ƒ(xi) =  or  depending on whether 
some universal machine M halts when given a numeral desig-
nating xi as its input? “Because the successor function is easy to 
calculate,” someone might reply. But that is circular; analysis 
would show the halting predicate easy to calculate if it were 
taken to be primitive. Successor is assumed to be simple because 
we can calculate it easily using standard numerals. But standard 
numerals are abstractions of concrete arrangements—particu-
lar representational arrangements to which we are historically 
committed.2 

Think too of Turing’s deliberations on the primitive steps 
taken by a Turing machine: reading or writing a simple token 
on that square of tape that is immediately in front of or adjacent 
to the controller, moving the tape one square left and right, etc. 
These operations were designed to be mechanically simple; 
there is no warrant for choosing them if one is merely con-
cerned with abstract mathematics. Think too about how com-
plexity results are expressed in terms of “space” and “time.” Sure 
enough, these are rather abstract conceptions of space and time, 
but they are nevertheless abstractions over the notions of con-
crete space and time derived from physical reality. This is be-
trayed  by the fact that, in order to implement a computation, 

 
 
2As opposed to, say, using a base-π representation, or scheme with a ra-
dix consisting (from the right) of each successively larger prime number. 
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computational time must be realized by real time. A paper 
chart that “implemented” time spatially, as for example in a log 
or “dribble” file, would not count as an implementation of a com-
putation—a limitation that would be inexplicable if computa-
tion were purely abstract. Effectiveness, too, about which more 
below, can only be defined with respect to some notion of 
mechanism or machine. 

More can be said, but since issues of mechanism and efficacy 
etc., are in focus, I will henceforth assume that computation 
must ultimately be grounded in some notion of machine or 
mechanism, at an appropriate level of abstraction—perhaps 
above specific concrete physical details, but not at such a high 
level of abstraction as to have entirely taken leave of the con-
straints of physical realization. Whether a purely mechanical 
account is sufficient in terms of which to define computing is the 
topic of this chapter; I will henceforth assume that a mechanical 
grounding is necessary. 

 1b Semantics 
Second, I have talked throughout about computer science’s use 
of semantical vocabulary. I noted in §. that many of the field’s 
technical terms derive from the “rationalist” rather than empir-
icist side of the Scientific Revolution—from the “meaning” half 
of the meaning/mechanism dialectic. I have repeatedly claimed 
that computation-in-the-wild is a genuinely intentional or se-
mantic phenomenon. In chapter , when discussing V, I ar-
gued that programmers not only do have, but must have, a tacit 
understanding of the non-effective semantic relations that tie 
the structures and behaviours of their programs to objects and 
states of affairs in their task domains. And I have emphasized 
throughout that these semantical relations involve non-effec-
tive, and hence non-mechanical, relations. 

One might have expected this constellation of facts long 
since to have defeated the blanket mechanist approach to com-
puting. It would have done so, I believe, were it not for the com-
bination of two things: the strength of computer science’s alle-
giance to the methodological tenet described above, and the 
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subtlety of the projection strategy. Because computer science 
has been able to retain semantical vocabulary by using tradi-
tional terms with new meanings (meanings tailor-made for 
projection), its inability to do justice to what I consider to be 
the genuinely semantical nature of computing has been hidden 
from theoretical view. 

 1c Compute 
The word ‘compute’, third, on which the entire field of com-
puter science rests, is curiously ambiguous. It is a transitive 
verb, but there is no theoretical clarity on what exactly it is that 
can be computed.3 

Suppose I tell you “I picked up an old Servel at a flea mar-
ket.” If asked to report on our interaction, you could truthfully 
say both (i) that I uttered a statement and (ii) that I described 
a refrigerator. It would be false to say that I described a state-
ment, and malformed to say that I uttered a refrigerator. In or-
dinary language, even when the distinction is not explicitly 
marked, we by and large keep semantic levels distinct.4 ‘Utter’ 
and ‘describe’ are unambiguous with respect to whether their 
direct objects are expressions themselves, or those expressions’ 
semantic-L interpretation.5 

Not so with the verb ‘compute.’ If I claim that my laptop 
“computed the prime factors of ,,” it is ambiguous, and 
would likely not be agreed by practicioners, whether, by anal-
ogy  with ‘utter,’ I am saying that my laptop produced the nu-
merals ‘’, ‘’, and ‘’, or whether, by analogy with ‘describe,’ 
that it computed the numbers thirteen, seventeen, and twenty-

 
 
3‘Compute’ can be used intransitively, but I take it that its meaning is de-
rivative on the transitive sense. 
4We do not always mark the distinction, but context is usually enough 
to disambiguate, making the sense clear. 
5Needless to say, I can describe expressions, but at a level of semantic 
remove. If I say “the word ‘facetiously’ uses all six vowels in alphabetical 
order,” I will have mentioned the word ‘facetiously,’ as philosophers of 
language would put  it, but not used it. Hence the quotation marks. 
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three. The latter claim could be justified by the fact that the 
machine produced numeral representations of those numbers, 
just as the claim that I described a refrigerator can be justified 
by the fact that I used a word (‘Servel’) that names a gas refrig-
erator. 

To some extent the usage differences with respect to the 
term ‘compute’ are masked by the fact that in simple arithmetic 
cases involving standard numerals, sign and signified are closely 
related and less evidently distinct than in concrete cases of eve-
ryday artifacts. But the ambiguity runs deep. In the s, 
when walking to lunch at PARC with some fellow computer sci-
entists, a colleague commented, as we passed a fluttering birch 
tree, “I wonder how much computational power it takes to 
compute that tree.” The thought made no sense to me. I took 
computation to be symbol manipulation; I could produce a 
symbolic representation of the tree with no computational 
power at all: just print out the words “that birch tree.” To my 
colleagues, I take it, to “compute the tree” meant something like 
“simulate the tree accurately enough for the simulated leaves to 
simulate fluttering.” What was striking was not that my com-
panion’s question was uninterpretable. It was that we were col-
leagues on a knowledge representation project. I was taken aback 
by the fact that our views could differ so radically on the foun-
dational notions of our field, without that difference ever hav-
ing surfaced in our work. 

This is not the place to resolve the ambiguity. In what fol-
lows, however, it will be crucial to be rigorous, at each point, 
about what is being assumed about exactly what is being com-
puted. 

 1d Efficacy Predicates 
Fourth and finally, another terminological issue involves the 
other word in the core phrase effective computability. 

As has been evident here since the beginning, what it is to be 
effective is fundamental to computing. All theories of compu-
tation—semantic or mechanist, concrete or abstract—must re-
fer, implicitly or explicitly, to effective properties: those 
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properties of machine states 
in virtue of the exemplifica-
tion of which things can hap-
pen, things can be accom-
plished. A claim that machine 
M transitions from state σ to 
state σ given input α, for ex-
ample, assumes that there is a 
property π of M being’s in 
state σ, and a property π′ of 

α’s being present, such that in combination they can “effectively 
lead” M to enter state σ. The very words “in the presence of α” 
reflects just such an assumption.6 If there were no such πs—if 
there were no constraints that M’s state and the input α must 
be effective—then everything would be computable, notions of 
computation, computability, computational complexity, etc., 
would be vacuous, and the field would collapse.7 

This much is evident. What is striking is how many differ-
ent terms are used to get at these properties. Overall, I will call 
them efficacy predicates.8 By an efficacy predicate, that is, I 
mean a term used to name the higher-order property exempli-
fied by those first-order properties of computational structures 
and states in virtue of which computational activity can 

 
 
6Technically, one could define a machine M, states σ and σ′, and token 
α, and stipulate that M would transition from σ to σ′ just in case α was at 
that moment being thought about by the Emperor of Japan, but to do so 
would be “illegal.” It is the conditions on legality I am concerned to un-
cover. 
7Turing’s demonstration that some functions cannot be computed de-
pends on two facts: (i) that such functions, such as the halting function, 
are well-defined and metaphysically first-class; and (ii) that those func-
tions are nevertheless noncomputable because of the limitations of what can 
be done effectively. 
8I refer to predicates—i.e., to linguistic items—rather than to the prop-
erties they denote, because I do not wish to make or imply any claim 
about whether distinct efficacy predicates denote different (higher-or-
der) properties. 

 
Figure  — Efficacy Predicates 
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proceed—change can happen, behavior can occur, concrete ac-
tivity can take place. 

Figure  lists eight terms sometimes used as efficacy predi-
cates. Six deserve only brief mention; two will require more dis-
cussion. 

The use of ‘computational’ as an efficacy predicate, to start 
at the top, betrays the grip of blanket mechanism. One could 
not say, of a logical system of derivation, that inference proceeds 
in virtue of the logical properties of the premises, because “logi-
cal” is understood to include both syntactic and semantic as-
pects. To use ‘computational’ to name just those properties in 
virtue of which machines operate is thus to deny (or at least to 
dismiss the idea) that any other properties—in particular, any 
non-effective semantic properties—are constitutive of some-
thing’s being a computation. Even if that were true, which I do 
not believe, calling such properties “computational” simply 
passes the buck; it says nothing about what it is to be computa-
tional or effective, what properties might be of that type, etc. 
Since computation must be defined in terms of a notion of ef-
ficacy, to use ‘computational’ as an efficacy predicate is thus at 
worst false, and at best circular. 

The next two, formal and syntactic, are also commonly used, 
for example in such statements as that inference is defined over 
the syntactic properties of the premises, or computation works 
in virtue of the exemplification of a system’s formal properties. 
Such phrases are unexceptionable in logic, but that merely be-
trays the fact that they are both intentional. They make sense 
only with reference to semantic-L  interpretability, or at least 
the possibility of carrying meaning. One hears talk about 
“purely formal symbols,” but I do not see that as making sense. 
It would be awry to describe omelets as responding to the for-
mal property of pans’ heating up, or to attribute the ability to 
form benzene rings to the syntax of carbon atoms.9 Neither 

 
 
9In this context we can set aside considerations of Platonic form. If there 
were any sense to be made, on a Platonic interpretation, of talk about 
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digitality nor compositionality is the issue; Lego blocks and 
Meccano pieces are digital, have forms, and support composi-
tional construction, but it would make no sense to say that Lego 
or Meccano constructions are put together “in virtue of the syn-
tactic shape of their ingredients.” So I will assume that if either 
‘formal’ or ‘syntactic’ is used as an efficacy predicate, it is done 
so against a background assumption of at least lurking inten-
tionality. 

Finally, the lowest three predicates on the list—intrinsic, 
physical, and causal—are primarily used in philosophical dis-
cussions, and are in no way unique to computing. It can be ar-
gued that everything in the universe that happens, in the sense 
of concrete activity, behaviour, etc., results from causal, physi-
cal, or (on a common metaphysical assumption I do not share) 
intrinsic properties of the states of affairs that give rise to it.10 
This intuition has a wide interpretation, called “global super-
venience,” in which everything that matters about anything de-
pends on the total fundamental physical state of the universe, 
and a narrow version, called “local supervenience,” according to 
which everything that matters about a particular entity or phe-
nomenon, or at least everything of scientific importance, arises 
from the physical state of that particular entity or phenome-
non. 

Because it is the local version of supervenience that is rele-
vant to blanket mechanism, I will take the relevance of all three 
of the efficacy proposals intrinsic, physical, and causal to be 

 
 
purely formal states of affairs, that would be a metaphysical thesis, not a 
substantive claim about computing. 

Re “syntactic,” Fodor once suggested that ‘syntactic’ means nothing 
more than “not being semantic,” but the comment was made in the con-
text where it was assumed that there were semantic properties, just that 
they were not the ones responsible for the machine’s operation—were 
not, that is, effective. Sans a notion of semantics or interpretability-L, 
‘syntactic’ makes even less sense than ‘formal.’ 
10“Give rise to” is of course a causal property. It is not my aim here to 
provide a reductive account of causality, which is likely impossible. 
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captured in the functionally defined notions of ‘mechanical.’ 
The only controversial issue surrounding them has to do with 
the standard stalking horse of whether computation is or 
should be understood as fundamentally concrete, in which case 
I take these as foundational properties of being mechanical, or 
whether it should be understood as fundamentally abstract, in 
which case their relevance, if any, will be disputed—but as 
noted above, I take the mechanical grounding of the requisite 
notion of efficacy to be a sine qua non of adequate theory. 

That leaves the two efficacy predicates I have concentrated 
on here: effective and mechanical. Chapter  spoke briefly about 
their relation to causal. The thought was that instances of both 
effective and mechanical properties must be causal (or causally 
“efficacious”), even if no one single causal property can be iden-
tified with any single mechanical or effective property, taken as 
a type.11 

Of the two, I have focused on ‘effective’ not only because it 
is the term used in theories of computation, but also because 
‘mechanical’ suggests a particular physical form, evoking images 
of levers and gears, rather than including a broad spectrum of 
physical types, including optical and electronic. The terms also 
have different connotations. While sharing a background sense 
of function or purpose (“effective at what?”, “a mechanism for 
what?”), ‘mechanical’ tends to point towards how something 

 
 
11The motivation for this usage was to accommodate multiple realizabil-
ity. Suppose being an instance of mark ‘’ is taken to be an effective prop-
erty of marks on tapes of Turing machines of type Mi—that is, to be 
such that a machine of type Mi might transition from state σ to state σ′ 
in the presence, and only in the presence, of a mark on the tape of type 
‘’. Suppose in addition that Mi  is defined in such a way as that tokens 
of ‘’ for one instance of Mi are realized by patterns of ink on small 
squares (squares of “paper,” as it were), and by signals of a particular volt-
age for another. Then the property of tokens of ‘’ in virtue of which they 
can play effectives roles in the life of machines of type Mi cannot be caus-
ally defined, since it can take different forms. It is for this reason that 
being a ‘’ would be considered a mechanical or effective property, but 
not per se a causal one. 
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works; ‘effective,’ towards what it accomplishes.  
What is most curious, and relevant here, is that there is no 

agreement about this slate of predicates, nor even much discus-
sion—which if any is most important, which beside the point, 
which foundational, which can be defined in terms of which 
others, and so on. Whether the notion of efficacy best suited to 
serve a foundational role should be treated (like ‘effective,’ in its 
informal sense) as an issue of achievement, or (like ‘mechanical’) 
as a fact of constitution or means of production—this question, 
too, has no official answer. 

Someone might argue that, for computer science, these is-
sues are like issues of interpretation in physics: questions to be 
wrestled with in the philosophy of the science, or to be dis-
cussed at bars after work, but not internally important to the 
conduct of the field. Perhaps. But until we have answers, we 
will not have an intellectual grip on what we are talking about 
when we say that X or Y can or cannot be “computed,” or what 
we are saying when we say that this or that “is computational.” 
More specifically, we need to disentangle these issues if we are 
to understand how and why computer science uses semantical 
vocabulary in the way that it does, and how computers do and 
do not relate to the core intentional architecture.  

 2 Blanket Mechanism 
Consider then the blanket mechanist approach to computa-
tion: a restriction of theoretical focus to effective properties, in-
ternal or at the periphery of the machine. Various recent phil-
osophical accounts of computing argue for just such a mecha-
nistic account.12 I will argue against the adequacy of any such 
approach—any approach that adopts what I will call the me-
chanical restriction. 

We need to see how the restriction arose, and what it says. 

 
 
12E.g., Piccinini (), Glennan (). 
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 2a Automata 
Start with elementary automata, and their standard analysis in 
computer science—the theory of  “abstract machines” on which 
(many would say) theoretical computer science is currently 
founded. 

Automata are considered to be “abstract machines” in at 
least this sense: devices in one of a finite number of states at any 
given time, which transition from one state to another in re-
sponse to a discrete unitary (atomic) input. Some automata can 
“write” an unlimited number of outputs onto a memory struc-
ture, such as a tape or push down storage; others, called finite 
state machines (or simply “state machines”), have no way of 
storing unbounded information. In general, automata are as-
sumed to be determinate and digital: unambiguously in one 
state or another, without matters of intermediacy, determinacy, 
or degree. There is typically no notion of an “instance” of such 
an internal state, since for theoretical purposes such things 
would be identical. In the default deterministic case, for any 
given state and given input, only a single transition may apply, 
which takes the automaton to a single new state, and potentially 
inputs from or outputs a token or to the storage. Sometimes 
probabilities are used to indicate that there are various proba-
bilities of the machine’s entering different states. Varieties of 
automata are also typically defined with respect to an appropri-
ate notion of discrete time.13, 

What efficacy predicates apply to automata, so described? 
Not physical properties, at this level of generality, because of the 
abstractness of the definition (famously, Turing machines have 

 
 
13A hierarchy of types of automaton is generally distinguished: combina-
tional logical (distinct from combinatorial logic), finite-state machines,  
pushdown automata, and Turing machines—and sometimes as more 
refined variants, such as nested stack automata. I will frame the discus-
sion primarily in terms of finite state machines (FSM), in part because 
they are the most familiar, and in part because they serve as the control-
lers for pushdown automata and Turing machines. But my comments 
about automata will mostly be general, applying to all types. 
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been built of many types of material, including Tinker Toys). 
Mechanical? Yes, but only, at least so far, on a non-goal-ori-
ented version of the predicate, focusing solely on issues of causal 
organization. Automata are described as machines, but until 
specific functions are attributed to them, or they are interpreted 
as achieving certain ends, their machinic nature implies no 
more than they be concretely realisable. Not only must the 
transitions between and among states be causally implementa-
ble; they are also presumed to be able to be made “automati-
cally”—and ‘automatic’ is a coherent notion only in the con-
crete world. 

As an illustration of the commitment to a mechanical con-
strual of efficacy, note that this condition of causal realisability 
holds no matter how abstractly the automata are defined. If the 
automaton is defined concretely, by ostensive characterization, 
the realisability is typically manifest. In abstract formulations 
the restriction is absorbed into implicit conditions on the ab-
stract specification. An automaton can in general be character-
ized by a set of states Q, a set of inputs Σ, a transition function 
δ mapping Q ´ Σ → Q, and possibly (depending on the type) a 
set of outputs, perhaps with directions of motion on a tape. It 
would be out of bounds, in defining a particular machine type, 
to take Σ to be a set of abstract numbers (such as arbitrary re-
als), or to consist of numerals individuated by relational prop-
erties (such as “those occurring a prime number of times in the 
social security numbers of all U.S. citizens living in Stockholm”). 
Similarly, if a transition were defined as moving from state qi to 
qj if P=NP, and otherwise to qk, no automatic procedure could 
(currently) be built to honor the specification. Fundamentally, 
inputs and transitions must be automatically implementable by 
“brute mechanism”—“witlessly,” in Haugeland’s parlance, by, 
as is not entirely tautologically said, a “mere automaton.”14 

 
 
14One could try to deflect both cases on the grounds that transition func-
tions (mapping Q ´ Σ → Q) are extensionally defined, and so while we 
cannot presently know, in the examples suggested, which input tokens 
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That is all. What matters here is that nothing in the account 
given so far warrants the application of goal-oriented senses of 
the terms ‘effective’ or ‘mechanical’, because nothing has yet 
been said about what these machines do, beyond transitioning 
from state to state. As a result, there is as yet no warrant for 
calling automata computers, or for describing their behaviour as 
computational. It is not just that detailed questions about pro-
grams, semantics, and the rest are premature; whether they 
compute at all can only be assessed with additional conceptual 
resources. 

In particular, the thought that automata are computers, or 
can be described as computing, rests on three additional stipu-
lations, often employed in combination: 
. IMPLEMENTATION: You can implement computations 

on these machines—arbitrary computations in the case 
of Turing machines, on a particularly broad equivalence 
metric; more restricted forms on automata lower in the 
hierarchy. 

. FUNCTION: You can understand the behaviors of spe-
cific machines, processes built on top of them, and/or 
the results of those processes, as performing functions, 
satisfying goals, serving purposes, or achieving certain 
ends. 

. REPRESENTATION: You can semantically interpret-L the 
states, inputs, and outputs of automata as representing 
or standing for entities lying either inside or outside the 
machine’s boundaries. 

 
 
are instances of which input mark types, and what the transitions are, in 
an abstract sense both would still be legitimate. The problem with this 
response is that it risks being so abstract as to eviscerate the notion of 
effectiveness on which computation is defined. What would then defeat 
a proposed rule that a machine M should transition from state qi to qY 
in the presence of an input α just in case another machine M will halt if 
given α as input, and to qN if Mwill not? That function too is extension-
ally well-defined. 
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For example, figure  diagrams a finite state machine PARITY 
which, if started in state σ will stop in state σ or 
state σ, respectively, depending on whether its in-
put consists of an even or odd number of strokes 
(prior to a terminating «#»). Similarly, one can 
readily define an automaton ADD  (figure ) that 
takes two binary numerals as input, and, as it is 
said, “computes their sum”—i.e., produces as out-
put that binary numeral that represents the sum of 
the numbers denoted by the inputs, also inter-

preted as binary numerals.15 Describing PARITY as a machine 
“to determine the parity of the length of the input” is an exercise 
of FUNCTION; understanding ADD as “adding numbers,” an ex-
ercise of both FUNCTION and REPRESENTATION.. 

The fact that we need to am-
plify our understanding of au-
tomata with these additional 
conceptual resources, especially 
REPRESENTATION, in order to 
see them as computing suggests 
that automata without these 
additional resources may best 
be understood as computa-
tional substrates—active me-
dia, as it were, on top of which 
computational processes can be 
constructed, rather like sheets 
of paper and supplies of charac-
ters in regards to written lan-

guage. What is conceptually critical is this: from the fact that 
automata are adequate material components to serve as the 

 
 
15For simplicity, this finite state machine requires the two binary numer-
als to be presented in reverse order, terminated by a #. They must be 
zero-padded to the same length, and the output will be written in reverse 
order. 
 

 
Figure  — PARITY 

 

 
Figure  — ADD 
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basis of computation, it does not follow that the analysis of 
them as automata—as mechanical apparatuses—contains 
within it sufficient resources to analyse the processes built out 
of them as computational. No one would describe a theory of 
arbitrary sequences of letters as a theory of written language, 
even if it were true that any written language could be expressed 
as particular sequences of letters. It is not just that legitimate 
linguistic expressions might constitute a subset of all possible 
sequences of letters; that constraint might be specifiable by a 
mechanical grammar. The more serious problem is that, in or-
der to be a legitimate language, linguistic expressions need to 
mean something—and the “theory of arbitrary sequences of let-
ters” would likely lack resources for accounting for meaning. In 
sum, an analysis of (some) sequences of letters as written lan-
guage requires a theory of what it is to be a language.16 By the 
same token, there is no warrant for calling finite state machines 
and other automata computers until an account is given of 
something they do—something they compute. 

 2b FUNCTION: Mechanical goals 
Although most of the examples considered in this book involve 
INTERPRETATION-L, it is not yet evident that semantics is re-
quired for everything considered computation. Finite state ma-
chine PARITY described above (figure ) can be described and 
understood without semantic or arithmetic interpretation-L 
(so long as parity is not considered an arithmetic predicate, 
which seems arguable given that what is being computed is the 
parity of the length of the input, not of anything it represents). 
Can we nevertheless say that P computes the parity of the length 

 
 
16My own view would be that a theory of letter configurations as language 
must at least in part be a theory of how they can convey meaning, but I 
am of course in the minority: there is a large body of work in computer 
science called “formal language theory,” where issues of meaning and in-
terpretation

L
 do not arise. Even in that context, however, to say that an 

automaton is able to parse or produce a language requires the addition 
of a grammar.  
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of its input? Yes, under this provision: that determining the 
parity of the number of strokes in the input sequence is taken 
as a goal or function of PARITY or its user. 

Why do we need a goal? If PARITY sits in front of us, and we 
feed it an odd number of tokens, terminated with «#», we might 
note that it ends up in state σ

O
, and say “Look; it has computed 

the parity of the length of its input.” But that is not quite right. 
Yes, it halted in state σ; σ 

is correlated with its input having an 
odd length; and it would not have ended up in that state had 
there been no input, or had the length of the input been even. 
So the final state it reached is counter-factually correlated with 
the length of the input—“carries information about it,” as it is 
said. But to compute implies more—that there was a drive—an 
“urge,” as it were—towards the production of that output, a 
sense of direction towards that state. This purpose or drive 
must either be an authentic property of the machine, or im-
puted by its user or designer. 

By analogy, consider tree rings. Do they compute the ages of 
trees? They too are counter-factually correlated with those 
ages, and thus carry information about them. But we would not 
say that they compute the age unless computing age were im-
posed or discovered or hypothesized to be their function or 
goal. 

Under an ascription of FUNCTION, the problem evaporates. 
There would then be no difficulty in saying that PARITY com-
puted the parity, in calling PARITY’s states and inputs mechan-
ical, and in dubbing PARITY a mechanism. Since it provides an 
effective means of satisfying that goal, PARITY could even be de-
scribed as an effective mechanism.. But without function, we 
simply have a mechanical device whose behaviour is lawfully 
correlated with its internal states and the environmental forces 
impinging upon it. 

The requirement for additional resources, beyond those 
provided in the bare characterization of them as automata, in 
order to describe PARITY as “computing parity,” and ADD as 
adding numbers, is not just epistemic. It is not just that, as ob-
servers of these machines, we require the concepts of goal, 
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purpose, interpretation, etc., in order to describe these autom-
ata’s behaviour in such terms. In order for them in fact to be 
doing such things there must be goals, satisfaction, representa-
tion, and the like, none of which exist solely in virtue of the au-
tomata-theoretic framing. These additional properties are re-
quired in order for the respective devices to be successful at de-
termining parity, in order for its implementation of addition to 
be correct, in order for it to be effective. Similar points hold for 
the mechanical function of any machine: sorting inputs by 
length, moving disks in the Tower of Hanoi problem, sharpen-
ing pencils, etc. 

Does that mean that even these simple cases betray the lim-
its of blanket mechanism? Not yet, but they underscore an im-
portant point. Just as I suggested that automata may best be 
viewed as (ontological) substrates for computation, it may be 
that blanket mechanism, at least in pure form, may best be 
(methodologically) considered as a framework in terms of 
which to formulate the implementation requirements or satisfac-
tion conditions necessary in order for these substrate machines 
to compute.17 

Since automata are often viewed as the very foundation of com-
puting, these statements may sound off-kilter, especially to a 
computer scientist. There are at least three possible reasons. 
The first is epistemic. IMPLEMENTATION, FUNCTION, and 
REPRESENTATION are so deeply enmeshed in computational 
thinking that it is liable to feel wrenching to bring them into 
explicit focus. Especially since computer science is in many 
ways an engineering discipline, the ideas that machines have 
functions, and are subject to norms, or involve simple represen-
tation, may simply be presupposed. “Of course machines have 
functions,” a programmer might say. “Of course there are nor-
mative requirements governing what they do. Why else would 
we build them?” 

 
 
17To the extent that computer science is an engineering field, it makes 
sense for satisfaction conditions to feature large in theoretical analysis. 
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A second reason the comments may sound odd has to do 
with construction. “You don’t need more than an automaton 
and a memory to build adders, or to construct systems to sort 
strings by length, or fashion devices to solve any number of 
other standard computational tasks,” a critic might say. Sure 
enough, the automaton and memory are sufficient material out 
of which to IMPLEMENT a computer. But implementation is not 
constitution. As we saw in the case of logic, and as is generally 
true of intentional architectures, there can be more to a system’s 
being the system that it is than its effective parts and their ef-
fective or effective arrangement. 

“Surely,” the critic might press on, raising the third reason, 
“physical configurations and causal forces (i.e., mechanical

C
 

configuration) is all there ever is. That’s the foundation of sci-
ence. It’s how the world works. Is more than mechanism

C
 re-

quired in order to say that the heart is a successful pump, or 
that a particular symbol manipulator is a sound inference sys-
tem?” 

Yes, more is required—and crucially so. That is the point. 
‘Successful’ and ‘sound’ are normative properties. Mechanisms, 
machines and their causal ingredients, are not by themselves 
sufficient to establish the norms that apply to them. 

In the biological case, it is well-recognized that biological 
function is not something that supervenes purely on local causal 
facts—on proximate pushing and shoving, on immediate 
causes and effects. If it were, hearts could be described as suc-
cessful mechanisms for going “lub-dub,” since they make that 
sound. But they are not successful at doing so (unless such a goal 
is attributed to them), since going “lub-dub” is not their biolog-
ical function. Theoretical biology recognizes the need for two 
accounts, that is: one explaining how hearts pump blood, an-
other establishing that pumping blood is their biological func-
tion. The former account can be given causally, and so is un-
problematically naturalistic. In the biological case, current prac-
tice is to provide the second account in terms of evolutionary 
role: the heart’s function is to pump blood, it is claimed, because 
pumping blood is what has led to the heart’s evolutionary 



 7 · Blanket Mechanism 

`  
  

285 

survival, via the survival of the organisms in which it plays an 
essential role. This effort to derive biological function from evo-
lutionary role (posterchild of the “naturalizing normativity” 
project) is assumed also to make the second account naturalis-
tically palatable, thereby allowing biology to remain within the 
purview of science. But note that while both accounts are in 
some ultimate sense causal, only one derives from the local 
causal facts. The other is grounded in the larger evolutionary 
context—distal in time and space, “outside” the mechanism in 
which the heart plays its function. 

Similarly for logic. The aim of chapter  was to show that 
being an inference system also fails to derive solely from these 
systems’ local mechanical or syntactic manoeuvrings. In order 
to describe logical systems in  inferential terms—as devices that 
derive consequences from premises, that “prove” that things are 
the case, and so on—requires locating those mechanical opera-
tions within an encompassing intentional architecture, inter-
preted-L in terms of, and governed by norms involving, non-
effective semantic-L relations. Once again, two accounts are re-
quired: a local one, about “what happens,” mechanistically; and 
a non-local one, about what the sentences mean, about seman-
tics-L. The phenomenon “is what it is”—logical inference, the-
orem proving, etc.—only as understood in terms of the two ac-
counts in conjunction. 

No such resource—no “second account”—makes itself im-
mediately available in terms of which to establish computa-
tional function. Computer science is replete with demonstra-
tions of how automata of various sorts can and cannot compute 
results of various kinds. The goals and their satisfaction consti-
tute the substance of the theoretical claims. But the results are 
imagined to be results about automata themselves; not about 
what computations can be implemented on automata—what 
computations can be achieved with or by automata. Half of the 
story about computing is front and center: the story of its me-
chanical-C workings. The other half—the representational 
and normative half—remains hidden in current theoretical 
practice. Like biology and logic, a full account of the 
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computation will require this “second” account to be formu-
lated and brought forward, in addition to the automata-theo-
retic “first” account, in order to demonstrate that the latter can 
accomplish the former. 

 2c REPRESENTATION: Numerals and Numbers 
Consider REPRESENTATION next.   

The simplest and most common attribution of semantics-L 
to computers involves taking causally-organized states and 
their configurations to represent numbers. The practice is so 
universal that it props up the idea that computation can be 
studied as wholly abstract. When combined with FUNCTION, 
the use of numerals to denote numbers allows computers to be 
viewed as doing simple arithmetic computations. 

The strategy of taking standard (unary, binary, decimal, 
etc.) numerals to denote numbers seems innocent enough. It is 
transparent, well-understood by programmers and theorists, 
and essentially analytic (immune to error). The other direction, 
of projecting numbers onto numerals, is more telling. It is the 
simplest case of the projection strategy, described above, of re-
placing non-effective relations and inaccessible objects with ef-
fective proxies. 

Consider a program «LENGTH» designed to count (i.e., given 
the FUNCTION of counting) the number of elements in a list. 
Lists have a number of elements, not a numeral of elements. 
Suppose we use ‘three’ to name the successor of two, and ‘trez’ 
to name the numeral «3»—so that we can truthfully say that 
trez denotes three. What is important is that the list «<A B C>» 
has three elements, not trez elements. But since the number 
three is an abstract object, which cannot be returned by an ef-
fective computational procedure, the only appropriate entity 
for the procedure to return is (an instance of) the concrete nu-
meral trez. That statement is close to the /Lisp analysis. If 
variable «X» is bound to the list «<A B C>», the /Lisp expres-
sion «(LENGTH X)» is taken to represent the length of that list—
the abstract number three—and therefore to return the nu-
meral trez. The number three is the designation or declarative 
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import (φ) of «(LENGTH X)»; the numeral trez, its procedural con-
sequence (ψ). That trez is the correct item for the procedure to 
return is normatively warranted by the fact that the numeral 
trez is the normal-form designator of the number three. 

But that is not how the situation is viewed in contemporary 
computer science. First, as noted, the numeral-to-number rep-
resentation relation is absorbed, unremarked, into the theory, 
keeping it out of theoretical view. Second, in deference to blan-
ket mechanism, numbers are projected back onto numerals. 
The result is that the distinction between numeral and number 
is elided. 

Along with ambiguity about the word ‘compute’ noted ear-
lier, this elision contributes to unclarity about the nature of 
computing. Programmers and computational theorists alike 
will say that the procedure has computed that the list has three 
elements, that three is the value of the expression, and that 
three is returned—using the same term in each case. /Lisp 
would concur on the first statement: that (to put it a little awk-
wardly) the procedure computes that the list has three (not trez) 
elements. But that is because /Lisp behaviour is described un-
der a representational conception of computing. In /Lisp ac-
counts, that is, I use the term ‘compute’ by analogy with ‘de-
scribe’; what is computed is the denotation of that which is re-
turned. /Lisp does not use the word ‘value’ at all; and, as 
noted above, trez is what is returned. This practice mirrors nat-
ural language: if I ask you what the length of «<A B C>» is, you 
will answer “three”—i.e., will return “three” to me, as the “pro-
cedural consequence” of my query, as it were—a representation 
of the length, since you can no more answer with a number than 
a computer can return a number as the result of a procedure 
call. Neither natural language nor /Lisp confuse use and 
mention. 

While efficacy considerations require what is returned to be 
concrete, it is not enough merely to require that it be a repre-
sentation of three. «(LENGTH X)»—i.e., “the length of «<A B C>»—
is already such a representation. Rather, as is clear from other 
arithmetical cases as well, the representation is presumed to be 
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a numeral (binary, decimal, whatever). Suppose a procedure is 
said to “return the number ,,,.” It would be ex-
pected to be computationally demanding to determine that re-
sult’s prime factors—but such a claim is entirely dependent on 
how the number is represented. If a representation scheme 
were used which represented numbers by the traditional deci-
mal numeral representations of their prime factors, this num-
ber would be represented as «[67829, 99349]», and the calculation 
of its prime factors would be immediate (though addition 
would be challenging). 

The conflation of numeral and number may seem innocent. 
To say that «(LENGTH '(A B C))» “returns three, one less than the 
length of «(A B C D)"» would be unexceptional statement—even 
though what is returned and what is one less than another 
length cannot actually be the same thing. But suppose I ask “has 
any other information been recorded about the person cur-
rently logged in,” and the system essentially says no. If the com-
putational routine to “return the person logged in” returns 
«$A!"BX»—the person’s login handle—then the negative reply 
is likely to mean that no information is stored under this repre-
sentation of the person. Whether the system has any infor-
mation on that person, indexed by any other representation, is 
likely to be beyond the system’s ken. 

Needless to say, programmers know perfectly well that rep-
resentation and represented cannot be identified in such cases, 
even if taking the identity of internal structures to mirror the 
identity of the objects they represent is a staple of current prac-
tice. But it is recognized to be part of computationalists’ skill 
and responsibility: to monitor whether computational (i.e., 
representational) identity tracks personal identity, and to navi-
gate through any potential confusion. But given the increased 
use of artificial intelligence and autonomous systems, data min-
ing strategies for training, and the like, for computer science to 
lack standardized theoretical techniques for tracking such dis-
tinctions is troubling.  Moreover, the distinction between a rep-
resentation and what it represents is a foundational issue in se-
mantics. The fact that computer science uses ‘semantics’ for 
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something else is also not reassuring. 

Return to the case that got us here: numerical computation. As 
we have seen, in order to be considered computation, arithmetic 
cases, like everything else, require two accounts. The first, hew-
ing to blanket mechanism and staying within the realm of the 
effective, invokes FUNCTION; the second invokes REPRESENTA-

TION. The fact that two accounts are required even in these 
simplest of cases underscores the general applicability of the 
core intentional-L architecture. Non-effective relations be-
tween symbols and their referents establish the norms that ef-
fective manipulations are constructed to honour. We blur the 
distinction between the two at our peril. 

 2d IMPLEMENTATION—I: Programs and Instructions 
IMPLEMENTATION is arguably the most important notion in all 
of computer science—the  facility underlying the fact that you 
can configure computers to perform a virtually endless variety 
of tasks. The simplest form of implementation is to arrange the 
hardware directly, so that the machine directly exhibits the de-
sired behaviour. This was the approach with PARITY and ADD. 
The downside of the approach is that it produces single-pur-
pose devices. As it is said, PARITY and ADD each “do exactly one 
thing”—perform just that “task” that was attributed to them as 
their FUNCTION.18 

 
 
18“One thing” must be understood in context. Neither machine is de-
fined to operate over a single predefined input, in which case that input 
could be considered to be part of the machine’s state. Rather, what is 
considered a “single” automaton is invariably defined to work over a class 
of inputs—a class typically defined in terms of allowable configurations 
of tokens of the input alphabet (input token types). PARITY will compute 
the parity of arbitrary-length sequences of input tokens; ADD will pro-
duce that numeral which denotes the sum of the numbers denoted by 
two arbitrary equal-length sequences of 0s and 1s. PARITY and ADD each 
do “one thing,” that is, in the sense of computing a single function, 
though as always the function may be applied to multiple different argu-
ments, and the “same result” exhibited in many different instances of its 
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The innovation that spurred computer science on to great-
ness was the development of general-purpose computers—ma-
chines that could be programmed to do a variety of tasks. The 
earliest versions were controlled by hardware (plug-ins, special 
wiring, punched cards reminiscent of Jacquard looms, etc.), but 
the real innovation took place with what are called “stored-pro-
gram” computers, in which what controlled the machine was 
stored in memory. 

The ability to orchestrate behaviour α on general-purpose 
machine X by using some of X’s memory to store a “program” p 
that leads X to exhibit α is an extraordinarily powerful idea—
likely the most important underlying the computational revo-
lution. It is also understood in a distinctive way, crucial to our 
fine-grained tracking of the conceptual resources programmers 
use to understand computational phenomena. Consider the 
situation just described of X+p manifesting behaviour α. Sup-
pose X+p is given an input s, yielding output t. Rather than 
viewing this as a case of X being given three inputs—X, p, and 
s—the situation is instead usually understood in two stages: 
first, X+p is taken to implement another machine Y, where α 
is Y’s behaviour—the “function that Y computes”; and then im-
plemented machine Y is given the input s, outputting t=α(s). 

Viewing X+p as implementing another machine Y is partly 
motivated by the fact that computers, including automata, are 
designed to produce, not a single output for a single input, but 
a range of outputs for a range of inputs. Even calling PARITY 
and ADD single-purpose machines betrays this assumption: 
though they do not change from one run to another, they are 
each capable of being given—in fact are designed to be given—
an unlimited range of inputs. This one-to-many structure is a 
fundamental assumption; it could be said to underlie the very 
notion of a computer, and perhaps even of machines in general. 
What we consider a single machine, held or viewed as constant, 
can be used in many different circumstances, including on 

 
 
answer. 
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many different inputs, and will produce many different effects, 
including many different outputs, depending on the use case. 
This is why computers are often modeled with mathematical 
functions: one function yields different values for different ar-
guments. 

As suggested above, this one-to-many structure is iterated in 
the case of programs. In general, machine X will be capable of 
being given arbitrarily many different programs p. For each pi, 
it will be assumed that the particular combination X+pi (i.e., Y) 
can in turn at least potentially be given a range of possible in-
puts. Implemented machine Y is the abstraction of X plus the 
implementing program pi, with pi held constant over the range 
of inputs to the Y—i.e., X+pi—combination. 

How do computer scientists and programmers understand 
these notions of program and implementation? 

Consider first an account restricted to automata-theoretic 
language. We can say a program p for an automaton M is a 
partial input configuration (a configuration of inputs on a por-
tion of the input tape, in the case of Turing machines), such 
that the combination of M and p can be considered to consti-
tute a different automaton M that behaves in some particular 
way with respect to various “inputs to M”—which is to say, 
with respect to configurations of inputs to M on the “remain-
ing” portion of its input tape (that portion of the input tape not 
occupied by p). That is, the behaviour of M is basically the be-
haviour of M given that a certain portion of M’s input has 
been “locked down” to the configuration p. 

One reason this characterization will sound odd is that, 
from this automata-theoretic point of view, any portion of the 
input to M could be considered a “program”; M would simply 
be that machine that exhibits whatever behaviour M would 
exhibit in response to varying inputs in the remainder of the 
input, given that the input on the initial portion is held fixed. 
Even if we invoke FUNCTION, one could characterize p only as 
a mechanical perturbation that causes a particular effect on the 
mechanism, or that skews it towards a specific outcome, like a 
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lobe on a camshaft, or the shape of indentations on a key. Or to 
put it mathematically, we could say that M computes the same 
function M assuming that some arguments of M are held 
constant. 

But none of this is how we understand programs. Programs 
are interpreted-L—taken to consist of instructions, directives to 
do something. To understand a program as a program involves 
the exercise not only of FUNCTION but also of REPRESENTA-

TION. To call an input configuration a program is to make an 
intentional attribution—to take the program to mean some-
thing, to view it as a direction to conduct specific effective op-
erations on the states and structures of the machines in which 
it is employed. This interpretive stance is evident in contrast 
with other types of machine. No matter how carefully designed 
so as to cause certain effects, the shape of a projectile is not an 
instruction as to how the things it hits should shatter; nor can 
the reaction of a plant to incident sunlight be described in terms 
of whether the plant obeyed the sun’s instructions. Instructions 
are normative entities, which come with satisfaction condi-
tions—making room for the question of whether the instruc-
tion was properly responded to. 

It may seem heavy machinery to claim that in order to un-
derstand the codes that control today’s CPUs as instructions re-
quires an exercise of REPRESENTATION, but it is only against 
the sorts of normative framework provided by REPRESENTA-

TION and FUNCTION that an implementation can be deemed 
correct. 

Very occasionally, instructions are atomic, with no argu-
ments—as in the instruction «HALT», leading an automaton to 
come to a halt; or “skip the next instruction if the content of the 
accumulator equals the numeral representation of zero,” where 
the accumulator is a unique register and therefore does not 
need to be addressed, and determining which instruction 
should be skipped is deictically related to the location of the 
skip instruction itself, and so also does not need explicit indica-
tion either. But it is far more common for instructions to be at 
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least bipartite: some kind of activity or effective change is indi-
cated, and one or more arguments required as well, to specify 
which objects should play a role in the carrying out of that ac-
tivity (as source or destination or both). 

How are the arguments interpreted-L? At the lowest level, 
they are usually binary addresses or numerals. In both cases 
they are understood by programmers as terms—names of ab-
stract numbers or of effectively accessible locations. Numerals 
were discussed above. Binary addresses are parasitic on numer-
als. A binary address is typically the address of that location 
which, if it were interpreted as a numeral designating the num-
ber n, is n (or n+) locations from the beginning of memory (or 
designated section thereof). So «110111», the binary numeral 
for the number fifty-five, would be the address of the fifty-fifth 
(or fifty-sixth) location in memory. But the number fifty-five 
can play no effective role in anything, and it would be wasteful 
for the computer to have to “count” memory locations.  So, in 
line with blanket mechanism, addresses are implemented in the 
hardware in such a way as to provide effective access to the lo-
cations that they are taken to be the names of. 

Thus the instruction «(INCR X)», where «X» is an address, 
might have roughly the following meaning and procedural con-
sequence. The programmer understands it as an instruction to 
increment the number stored at location X, where, in that thought, 
“number” refers to a number, “location X” refers to a location, 
and “increment” means increase by one the number currently 
stored there. On the blanket mechanism construal, the instruc-
tion means “increment the numeral stored at the location to 
which the term «X» provides effective access,” where “incre-
menting a numeral” means replacing that numeral with the nu-
meral that designates the number that is one greater than the 
number designated by the original.  

“This is all obvious,” the programmer is likely to respond. 
“Why make a big deal out of it?” Sure enough, at these elemen-
tary levels it may seem innocent. But as in the case of users and 
login handles described above, that will change when we get to 
employees, social media, and fake news. And note that the 
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norms on the effective operations, including norms governing 
what memory locations are accessed by what addresses, are all 
defined in terms of the interpretations-L of the various constit-
uent structures, not in terms of their effective projections. 

 3 Discussion 
The case of automata shows how blanket mechanism gets its 
grip on our computational imagination. At the lowest levels, 
programs are interpreted

L
 as instructions to do this or that, where 

“this or that” is usually specified in terms of an operation on in-
ternal computational structures, potentially amplified by sim-
ple numeric functions. “Load the contents of memory location 
X and store it in location Y,” “increment register Z by one,” “read 
in a byte from the input stream,” “test whether memory loca-
tion W is zero,” “shift the control point from point α to point β 
if condition γ is satisfied,” etc. The operations performed by 
these instructions (load, increment, read, test, jump, etc.) impart 
effective changes to effective computational states and struc-
tures. The targets of the operations (bytes, memory locations, reg-
isters, control points, etc.)—i.e., the entities accessed and poten-
tially affected during their execution—are again effective inter-
nal states and configurations. The actions taken by the opera-
tions either involve such structures directly, or make changes to 
them interpretable in terms of arithmetic operations on and 
conditions about these structures, projected onto structurally 
effective numerals (increment, equal zero?, add, etc.). 

That at least is what happens when the instructions are “ex-
ecuted.” To put it in /Lisp parlance, that is an account of the 
"procedural consequence” (ψ) of the instructions. Crucially, 
however, given (i) the absorption of the numeral-to-number re-
lation into the theoretical background, and (ii) the projection 
of the number-to-numeral relation back into the effective struc-
ture of the machine, this account of what happens when the in-
structions are executed is essentially identical to a representa-
tionally interpreted

L
 account of what the instructions mean. For 

low-level instructions, that is, their semantic-L analysis, under 
REPRESENTATION, coincides with an account of their effective 
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consequence, under FUNCTION, modulo absorption and pro-
jection.19 

The coincidence, in the simplest computational cases, of repre-
sentational meaning and procedural consequence, modulo ab-
sorption, projection, and the removal of normative considera-
tions from theoretical view, is the “smoking gun” that has al-
lowed semantics in the computational realm to part company 
so profoundly with semantics in logic, representation, and nat-
ural language. 
. At the simplest automata-theoretic level, the semantic-

L subject matters of computational instructions, are the 
internal states, structures, inputs, and outputs of the 
machines—states, structures, inputs, and outputs that 
are examined, tested, and affected in their operation of 
these instructions, along with simple mathematical en-
tities (numbers primarily) capable of being internally 
projected. 

When representationally interpreted
L
, that is, pro-

grams’ task domains—the realms to which the instruc-
tions bear non-effective semantic-L relations—are the 
machines’ mechanical innards and peripheral connec-
tions. 

. What instructions mean, in these simple cases, is taken 
to be what happens when the instruction is processed.  
In the case of machine instructions, that is, declarative 
import (φ) is defined to be the procedural consequence 

 
 
19The statement that the received computer science view “elides the dif-
ference between procedural and declarative accounts” is phrased in 
/Lisp terminology. It is of course not how the situation is described in 
present-day computer science. From that perspective the two views were 
never distinguished in the first place. Mapping instructions onto their 
effective consequences—onto what happens within the confines of the 
machine—is simply taken to be “what semantics is,” an approach that 
glosses distinctions critical to programmers’ understanding of both the 
mechanism and the governing norms. 



296 Computational Reflections 

 296 

(ψ)—to be an instruction to carry out the actions that 
constitute the procedural consequence. 

The elision, in these proscribed circumstances, of the differ-
ences between procedural consequence and declarative import 
suggests that the computational approach fits into the long his-
tory of taking the (semantic-L) denotation of commands to be 
their satisfaction conditions: what happens, or needs to hap-
pen, in order for the commands to be obeyed. Or so at least it 
seems, so long as the satisfaction conditions do not involve any 
representational or intentional states. If person A reminds per-
son B, who is giving a research talk, to thank the graduates who 
made the project possible, the satisfaction conditions of the re-
quest apply to the content-L of B, not to its physical, causal, or 
effective nature. Satisfaction conditions like “thank α,” “ask β 
for a favor,” or “reassure γ” are not the kinds of satisfaction con-
ditions that blanket mechanism would license. 

If computer science elides the difference between the repre-
sentational and procedural views of instructions, can we say 
that it conflates them? Not quite—because programmers and 
computer scientists must understand the distinction between 
numbers and numerals, and more generally between represen-
tations and what they represent.  Machine instructions, such as 
“test whether X equals 0,” “increment location Y,” “add Z and W,” 
etc., are unarguably understood, at least in the first instance, in 
terms of numbers—i.e., in terms of REPRESENTATION. Loop 
termination tests are used to determine the number of times the 
loop has been executed, not the numeral of times (which is not 
a well-formed idea). As in all core intentional architectures, it is 
these non-effectively represented numbers that structure the 
norms governing the implementations of these instructions—
the norms that dictate what the these instructions should do, the 
norms that engineers must ensure that the hardware honours. 
The mandate on machinic computation is that it be effective, 
however—that it produce mechanical changes to causally in-
stantiated configurations of bits. So there is no ambiguity as to 
how the machinery must be built. On pain of going 
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metaphysically astray, it must deal with numerals. It follows 
that mechanism, abstract objects, and warrant for governing 
norms must all be kept distinct in the programmer’s mind. 

Put it this way: no artificial intelligence will truly understand 
programming until it knows the difference between numerals 
and numbers, knows which properties are “proper” to each, and 
understands (even if implicitly) the normative structure gov-
erning the overall situation. 

 4 Third Diagnosis 

This brings us to the third and final diagnosis: not only of what 
blocked computer science’s understanding of /Lisp, but of 
something that I believe has since the beginning blocked com-
puter science from understanding computing as computing.  

The first diagnosis tried to explain the inscrutability of 
/Lisp from most computational perspectives in terms of dif-
fering conceptions of the notion of a program. There was merit 
to noting the different ways that programs are understood, but 
attempts to push hard on the diagnosis led to untenably ba-
roque complexities, many of them semantic. The second diag-
nosis shifted the focus to semantics, attempting to pin the dif-
ferences on how intentional structures are understood in com-
puter science in general. But that, too, led into intellectual cul-
de-sacs, forcing us to confront a variety of odd claims, such as 
that computers cannot do arithmetic. It also seemed difficult, 
at least in the context of programs, to draw a line between de-
claratively specifying behavior and procedurally engendering 
that behavior directly—in spite of the fact that the distinction 
makes sense in natural language. This raised perplexities about 
what was going on that seemed hard to answer. The third di-
agnosis shifted focus again, in order to unearth an underlying 
tenet to which computer science is methodologically commit-
ted, and examining how its conception of both program and se-
mantics have been reconfigured in its terms. 

In particular, the third diagnosis claims that computer sci-
ence is committed to what I have called blanket mechanism: an 
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overarching assumption that the theoretical discourse of com-
puter science can be restricted to what is mechanical—to me-
chanical entities and effective relations among them (even if 
both are abstractly or mathematically described). More specif-
ically, under blanket mechanism’s mandate: 
. Non-effective semantic relations are debarred from the-

oretical analysis. The simplest of these, such as the rela-
tions tying numerals to numbers, and the relations of 
both of those to addresses and to locations, are absorbed 
into the methodological backdrop, out of theoretical 
view. 

. The normative conditions governing computation, con-
stituted by non-effective relations to external and ab-
stract semantic realms (including task domains), are not 
considered part of semantical analysis, or indeed to have 
any role in formal computational theory at all. 

. It nevertheless continues to be tacitly recognized that 
computing is fundamentally a semantic/intentional 
phenomenon. Without this recognition, it would be im-
possible to understand it as computing. This recognition 
is betrayed in the fact that computational discourse re-
mains permeated with intentional vocabulary (data, pro-
gram, language, reference, interpretation, etc.), and is re-
flected in the fact that something called “semantics” re-
mains prominent in theorical analyses. 

. All traditional semantical vocabulary is redefined to de-
scribe or refer to internal mechanical phenomena, not 
randomly, but in ways that allow formal analysis and in-
formal intuition to track common sense, at least in some 
approximate ways. However there remain major differ-
ences. The main use of the term ‘semantics’ in computer 
science is to describe the procedural consequence of what 
happens, effectively, when internal structures are pro-
cessed. What they represent is not dealt with (except 
when what they represent is the procedural conse-
quence.) 
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The situation is thus almost the exact opposite of logic, 
where what structures represent is taken as primary, and 
to constitute the semantics, and where procedural conse-
quence (inference) is viewed as derivative, normatively 
governed by the extent to which it does justice to seman-
tics. In computer science, in contrast, the procedural con-
sequence of a procedure is identified as being the semantics, 
foreclosing analysis of what it is that computational struc-
tures represent, and also of what norms it is thereby en-
joined to honour. 

(Human language and thought are also normatively 
governed by the extent to which they do justice to seman-
tics. In logic, however, the semantics are generally defined 
independently of, and prior to, processes of inference. In 
the human case—or so I will argue in chapter —seman-
tics instead arises pragmatically in conjunction with use.) 

. To enable these accommodations to blanket mecha-
nism, computer science adopts a projection strategy, in 
which all relevant non-effective semantic relations and 
intentionally targeted objects are “replaced,” as it were, 
with mechanically effective internal proxies to serve in 
their stead (often access relations, in place of represen-
tation or reference). Semantic terminology is “folded 
back” into the machine so as to refer to these effective 
proxies. 

. Ambiguities introduced by these practices of absorp-
tion, projection, and erasure have not only hindered full 
analysis, but also obscured the true nature of compu-
ting—as witnessed for example by equivocation in the 
use of the verb ‘compute,’ confusion about whether 
computation is fundamentally mechanical or semantic, 
and misleading implications of such technical terms as 
‘correct.’  

It is instructive to review some examples of this “folding back in 
upon itself” procedural construal of semantics that we have en-
countered in this exploration—cases where, from our external 
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point of view, we can understand how the ingredients, pro-
cesses, behaviors, etc. of a computational system bear non-ef-
fective semantic relations to entities in the program’s task do-
main, but where, in the official theoretical account, those rela-
tions, and the entities to which they are related, are projected 
back inside the mechanical systems and rendered mechani-
cal/effective: 
. In chapter  I pointed out something that must perplex 

anyone of an intentional bent: in all standard Lisps (i.e., 
all besides /Lisp) both «(QUOTE 3)» (i.e., «'3») and «3» 
evaluate to «3». Evaluation is not a standard logical no-
tion, but if it means anything in logic, it has to do with 
mapping a symbol or designator onto (what logic would 
understand to be) its “semantic value.” If Lisp evaluation 
meant “produce as a result what logic would take to be 
its value,” that would explain why «(QUOTE 3)» should eval-
uate to (the numeral) «3», but would predict that evalu-
ating (the bare) «3» would generate an error, because 
abstract numbers cannot be returned. If evaluation 
simply meant “yielded as the result of processing,” there 
is no reason why (QUOTE 3) should not also be self-evaluat-
ing—or, for that reason, evaluate to something else en-
tirely (“yielded as the result of processing” betrays that 
normative considerations have been banished from the-
oretical view). 

In sum, the classical sense of logical value (reference or 
interpretation-L) is required in order to explain the first 
result, why «(QUOTE 3)» evaluates to «3», but fails to explain 
the second, why «3» is self-evaluating. There is no expla-
nation of the second within the official computational 
analysis; it is simply stipulated. 

Both results, however, are predicted by the third diag-
nosis. Since the (logical) semantic value of «(QUOTE 3)» is in 
fact the numeral «3», and since that numeral is an effective 
ingredient within Lisp systems, and since tokens of the se-
mantic relation between «(QUOTE 3)» and «3» can be pro-
jected onto an effective access relation, then Lisp 
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evaluation can be defined to return it. Since the interpre-
tation-L of the bare numeral «3», however, is not an effec-
tive structure (is not “within the system,” in Newell’s 
phrase), Lisp evaluation must be reflected back inside the 
machine to the closest analogue of what it “should” be—
i.e., to its projection, which is the numeral itself. 

The situation with respect to truth-values is similar: 
«NIL» is self-evaluating in traditional Lisps, because false-
hood is not an effective mechanical ingredient. (Most 
Lisps do not have a distinguished internal token for “true,” 
but if they did, that too would be returned as the “result” 
of processing «(EQUAL 'A 'A)».) Similarly with structures (s-
expressions) whose interpretation-L is other s-expres-
sions within the system. The s-expression «(CAR '(A B C))», 
which Lisp programmers understand to mean “the first el-
ement of the list «(A B C)»,” evaluates to the atom «A», 
which is “correct” (i.e., is its interpretation-L), since «A» is 
an effective internal structure. It is only in those cases 
where the interpretation-L is not an effective machine-in-
ternal structure that evaluation (interpretation) needs to 
“reflect back inside” the machine to refer instead to its 
proxy. 

. In his “Physical Symbol System” paper, as noted under 
PRO- in chapter , Newell claims—correctly in my 
view—that “[t]he most fundamental concept for a sym-
bol system is that which gives symbols their symbolic 
character, i.e., which lets them stand for some entity.” 
This is music to the ears of anyone with intentional pre-
dilections. Three sentences later, however, Newell goes 
on to say, “[o]ur concept is wholly defined within the 
structure of a symbol system.” He takes “the structure 
of a symbol system” to mean the effective structure—a 
restriction of the system to its locally-connected effec-
tive (causally efficacious) ingredients. This is betrayed 
another three sentences on: “[a]n entity X designates an 
entity Y relative to a process P, if, when P takes X as in-
put, its behavior depends on Y. 
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The juxtaposition of the two quotes again validates the 
third diagnosis. The first stands as evidence that it is not 
Newell’s intention to banish everything about semantics 
or symbolism. On the contrary, he wants to retain what 
he can of the intentional, within the scope of his meta-
physical commitments. The second gives voice to those 
commitments: everything must lie inside the mechanical 
restriction. Similarly, ‘depends on,’ in that statement 
clearly means “effectively depends on”—and more gener-
ally, it is clear that he takes P, X, and Y all to be effectively 
individuated. So what he is able to “retain” of the inten-
tional character of computing is its internal projection, in 
line with blanket mechanism. 

. The mechanical restriction is evident in programming 
language semantics, as we saw in chapter . All pro-
grammers would understand at least one of the roles of 
the identifier «HIGHEST-PAID-EMPLOYEE» (discussed in 
§.a) to be to serve as a representation (in the classical 
sense) of the real-live human being who earned the most 
income. But this is another case where the true semantic 
relation (interpretation-L) of a computational structure 
is non-effective—a semantic relation to a person outside 
of the machine—so it is blocked from consideration in 
official accounts. In its place—and, interestingly, con-
travening the conventional wisdom that theoretical 
analyses of programs should not advert to issues of im-
plementation—accounts of programming language se-
mantics take the “referent” of «HIGHEST-PAID-EMPLOYEE», 
along with all such identifiers, to be a location in an as-
sociated memory, onto which the person is projected.20 

. As well as targeting only procedural consequence, not 
declarative import or their relation, computer science 
also construes processes purely effectively or 

 
 
20Again, as always, theoretical treatments may model that memory as an 
abstract “store,” but that does not impinge on the point.	
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mechanistically—i.e., narrowly rather than widely, as 
might be said in a philosophical context. So if a payroll 
system changed the numeral in Robin’s monthly pay 
record from «5,000» to «4,000», the official theoretical ac-
counts would not be able to formulate a claim that the 
action reduced her monthly pay from , to ,, even 
though that is how a programmer (and she herself) 
might describe it. Rather, it must content itself with an 
account that merely says that there has been a numerical 
change in a data structure. 

. Yet another symptom of the mechanical restriction, in 
programming language semantics, is the widespread as-
sumption that operational and denotational accounts of 
the semantics of a programming language should be 
provably equivalent. 

As mentioned earlier, it is common for people outside 
of computer science to assume that these two approaches, 
operational and denotational, must be analogous to proof-
theoretic accounts of what can be formally derived, and to 
semantic21 accounts of what is semantically entailed—and 
therefore to think that a proof of their equivalence be a 
substantive result—essentially a completeness proof, in a 
computational context. But as pointed out in chapter , 
this is not the case. Operational and denotational ac-
counts of a programming language’s “semantics” are in fact 
two different styles of describing the very same thing—one 
via concrete analysis, usually in terms of an abstract model 
of an implementation, another via mathematical model-
ing. They are both analyses of the effectively individuated 
behavior to which programs in the language give rise, 
when “interpreted-C"—i.e., when executed or run, ac-
cording to the rules of the language processor. 

. In §. I stated a thesis (RSS) on which Lisp is based: 
that reflection is simple to build on a “semantically 

 
 
21Or, as is sometimes said, model-theoretic. 
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sound base.” The idea was that the design for the me-
chanical architecture would effectively “fall out” of the 
semantic framework, once that semantic framework 
was properly understood. As noted in §…, above, the 
most important aspects of being “properly understood” 
included: distinguishing procedural consequence from 
representational import; having a clear sense of how the 
two relate, and of what normative conditions accrue to 
each, and to their relationship; and knowing how to in-
tegrate them into a single encompassing theoretical 
framework. 

If, under the mechanical restriction, ‘semantics’ is un-
derstood to mean what it means in contemporary com-
puter science—whatever behavior results from processing 
the program—this thesis is rendered either vapid or tau-
tological. At best, it could be taken as the empty claim that 
“a system is simple to design if you (already?) understand 
how it is supposed to work.” 

. Numbers are a special case. As noted in chapter , and 
as elaborated above, if computing is understood merely 
as transformations among concrete, effective symbols, 
without non-effective semantic relations being theo-
rized, then computers cannot properly be said to add 
numbers at all; they can merely be described as produc-
ing numerals that denote or represent numbers on the 
(classical!) sense of denotation or representation. Ac-
cording to blanket mechanism, that is, the computa-
tional theorist should be prohibited from saying any-
thing about mathematical entities, and should therefore 
have to deny that computers have to do with them. 

On the surface, the third diagnosis removes this diffi-
culty. If relations between numerals and numbers are 
freely absorbed and projected, computer scientists can 
discuss numbers with abandon. The practice also explains 
why talk about “-bit numbers,” or “floating-point num-
bers” does not sound oxymoronic (‘-bit’ and ‘floating-
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point’ make sense only as properties of numerals).22  
The practice is certainly widespread—permeating 

such descriptions as this: 
 As the name implies, floating point numbers are 
numbers that contain floating decimal points. 
For example, the numbers ., ., and 
,. are floating point numbers. Numbers 
that do not have decimal places are called inte-
gers.23 

Needless to say, these are descriptions of numerals. Deci-
mal points and decimal places are facts about the repre-
sentation of numbers, not about the numbers themselves. 

. Finally, the mechanical restriction explains something 
noted in chapter 3: why it is that computer science has 
some claim to understanding the semantics of program-
ming languages, but not of the programs written in 
them. On any of several construals of ‘program,’ but per-
haps especially the prescriptive/specificational reading, 
programs are “about” the behavior they engender, on a 
classical understanding of ‘about’—and so staying 
within the confines of the mechanical restriction still al-
lows these officially-licensed accounts to do at least par-
tial justice to how a programmer might understand how 
the language works, mechanically. When it comes to in-
dividual programs, however, as explored in chapter , 
programmers universally understand the symbols (vari-
ables, constants, etc.) to have an interpretation-L—
sometimes within the operations of the system itself, 
but often in the world or task domain with respect to 
which the program is written (and by which it is 

 
 
22Compare these examples with ‘Roman numbers,’ which is obviously 
malformed. As everyone knows, the proper term is ‘Roman numerals.’ 
23https://techterms.com/definition/floatingpoint; downloaded Aug , 
. 
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normatively governed). The semantics of individual 
programs, that is, cannot be understood within the me-
chanical restriction—since computation (at least com-
putation in the wild) is in fact an intentional phenome-
non, exhibiting genuine unrestricted semantical rela-
tions to the world, to which it is normatively accounta-
ble. 

Many more such examples could be cited. But one final point 
seals the case. We can use the third diagnosis—computer sci-
ence’s pledge of allegiance to blanket mechanism—to explain 
both the first and the second diagnoses, having to do, respec-
tively, with the meaning of the term ‘program’ and the construal 
of semantics. 

Re the first diagnosis: one advantage of the ingrediential view-
point on programs, of the sort inchoately incorporated in 
/Lisp, but planned to be fully embraced in Lisp, is that it 
recognizes that programs use terms, as programmers well un-
derstand, that refer to entities in the task domain. Since many 
or most of those relations are non-effective, however, they are 
ruled out of court as legitimate subject matter for analysis under 
blanket mechanism. That pushes programming language se-
mantics to give an account of the operational consequences of the 
programs’ execution—a move that in turn suggests that they 
must be “about” those structures and operations, like instruc-
tions in low-level machine-language programs. That in turn 
pushes the conception of programs towards a specifica-
tional/prescriptive view, bolstering the idea that program iden-
tifiers such as «CURRENT-FLOOR» and «HIGHEST-PAID-EMPLOYEE» are 
genuinely about the memory locations to which they provide 
effective access. This conception of what a program is “about” 
dovetails with the projection strategy: the respective memory 
locations serve as proxies for the real floor and human em-
ployee. 

But there are two problems. First, when internal structures 
are the genuine interpretation-L of instructions, as in machine-
language programs, they can serve as legitimate grounds for the 
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normative standards for such programs, even if that normative 
governance is not theorized (at least not as normative govern-
ance). In higher-level programs, however, when the projection 
strategy replaces task domain entities with effective internal 
proxies, it loses access to the situation and states of affairs in 
terms of which norms on programs can be stated. 

Second, the projection strategy’s removal from theoretical 
view of the non-effective semantical relations targeting task do-
main elements means that theory sidesteps the semantical am-
biguities we encountered earlier—such as whether the denota-
tion of a data structure is the person in the world about which 
it contains information, or the storage location where that in-
formation is kept. As in so many cases, projection make the an-
swers to such questions easy: computational structures are 
“about” that to which they provide effective access—memory 
locations, and operations upon them. 

Re the second diagnosis: since blanket mechanism restricts the-
oretical accounts to effective structures and operations on 
them, differences between declarative and procedural interpre-
tations of programs (or indeed of any computationally internal 
structures) are either minimized or erased. This is especially 
true of “base-level” symbols, which an outsider would take to 
represent entities, phenomena, and behavior in the real world. 
The situation gets more complex when metalevel-L entities 
play a role, particularly when the entity thereby referred to is 
itself an effective ingredient within the system. In such circum-
stances, the referred-to entity itself can be dealt with directly in 
the theory, without needing a proxy. This is why, in all Lisps 
except /Lisp, «(CAR '(A B C))» returns (evaluates to) «A», not to 
«'A». But not all metalevel-L structures refer to effective internal 
ingredients. Closures are an example. In Lisps, lambda expres-
sions («(LAMBDA … )») represent functions. Functions are ab-
stract objects, even when considered intensionally. The effec-
tive proxy for a function-in-intension is a closure, but closures 
are typically not representable in full detail within the imple-
mented language, often generating an expression marked with a 
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special purpose tag (such as «<CLOSURE (#F X)>»), which cannot 
be “applied”. 

Two final comments. 
. Nothing compels computer science to adopt the me-

chanical restriction. Nothing requires computing to be 
analysed within a methodological (let alone metaphysi-
cal) commitment to blanket mechanism. Our intellec-
tual experience with formal logic over the past century 
and a half should make that evident—but so too can 
/Lisp. Both dialects were designed and analysed, and 
functioned perfectly well as effective concrete systems, 
from within a logic-inspired sense of semantics as pri-
marily consisting of deferential, non-effective relations 
towards realms that can and often do transcend the lim-
its of what is “within the machine”—transcend what 
falls within the mechanical restriction. 

. Some readers will have been troubled, throughout this 
whole analysis, by something like the following argu-
ment. “All these semantical-L relations are irrelevant to 
computation qua computation,” they might argue. “Af-
ter all, automata theory treats computers merely as un-
interpreted

L
 digital state machines. Complexity theory, 

though framed mathematically, similarly views compu-
tation in terms of states of semantically uninterpreted-
L (purely formal, as is sometimes said) digital machines. 
Potentially even more seriously, even run-of-the-mill 
programs—as texts, as code, and in terms of the unfold-
ing processes they engender—can be analysed without 
analysing any semantical-L interpretations.” 

Much of this is true. The last point is true in particular 
cases. It does not follow, however, that the types and cat-
egories in terms of which we understand computation—
especially computation in the wild—can be defined in 
terms of their projection onto uninterpreted

L
 physical 

states. The same could be argued for a theorem prover or 
system of logic. One can always provide a step-by-step 
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account of what any logical system is doing, from a purely 
syntactic or mechanical point of view, without making ref-
erence to the interpretation-L (I) of any of the expres-
sions, premises or conclusion. But that would not be an 
account of it as inference, as steps in proving a theorem, or 
coming to a logical conclusion from a set of premises. By 
the same token, consider the attempt to characterize a 
program in automata-theoretic terms, as simply “locking 
down” some of the inputs to a machine, and leaving the 
rest open. While not false, it is not a characterization of 
what it is to be a program. 

By analogy, consider writing. Any given piece of paper 
on which something is written can be described in terms 
of distributed points of ink, without reference to what 
configurations represent letters, which combinations of 
letters form words, which arrangements of words consti-
tute sentences, etc.—let alone what language the text is 
written in, or, most seriously, what any of it means. Some-
one who objects to understanding written language in 
terms of meaning, someone who argues that “in principle” 
there is no more to written language than configurations 
of marks on contrasting backgrounds or strings of letters, 
can be accused of changing the subject. Such an account 
would no more be a theory of written language than an ac-
counting of the spatio-temporal distribution of organic 
molecules would serve as an account of mammals, irony, 
or fame. 

Just as an account of the steps taken by a mechanical 
device is not an account of doing logic, and an account of 
possible configurations of letters or marks is not a theory 
of language, so too an account of state changes of an unin-
terpreted digital state machine is not an account of compu-
ting. The fact that the first two examples will likely garner 
sympathetic readings, but that the last will unleash re-
sistance, shows how deeply the mechanical restriction has 
taken root in our intellectual imaginations. So much the 
worse, I believe, for the current state of theory. 
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One sign of the problems of characterizing writing as 
no more than configurations of ink on paper is combina-
toric. The number of possible configuration of black spots 
on white paper is astronomical, of which those that con-
stitute inscriptions of intelligible language constitute a 
vanishingly small subset. To understand computing 
merely as the causal (effective) consequences of arbitrary 
configurations of digital states is similarly vast, compared 
to the number of the programs that we actually write—
the number of programs that we could understand, the 
number that could be understood in programmers’ de-
fault understanding (V in chapter ’s typology). Sure 
enough, for purposes of digital design, it may be useful to 
have some abstractions of computers as digital substrates 
that treat only their unrestricted compositional binary 
states. But that is not computing—not the phenomenon 
that for close to a century has upended the world. 



  
 

 8 Conclusion 

 1 Summary 
What have we learned? 

Three things at the outset. 

First, at the ontological level, computation—especially compu-
tation in the wild, computation as it is used and cared about—
is inextricably and ineliminably intentional. The fact has been 
clear since the outset, betrayed in the fact that computer sci-
ence’s technical vocabulary is more reminiscent of rationalist 
accounts of logic and knowledge than of empirical studies of the 
physical world. Considerations of representation and seman-
tics permeate computational practice: the notion of a program, 
the idea that automata and other computational devices are ca-
pable of performing arithmetic operations, the idea of data, no-
tions of addresses, pointers, and references in computer sys-
tems, the use of identifiers in programs and labels for data 
structures that refer to entities and situations in the program’s 
task domain, and so forth. The vanishingly small subset of au-
tomata-theoretic configurations of interest in computer science 
are those that support semantic interpretation. Sans represen-
tation, in fact, an automaton cannot be described as computing, 
at all; it merely transitions from one state to another, depending 
on the effective properties of its internal states and of any per-
turbations impinging upon it. Pure automata—uninterpreted 
digital state machines—do play a role in computer science, but 
as substrates for computing, not as the phenomenon of compu-
tation itself. 

Second, the descriptive/theoretical enterprise of computer 
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science focuses on the effective machinery underlying compu-
ting—on the automata-theoretic and other effective properties 
of the (usually digital) material substrates on which computa-
tional processes run. This effective focus is fueled by two 
things: (i) an abiding concern with implementation—with the 
effective conditions and requirements on any material substrate 
capable of running a computation, rather than with the consti-
tutive properties of the computations thereby run; and (ii) an 
overarching methodological commitment to mechanical expla-
nation and to scientifically recognizable forms of theoretical de-
scription. The two considerations come together in the field’s 
embrace of blanket mechanism: a joint ontological and method-
ological restriction of attention to mechanical phenomena and 
relations, eschewing any considerations of representation and 
genuine semantics. 

Third—substantially complicating the situation and ob-
scuring the true nature of the situation—in spite of this effec-
tive focus, computer science continues to use semantical vocab-
ulary to frame its analyses, descriptions, and claims. This con-
tinues even when the subject matter is restricted to (or pro-
jected upon) mechanical configurations and states. We have 
seen this in standard accounts of programming language se-
mantics, where the “semantic value” of an expression α is a pri-
ori restricted to be an effectively-identifiable entity or activity β 
within effective reach of α—something that can be returned or 
performed when α is run or executed. Sometimes, for example 
in the case of a memory pointer in a  low-level language, or in 
the case of a quoted expression such as «'X» in Lisp, the effec-
tively reachable item β is at least arguably the genuine semantic 
value of α (the memory location pointed at, and «X», respec-
tively), and so the two readings coincide: semantic-C value and 
semantic-L value are identical. But when the numeral «5» is 
claimed to be the “semantic value” both of the expression «(+ 2 

3)» and of the numeral «5» itself, the only plausible reading is 
that what is meant by ‘semantic value’ in such a claim is seman-
tic-C value; there is no doubt in anyone’s mind that in both 
cases the semantic-L value is the abstract number five. 
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More generally, the study of what has been called program-
ming languages semantics, on either the ingrediential or speci-
ficational view of programs examined in the first diagnosis, is 
about the effective conditions on the machines that implement 
programs written in those languages, without regard to what 
the terms or identifiers in those programs mean or signify in 
any representational sense. This is why, as noted in chapter , 
the discipline studies the semantics of programming languages, 
but not the semantics of programs written in those languages. 

Confusion is increased by the profusion of ways in which se-
mantic/representational entities are classified. 

The use of mathematical entities to classify subject matter 
phenomena is a staple of scientific inquiry. The classificatory 
situation is relatively straightforward in cases where the phe-
nomenon being classified is itself neither abstract nor inten-
tional:  kgs of water per cubic meter, ~. km/sec for the 
escape velocity from our planet, etc. When the classified phe-
nomenon is itself intentional or semantic, such as a natural lan-
guage sentence or a human thought, things grow more com-
plex. In informal practice, it is standard to classify such phe-
nomena by their semantic content. “I’m thinking that the election 
is just  days away,” someone might respond when asked 
“What’s on your mind?”—where the election’s being just  
days away is the (semantic-L) content of the thought being de-
scribed, and the thinker uses that proposition to classify the 
thought they are having.1 In such cases of classifying intentional 
states, that is, there are two semantic relations involving the 
state and its content: one relating the thought to its content; 
another relating the thinker to the thought. In the former case, 
the semantic relation runs from state to external world—from 
thought to electoral situation. In the latter, because the propo-
sition is used to classify the thought, the “arrow of directed-
ness,” and hence the deference, runs the other way. The base-

 
 
1We have essentially no introspective access to thoughts except via their 
contents, and so classifying them that way is our only practical option. 
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level thought is normatively accountable to the electoral facts 
(if the election is sooner, we can correct the thinker), but for the 
meta-level cognitive theorist, the content is accountable to the 
thought. For such a theorist to use the proposition “that the 
election is just  days away” to classify the thought, even if it 
happens to be true, would be wrong. 

In folk psychology these 
facts are so evident that it is 
pedantic to spell them out. 
But given that computer 
science explicitly theorizes 
neither norms nor genuine 
semantics, it can be difficult 
to discern the direction of 
deference. When ADD was 

described in chapter  as an 
automaton that adds num-
bers, I did not say explicitly 
whether that account was 
using addition to classify 

the automaton independent of the semantic content of its in-
puts and outputs, or whether it was classifying it by their repre-
sentational content. On reflection, it is clear that the latter 
would normally be the case. If instead of figure  (§.a) I had 
presented the state diagram shown in figure , the reader would 
have been appropriate in responding “that is wrong,” “that 
doesn’t work,” etc.—betraying that the automaton is governed 
by a norm of adding that applies in virtue of a presumed binary 
representation relation from inputs and outputs to numbers.2 
That is, it was classified by the content its inputs and outputs 
were supposed to have—i.e., by a normative account of their 
content.  

 
 
2Due to the fact that the boldface zero being written is forgetting the 
“carry bit” implied by being in state σ1. For example, this machine will 
say the sum of  and  is . 

 

 
Figure  — wrong ADD 
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The bottom line is something that this book has demonstrated 
since the outset: current computer science does nothing to illu-
minate issues of semantics and interpretation-L, and “uses up” 
the semantic language that would normally be used to describe 
the situation. 

Per se, this is a dismal conclusion—not one it should have 
taken this much work to get to. By digging deeper, however, we 
have uncovered considerable consequential richness under the 
surface. 

The pressures fueling blanket mechanism—the practical 
concern with implementation, and the theoretical attempt to 
corral computer science into the familiar mould of causal expla-
nation3—have submerged discussion of the intentional charac-
ter of computing  in two distinct ways. 

On the theoretical side, because the field’s aims have been 
unified around no more than accounting for computing’s effec-
tive dimensions, theory has been free to make use of unmarked, 
untheorized representational relations. So long as focus on 
(and deference to) effective properties and relations is main-
tained, theoretical discourse can be conducted either concretely 
or mathematically, and in terms of either sign or signified, with-
out worry that either indiscriminate mathematization or unre-
marked signification will mar the theoretical results. One strik-
ing example is the presumptive isomorphism between opera-
tional and denotational approaches to programming language 
semantics. Another is in the characterization of computability 
in terms of “computable mathematical functions.” Theories of 
what functions are computable not only rest on a constrained 
concept of effectiveness, but also assume a background notion 
of a “reasonable encoding,” violation of which wreaks havoc on 
the results. 

Similarly, the routine elision of any distinction between 

 
 
3Even if it eschews outright physical considerations, by theorizing effec-
tiveness rather than causality, modeling computational states mathemat-
ically, etc. 
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numerals and numbers, as in descriptions of simple hardware 
as doing arithmetic, the idea of a “-bit integer,” etc., are harm-
less so long as the overarching theoretical purpose is to expose 
and theorize effectiveness constraints, not to investigate seman-
tic relations. In general, that is, so long as practicioners recog-
nize and honor the abiding concern with the effective (as 
Goguen and Meseguer did in developing a “programming lan-
guage semantics” for Lisp), the relation between theory and 
phenomenon can be permeated with unremarked mathemati-
zation, modeling, and semantic relations, without causing con-
fusion.   

On the practical side the situation is more complex. Pro-
grammers are concerned with implementation and concrete de-
tails of the programs they write, but as has been noted here 
throughout, especially in chapter ’s characterization of their 
understanding of computing (V), they must also understand 
the myriad intricate semantic relations between and among 
their processes and the task domains for which they write pro-
grams. They navigate issues of when what is at stake is a com-
putational structure, and when what matters is the state of the 
world that the structure represents. Not only that; they under-
stand, and write programs to deal appropriately with, the 
equally intricate ontological issues relevant to the norms and 
semantic descriptions: when two “files” are the same file, for 
what purposes two “copies” of a data structure have to be con-
sidered as different and when they can be considered the same, 
and so on. 

The more one studies the situation, in fact, the clearer it be-
comes how much of the conceptual structure of  programming 
is ignored or glossed over in current computer science. A not 
insignificant corollary of this state of affairs is that program-
mers’ untheorized expertise emerges as stunningly impressive. 
One of the mandates we should place on developing a more ad-
equate theoretical framework is not only to provide program-
mers with assistance in managing the intricacies of these inten-
tional and ontological realms, but to recognize and honour 
their superlative skill, bring into view the subtlety of their 



 8 · Conclusion 

`  
  

317 

intuition, and raise the stakes for what it will be for these skills 
to be shouldered by the next generation of artificial intelligence 
system. 

 2 Directions for Computational Theory 
How should theory develop, in light of what we have learned? 

First, by far and away the most important fact about any 
new account of computing, if it is to be an account  of compu-
ting as computing, must be its recognition of both the effective 
(semantic-C) and the non-effective (semantic-L) dimensions of 
the semantics of any computational situation. Analyses of logic, 
complete with accounts of syntax, proof, semantics, entailment, 
and completeness, show the way, including in their employ-
ment of user-supplied interpretation functions as parameters in 
order to recognize that the semantic interpretation of predicate 
symbols and terms will depend on users and use. Computa-
tional structures will in general be far more complex than logi-
cal statements, but the pattern will be the same: facts specific to 
users and uses will need to be “externally supplied,” as it were, 
before interpretations-L can be "tied down." Analogues of 
soundness will be definable in terms of those user-supplied pa-
rameters. 

Second, in a major difference from logic, the story will need 
to account for both static and dynamic dependencies between 
and among the effective operations and non-effective interpre-
tations-L, reminiscent of the relations between procedural con-
sequence (ψ) and representational import (φ) in /Lisp. The 
actual relations theorized for those dialects were a hack, but the 
framework was designed to accommodate more substantial re-
lations. As well as including causal interactions, the relations 
will bring in dependencies and normative conditions. In partic-
ular, perhaps the most important fact about the multidimen-
sional analysis must be its recognition that the normative con-
ditions governing the system will be generally (if not always) 
involve non-effective properties of the system’s place in the 
world. 

Moreover, we should not expect the accounts of what 
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happens (ψ) and what things signify (φ) to be independent. 
That is, semantic content is likely to depend on dynamic use, 
and use to depend on semantic content, especially at any level 
at which either is effable—any level at which constitutive regu-
larities can be intelligibly articulated. 

There are myriad accounts in the philosophy of language 
and mind of ways in which semantic content may depend on 
factors involving use—including pragmatism, Wittgensteinian 
accounts of meaning as use, conceptual role semantics, and the 
like. By and large, these efforts are not theorized in anything 
like the detail that would be required for technical computa-
tional use, but the considerations they involve are likely to apply 
to computational cases as well. In some cases these philosophi-
cal approaches make simplifying assumptions inapplicable to 
general computation, such as a presupposition in most ac-
counts of conceptual role semantics that the realm of concep-
tual activity is internal to the head of the speaker or thinker, and 
the realm of reference external (in general neither assumption 
will hold in a general computational setting). 

Third, as we have seen, the proper understanding of a com-
putational system will require recognition that classes, abstract 
data types, and other forms of abstraction are critical to its non-
effective analysis. As we saw, even if such abstractions are elim-
inable for purposes of a purely effective account, they will be 
framed in terms of objects, structures, and relations critical 
to—perhaps even defined in terms of—its non-effective and 
normative analysis. Even if a class defined for a university 
course is (effectively) implemented in terms of a suite of atomic 
identifiers—course number, department, enrolment status 
(graduate or undergraduate), instructor, etc.—the fact that it 
represents a course may be essential to know in order to deter-
mine whether it honors a variety of applicable norms (e.g., in-
volving student-teacher ratios). 

Fourth, in order to accommodate these substantial relations 
and interactions between referential and other non-effective di-
mensions of the situation and dynamic forms of effective activ-
ity, it will likely be best in general not to associate the  label 
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“semantics” merely with the former, and not to assume that an 
account of the semantics of a language or system can be analyt-
ically defined on its own. Instead, the /Lisp experience sug-
gests taking general significance (Σ in /Lisp) as the backbone 
analytic category, and then defining referential (φ) and effective 
(ψ) projections in terms of it, at any relevant level of abstraction 
at which they are intelligible. For example, in the /Lisp case 
it is only Σ that it makes sense to define compositionally. Sure 
enough, because of causal closure, effective activity (ψ) can be 
compositionally defined in /Lisp, but the resulting account is 
theoretically barren. Stripped of what matters, analysis loses 
any account of what the system implements, or what norms the 
system is enjoined to honor. A purely effective account (pure ψ, 
without φ) treats its subject matter as stuff manipulation, losing 
the warrant for calling the system computational. 

It is not the mandate of this book to lay out a new framework 
for computational analysis. It is not even its mandate to identify 
the concepts in terms of which the framework will be describa-
ble, except at the broadest level of abstractions (“an integrated 
account of input, output, and state, subject to overarching con-
ditions of causal efficacy and material realizability”). Needless 
to say, the development of such accounts, and of ontological 
frameworks requisite for their articulation, will be an enormous 
task, requiring investigation and time to develop. But the exam-
ples adduced throughout the present volume should give an in-
dication of the directions where a theory of computation must 
develop if it is to live up to its name. 

Postscript—Naturalizing the Non-effective 
This is not the end of the story. 

Regularities involving non-effective relations have been a prime 
actor in this drama. In particular, we have seen that non-effective 
semantic relations are central to any notion of computing. Yet non-
effective relations are not primitively supported in what we take to 
be the ultimate structure of the universe. That raises some founda-
tional questions. What are these things, how do we know about 
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them, how are they sustained? 
The first question does not seem particularly metaphysically 

challenging. Non-effective relations are presumably constituted by 
relational facts among potentially large numbers of physically effec-
tive properties and relations. As regards the second—how we know 
about them—almost by definition, non-effective relations must be 
correlated somehow, albeit possibly in extremely complex ways, be-
tween and among aspects of the web of basic effective properties. 
Non-effective relations could therefore be represented by ineffably 
complex abstractions over the huge number of weights in a trained 
network model. It is the third question that is challenging: what 
maintains them—what ensures that those representations are cor-
rect? 

Equation E from §.V is a technical expression indicating that 
the simplification process is designation-preserving. Designation is a 
non-effective relation, yet the architecture of /Lisp shows, at least 
in a simple context, how a strictly effective computational process 
can be made to honor constraints that, in and of themselves, are 
non-effective. In a similar way, human cognition demonstrates that, 
taken as a whole, our brain processes, which from one point of view 
must be constituted purely effectively, can nevertheless deferentially 
honor non-effective relations with distal parts of the world. An ade-
quate account of how this occurs will undoubtedly be extremely elab-
orate, involving neuroscience, evolutionary psychology, and much 
more—perhaps including the normative standards of objectivity. 
While our minds constitute an existence proof that it is possible, 
however, at least to date they provide little practical guidance on how 
such a non-effectively deferential system might be constructed. 

Computation offers a potential path toward an answer. A com-
plete picture of computation will require an account that discharges 
the naturalistic debts incurred by bringing at least some non-effective 
relations forward into view. While nothing can affect the non-effec-
tive directly, if a system’s non-effective properties or relations can be 
effectively represented, or if the system can be attuned to effective 
correlates of non-effective properties or relations, it should become 
possible to alter the status of what is non-effective indirectly, by ad-
justing that with which what is non-effective is correlated. In a sense, 
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that is, at least in principle the non-effective could be adjusted via 
something like correlated inference. 

I have not told any such story here, but something of its sort will 
need to be part of any adequate successor theory. 

 

——————————————•• —————————————— 



 

  
 

  Epilogue 

The impossibility of understanding what it would be like not 
to be able to think can blind us to the achievement of concretely 
realized thinking. Of the surpassing abundance and ontological 
richness in the world, only a tiny subset—a subset of measure 
zero, to use the set theorists’ phrase—meets the conditions of 
being mechanically effective. Or to put it in plain language: al-
most nothing is effective. Being the shirt my grandmother sewed 
for me, being a thousand miles from Abilene, being about to 
receive a letter from a long-lost friend, being the far-away galaxy 
that my th-century descendants will visit—none of these 
properties are effective, none are of the sort that, so described, 
could be harnessed to run an electric motor or turn on a me-
chanical switch. 

To take another example, relevant to the assessments of 
computation and reflection, so too is being referred to not an ef-
fective property. It is especially true that being referred to right 
now is not effective. In spite of its being more than two million 
light years away, the Andromeda galaxy at this very moment 
enjoys the property of being so referred to—of being the refer-
ent of a thought, since I am thinking about it as I write this sen-
tence. It has the property of being thought about right now, in 
spite of the fact that no evidence of that fact could reach An-
dromeda until more than two million years from now, to say 
nothing of the fact that its currently being thought about will 
not, per se, exert a causal or effective impact on (send an “effec-
tive signal to”) it, ever. 

In fact it is metaphysically astonishing, to say nothing of 
deucedly lucky, that anything is effective—that it is in virtue of 
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the exemplification of any property that anything can have any 
causal consequence whatsoever. 

The stupefying paucity of the causal or effective, I take it, estab-
lishes a ferocious challenge for humans, for logic, and for com-
putation—for intentional systems of all sorts. It is a challenge 
that can never be fully met. The logician Jon Barwise was fond 
of saying that the most important conclusion of the th cen-
tury study of logic was appreciation of the fact that “ultimately 
one cannot reduce semantics to syntax.” He took this to be the 
underlying moral of the failure of Hilbert’s program, the Gödel 
incompleteness results, etc., to which I would add Turing’s 
demonstrations of the limits of computability. Given my belief 
that what it is to be “syntactic” (in logic) and what it is to be 
“computable” (in computer science) both ultimately depend on 
a similar notion of effectiveness, what I take these results to 
amount to is something of a Browning-esque recognition that 
even in the radically restricted domains of mathematics, logic, 
and formal computability, the challenge of “grasping the world” 
through effective mechanism is not one that can ultimately be 
met. We simply do the best we can. And this humility holds for 
formal results in arithmetic! Think about how much more 
daunting is the challenge when the semantic realm is opened up 
to the full richness of dynamic real-world phenomena. 

The challenge ultimately derives from physics.1 If anything 
is to happen—i.e., for anything like an event to occur—it must 
come about, as we often say, through causal means—must hap-
pen in virtue of the dynamic exemplification of causal, or me-
chanical, or effective properties. This is just a blunt, inescapable 

 
 
1I am not a straightforward physicalist—even of the weakest form so far 
articulated: global supervenience. But just as I believe that there is some-
thing profoundly right about realism, which must be preserved in any 
more constructivist or embodied alternative, so too I believe that there is 
something both incredibly sobering and yet surpassingly powerful about 
physicalism, which must also be, if not preserved, then at least done jus-
tice to in any successor or alternative account. 
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fact about what the world is like. It is a fundamental truth—
albeit one that blanket mechanism has blown out of propor-
tion. Blanket mechanists are right to recognize that what hap-
pens does so in virtue of the mechanical or effective. What they 
fail to appreciate it that what is the case is transcendently larger. 

Moreover, the challenge of knowing—of reasoning, of com-
puting, of being able to think—derives from the discrepancy 
between the vanishingly small and restricted subset of the 
world that is mechanical or effective, and the vastly larger world 
of what is the case. Knowing has to happen, reasoning has to 
happen—we do not come blessed with divinely instilled or pre-
ordained comprehensive knowledge. What we humans have 
succeeded in doing, by evolutionary and then societal and cul-
tural means, is to learn how to exploit that which is effective or 
mechanistic in ourselves, and in our environment, in ways that 
allow us to stand in referential (and, because of the deference, 
to an extent reverential) relation to the world as a whole. An 
ability to appreciate the magnitude of this achievement is what 
I take to be so important about studies of logic, of computing, 
of intentionality in general. It is also what I take formal logic to 
be a magnificent first stab at explaining. And this, too, is what 
computing is a complex practice exploring (in spite of how we 
have understood it theoretically). That it is metaphysically pos-
sible at all, as I keep saying, is incredibly fortuitous. That hu-
mans have evolved so as to be able to do it is undoubtedly our 
most staggering achievement. That we are slowly coming to un-
derstand what it involves, and, Prometheus-like, in systems of 
our own devising, are starting to construct synthetic instances 
of it—that is what makes computing important, what makes 
the arrival of computing on the world stage a development of 
profound historic consequence. 

This volume is not a metaphysical defense of deferential se-
mantics, let alone of an underlying view of global physical su-
pervenience; nor is it a systematic account of the nature of com-
puting or reasoning in its terms. It merely documents a few 
small steps taken en route to understanding what it would be 
to develop such a story. Perhaps most critical to understand is  
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that Lisp and Lisp, modest as they are, were designed within 
a committedly deferential overarching semantic viewpoint. Be-
cause of this, the individual moves made in their design—down 
to the most intricate details of Lisp programming—can be un-
derstood only against its strictures. 

As should be obvious, these are all points on which the blanket 
mechanist is sentenced to blindness. Because blanket mecha-
nists assume that the world is restricted to the effective, they 
cannot grasp the importance of logic, the character of compu-
ting, the essence of knowledge, or the nature of being. To rec-
ognize the importance of deferential semantics, in contrast, is 
to leave the world whole and vast, and to recognize that the me-
chanical restriction applies only to what happens, effectively, in 
a very particular and limited sense of “what happens.” 

Blanket mechanists, I know, found Lisp inscrutable when 
it was first introduced, and likely still find it inscrutable today. 
I only hope that the few remarks made here will help to make 
its architecture, and programs and computing more generally, 
a tad more comprehensible. 
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